
July 2016 v Volume 7(7) v Article e014171 v www.esajournals.org

The statistical power to detect cross- scale  
interactions at macroscales

Tyler Wagner,1,† C. Emi Fergus,2 Craig A. Stow,3 Kendra S. Cheruvelil,2,4 
and Patricia A. Soranno2

1U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, The Pennsylvania State University,  
University Park, Pennsylvania 16802 USA

2Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824 USA
3NOAA Great Lakes Laboratory, Ann Arbor, Michigan 48108 USA

4Lyman Briggs College, Michigan State University, East Lansing, Michigan 48825 USA

Citation: Wagner, T., C. E. Fergus, C. A. Stow, K. S. Cheruvelil, and P. A. Soranno. 2016. The statistical power to detect 
cross- scale interactions at macroscales. Ecosphere 7(7):e01417. 10.1002/ecs2.1417

Abstract.   Macroscale studies of ecological phenomena are increasingly common because stressors such 
as climate and land- use change operate at large spatial and temporal scales. Cross- scale interactions (CSIs), 
where ecological processes operating at one spatial or temporal scale interact with processes operating 
at another scale, have been documented in a variety of ecosystems and contribute to complex system 
dynamics. However, studies investigating CSIs are often dependent on compiling multiple data sets from 
different sources to create multithematic, multiscaled data sets, which results in structurally complex, and 
sometimes incomplete data sets. The statistical power to detect CSIs needs to be evaluated because of their 
importance and the challenge of quantifying CSIs using data sets with complex structures and missing 
observations. We studied this problem using a spatially hierarchical model that measures CSIs between 
regional agriculture and its effects on the relationship between lake nutrients and lake productivity. We 
used an existing large multithematic, multiscaled database, LAke multiscaled GeOSpatial, and temporal 
database (LAGOS), to parameterize the power analysis simulations. We found that the power to detect 
CSIs was more strongly related to the number of regions in the study rather than the number of lakes 
nested within each region. CSI power analyses will not only help ecologists design large- scale studies 
aimed at detecting CSIs, but will also focus attention on CSI effect sizes and the degree to which they are 
ecologically relevant and detectable with large data sets.
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IntroductIon

Ecological systems are shaped by processes 
operating at multiple temporal and spatial 
scales, and this hierarchical structure can make 
it challenging to understand ecological dynam-
ics (Levin 1992). Cross- scale interactions (CSIs), 
whereby ecological processes operating at one 
spatial or temporal scale interact with processes 
operating at another scale, can promote ecologi-
cal complexity and lead to unexpected patterns 

if multiscaled relationships are ignored (Peters 
et al. 2004, 2007, Heffernan et al. 2014, Soranno 
et al. 2014). These complex, multiscaled relation-
ships can make it difficult to manage systems 
and predict how they may respond to broadscale 
drivers of change such as climate change and 
land- use conversion.

As multiscale perspectives develop, atten-
tion toward CSIs, and their potential influence 
on ecological complexity, will likely continue to 
grow among various disciplines in ecology (Cash 
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et al. 2006, Vergara and Armesto 2009, Koo et al. 
2014, Menge et al. 2015). For example, CSIs are 
hypothesized to be critical to understand com-
plex forest ecological dynamics in the face of 
multiscaled disturbance regimes, climate change, 
and management actions (Becknell et al. 2015). In 
aquatic systems, broadscale ecosystem charac-
teristics and fine- scale microhabitat character-
istics likely interact to influence littoral benthic 
communities (Stoffels et al. 2005). Further, CSIs 
are important not only to biological and biogeo-
chemistry responses in systems but also to dis-
turbance phenomena such as fire regime, which 
are influenced by multiscaled spatial and tempo-
ral factors and processes (Falk et al. 2007).

Empirical evidence for the presence of CSIs is 
also growing across different ecological systems. 
For example, in terrestrial systems red spruce 
growth is influenced by an interaction between 
local- scale topography and regional- scale cli-
matic factors (Koo et al. 2014). In aquatic systems, 
CSIs are shown to influence ecological responses 
such as brook trout Salvelinus fontinalis occupancy 
(DeWeber and Wagner 2015), marine intertidal 
community composition (Menge et al. 2015), and 
lake water chemistry (Fergus et al. 2011). There 
is also evidence that the well- studied empirical 
relationships between lake phosphorus and chlo-
rophyll a (CHL; a measure of lake primary pro-
duction) concentrations are influenced by CSIs 
with regional agriculture and wetland presence 
(Wagner et al. 2011, Filstrup et al. 2014), which 
may help reconcile differences in relationships 
among different studies.

Although CSIs may be conceptually and eco-
logically important to understand ecological 
complexities, there are data demands and analyt-
ical challenges for quantifying these relationships 
(Soranno et al. 2014). To quantify CSIs, there is a 
need for multithematic data sets that span poten-
tially extensive spatial and/or temporal scales, 
depending on the ecological phenomena of inter-
est (Koo et al. 2014, Soranno et al. 2014, Keane 
et al. 2015). Because these sorts of data sets are 
rare, frequently multiple data sets from different 
sources are compiled to create a multithematic, 
multiscaled data set to examine CSIs (Soranno 
et al. 2015). The consequences of this approach 
are “messy” data sets with complex (e.g., uneven 
numbers of observations across spatial or tempo-
ral extents) and multilevel data structures.

Hierarchical models represent one analytical 
approach that can accommodate the multilevel 
data structures observed in multithematic, mul-
tiscaled data sets and that can be used to estimate 
CSIs. In fact, hierarchical models have been used 
to quantify CSIs in both the ecological and social 
sciences (Mathieu et al. 2012, Soranno et al. 2014, 
Dixon Hamil et al. 2016). Although factors affect-
ing the statistical power of hierarchical models 
generally (Scherbaum and Ferreter 2009) and 
specifically related to detecting CSIs (Snijders 
and Bosker 1993, Mathieu et al. 2012) have been 
studied, these investigations have not been in 
ecological disciplines. To the best of our knowl-
edge, the effect of such multilevel data structures 
on the statistical power to detect CSIs has yet to 
be evaluated within the context of macroscale 
investigations of ecological CSIs.

In this study, we examine the ability to detect 
CSIs under different scenarios that may be 
encountered with multiscaled, compiled data sets 
(e.g., spatially varying sample sizes, varying CSI 
effect sizes, and different variance parameters). 
We studied this problem using a spatially hierar-
chical model that measures CSIs between driver 
variables (as described in Soranno et al. 2014). 
These types of CSIs have an interaction between a 
higher- level variable (e.g., regional agriculture) on 
a lower- level driver variable (e.g., lake nutrients) 
on the response (e.g., lake chlorophyll concentra-
tions). We focused on evaluating CSIs between 
regional agricultural land use and the effects of 
lake nutrients (i.e., phosphorus and nitrogen) on 
lake chlorophyll concentrations (a measure of pri-
mary producer biomass) because previous work 
has demonstrated the potential for regional land 
use to mediate the effects of lake nutrients on pri-
mary producer biomass, resulting in a CSI (Wagner 
et al. 2011, Filstrup et al. 2014). Specifically, pre-
vious studies have demonstrated a CSI between 
regional agricultural land use and the rate at which 
chlorophyll concentrations increase with increas-
ing nutrients, such as phosphorus concentrations 
(Wagner et al. 2011). The mechanisms for this CSI 
are hypothesized to be due to simultaneous nitro-
gen and phosphorus enrichment and to the export 
of more biologically available forms of nutrients 
in agriculturally dominated regions compared to 
regions with other land cover types (Filstrup et al. 
2014). We used a spatially extensive lake water 
chemistry database, LAke multiscaled GeOSpatial 
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and temporal database (LAGOS; Soranno et al. 
2015), to parameterize the power analysis simula-
tions. This type of power analysis can help inform 
study designs to formally examine such complex, 
multiscaled relationships in ecology. We also sug-
gest that a power analysis for CSIs is important for 
understanding what CSI effect sizes are ecologi-
cally relevant and detectable.

Methods

Lake and land- use data
Data used to derive estimates for parameteri-

zing power analysis simulations came from 
the LAGOS database, a multithematic lake data-
base that integrates lake water chemistry data 
(LAGOSLIMnO) and geospatial data (LAGOSGEO) 
across the Midwest and northeast regions of the 
United States (Soranno et al. 2015). We used 
LAGOSLIMnO version 1.0541 and LAGOSGEO 
version 1.03 for our analyses.

We used a subset of lakes (≥4 ha and <10,000 ha 
in surface area) from LAGOS that had measure-
ments for CHL, total phosphorus (TP; n = 3781 
lakes), and total nitrogen (Tn; n = 3107 lakes). To 
reduce intraseasonal variation in nutrients within 
lakes, we used summer epilimnetic (15 June–15 
September) average nutrient concentrations for 
data collected between 2002 and 2011 (the 10 most 
recent years of data available), which resulted in 
one observation per lake. The number of years that 
were sampled for each lake ranged from 1 to 10 yr 
for both TP and Tn, with a median number of 
years of two for TP and one for Tn. The standard 
deviation in annual TP for lakes that were sampled 
more than one year ranged from 0 to 518 μg/L, 
with a median of 3.5 μg/L. The standard deviation 
in annual Tn for lakes that were sampled more 
than one year ranged from 0 to 5155 μg/L, with a 
median of 116 μg/L. The U.S. Geological Survey 
four- digit Hydrologic Unit (HU), which is based 
on river basins (Seaber et al. 1987), was used as a 
regionalization framework to group lakes on the 
landscape. The proportion of agricultural land 
use in each region was calculated from the 2006 
national Land Cover Dataset (Fry et al. 2011).

Statistical model: CSIs between regional agriculture 
and the effect of nutrients on lake productivity

Quantifying CSIs requires multiscale analytical 
frameworks such as spatially explicit landscape 

models, systems models, and statistical models 
(Koo et al. 2014, nash et al. 2014, Dixon Hamil et al. 
2016, Keane et al. 2015). Hierarchical models are 
one statistical approach to quantify CSIs among 
driver variables, as defined in Soranno et al. (2014). 
Hierarchical models are well suited to study CSIs 
among driver variables because they partition 
variation in ecological responses among hierarchi-
cally structured spatial units that can be related to 
multiscaled drivers and CSIs among these drivers 
(Soranno et al. 2014, Dixon Hamil et al. 2016).

We defined CSIs similar to previous studies 
(Filstrup et al. 2014, Soranno et al. 2014, DeWeber 
and Wagner 2015) using a varying intercept, 
varying slope hierarchical model that included 
predictor variables at two levels (Level 1: obser-
vation level [lake level] and Level 2: group level 
[region level] of the hierarchical model). The basic 
data structure for this CSI model specification is 
multiple observations of response and predictor 
variables of interest for individual systems (e.g., 
lakes) grouped spatially in an ecologically rele-
vant manner using a regionalization framework 
(Cheruvelil et al. 2013). Each lake had at least one 
observation for each of the three lake chemistry 
variables, TP, CHL, and Tn, and was grouped 
spatially into regions. The varying intercepts in 
the hierarchical model allowed the group of lakes 
in each region to have their own mean CHL that 
might differ from the mean CHL for groups of 
lakes in other regions, while the varying slopes 
allowed the each region’s lakes to differ in the rela-
tionship between TP (or Tn) and CHL from that 
of other regions. A CSI exists if the region- specific 
slopes in the TP (or Tn)–CHL relationship varies 
predictably with a region- specific predictor vari-
able(s), indicating an interaction between a lake- 
level (Level 1) and region- level (Level 2) predictor 
variable whereby the effects of local predictor 
variables are mediated by this larger  scale phe-
nomenon, a CSI. Although more complex model 
specifications are possible, we focused on a rela-
tively simple, yet ecologically relevant, model:

Level 1: yi∼N
(

αj(i) +βj(i) ⋅xi, σ2y
)

, for i=1, …n

Level 2:
(

αj
βj

)

∼MVN
((

γα
γβ+γβ1 ⋅zj

)

,
(

σ2
α

σαβ
σαβ σ2

β

))

, for j=1, … J
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where yi is the response variable (e.g., loge CHL 
for lake i), xi is the standardized (mean = 0, 
SD = 1) lake- level predictor (e.g., loge TP [or 
loge Tn] for lake i), αj and βj are group- specific 
(e.g., region- specific) intercepts and slopes, and 
σ2y is the model error term variance. The region- 
specific intercepts and slopes are assumed to 
come from a multivariate normal distribution 
(MVn), where γα is the grand mean intercept and 
γβ and γβ1 are the intercept and slope describing 
the relationship between the region- level predic-
tor variable, zj, and the slopes in the relationship 
between x and y. The parameters σ2

α
, σ2

β
, and σαβ 

are the variances among intercepts and slopes, 
and the covariance, respectively. The parame-
ter γβ1 describes the CSI. We fitted TP–CHL and 
Tn–CHL models with the percentage of agricul-
ture land use in each region as the region- level 
predictor (zj). These models provided parameter 
estimates used in the data- generating process for 
the power analysis simulations (see Power anal-
ysis simulations below). All analyses were per-
formed using the lmer function in the program 
r (Bates et al. 2014: r library lme4, r Core Team 
2015).

Power analysis simulations
We used a simulation approach to assess the 

statistical power to detect CSIs. This process con-
sisted of two steps: a data- generating step and an 
estimation step. For the data- generating step, the 
varying intercept, varying slope model (Eq. 1) 
was used as the data- generating model. All 
parameters in this model, as well as the number 
of observations, n, and number of regions, J, used 
to generate simulated data sets could be manipu-
lated to assess their relative influence on the 
power to detect CSIs. For example, one important 
question related to detecting CSIs is: “How large 
of an effect size for the CSI can we detect given 
the variability observed across the landscape and 
given the number of ecosystems and regions with 
data?” Within the simulation context, this ques-
tion is addressed by holding all parameters at 
their estimated values (i.e., the values estimated 
from the LAGOS database) and increasing or 
decreasing the value we assume for the CSI (e.g., 
change the value of γβ1 used in the data- generating 
step) to examine the effects on power.

The estimation step of the power analysis con-
sisted of fitting the varying intercept, varying 

slope model to 1000 simulated data sets and 
determining whether the CSI was detected (i.e., 
if γ̂β1 was statistically discernible from zero). 
Because the data were generated assuming a 
slope for the CSI that differed from zero, the null 
hypothesis of a zero slope is false, and power was 
estimated as the percentage of simulations (of 
1000) that rejected the null hypothesis (Wagner 
et al. 2007, see Appendix S1: Data S1 for r code). 
Because we simulated positive CSIs in all power 
analyses, the estimated CSI was considered sig-
nificant if the lower bound of the 95% confidence 
interval (CI) for γβ1 exceeded zero. For the rare 
cases (≤ 7% of the 1000 simulations) when some 
simulated data sets resulted in small sample 
sizes with fitted models that failed to converge 
(i.e., parameter estimates were not deemed reli-
able), those simulations were not used to calcu-
late power.

Power analysis scenarios
For both the TP–CHL and Tn–CHL analyses, 

we investigated the extent to which the follow-
ing factors affected the ability to detect a CSI: 
(1) increasing CSI effect size, γβ1, (2) increasing 
the number of regions, J, sampled across the land-
scape, (3) increasing the mean number of lakes, n̄, 
sampled within each region, (4) increasing and 
decreasing the conditional standard deviation, 
σβ, in the CSI regression, and (5) increasing and 
decreasing the standard deviation σy. For (1), we 
examined the range of region- specific responses 
of CHL to increases in TP and Tn (βjs from the 
estimates using LAGOS) to determine a range of 
CSI effect sizes to include in the power analyses. 
This approach provided a range of percentage 
increases in CHL that corresponded to a 1% 
increase in TP or Tn, which helped place some 
ecological bounds on what kind of CHL response 
might be anticipated when a CSI was present.

Because of the way we defined a CSI, a region-
alization framework must be used as the second- 
level grouping factor in the hierarchical model 
(i.e., Level 2 of Eq. 1). The choice of regionaliza-
tion framework, and the resulting number of 
regions in the data set, is particularly important 
when estimating CSIs; as the number of regions 
increases or decreases, the sample size, J, in 
the second level of the hierarchical model also 
correspondingly increases or decreases, which 
is the level where the CSI is being estimated. 
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This fact is important because power necessar-
ily increases with increasing sample size (Steidl 
et al. 1997). Therefore, we evaluated (2) by con-
sidering scenarios where the number of regions 
was 10, 15, 20, 35, 40, 50, or 100 in order to span 
a reasonable range that might be encountered 
in macrosystems ecology research interested in 
estimating CSIs.

The number of lakes within a region is also 
an important consideration when thinking 
about detecting CSIs, that is, how many sys-
tems need data within a region to achieve ade-
quate power? In most cases, all systems in a 
population of interest cannot be sampled due 
to logistical and resource constraints (i.e., we 
cannot perform a complete census). In addition, 
because many macro system investigations into 
large- scale phenomena like CSIs are contingent 
on compiled data from many sources (e.g., com-
piling data from many state agencies and uni-
versities; Soranno et al. 2015), we examined the 
effect of changing the mean number of lakes per 
region (3) by generating within- region sample 
sizes as a negative binomial random number, 
with the mean of the negative binomial (n̄) set 
to the value of interest and the scale parameter 
set to the value estimated from the observed 
data. Simulating within- region sample sizes in 
this manner resulted in most regions with sam-
ple sizes near the mean and a few regions with 
larger sample sizes, which mimicked the struc-
ture of the LAGOS data. For example, for lakes 
with TP–CHL data the distribution of within- 
region sample sizes was right- skewed (min = 1, 
25th percentile = 14, median = 36, mean = 62, 75th 
 percentile = 89, max = 297).

Lastly, we examined how changing the (4) con-
ditional standard deviation, σβ, in the CSI regres-
sion and the (5) residual standard deviation, 
σy, influenced power. The conditional standard 
deviation, σβ, represents the residual variation 
in the Level 2 CSI (i.e., the unexplained “noise” 
around the CSI regression), whereas the residual 
standard deviation, σy, represents the residual 
variation in the Level 1 TP or Tn–CHL relation-
ship (i.e., the unexplained “noise” around the TP 
or Tn–CHL regression). Because we did not have 
any values of interest a priori, we evaluated the 
effect of changing these standard deviations by 
setting them to their estimated values and to the 
lower and upper 95% confidence interval values. 

Parameters not being changed in any given sim-
ulation were held at estimated values.

results

CSIs between regional agriculture and the effect of 
nutrients on lake productivity

LAGOS summary statistics.—For the TP–CHL 
analysis, there were 3781 lakes located within 61 
regions (HU- 4s; Seaber et al. 1987). The number 
of lakes per region ranged from 1 to 297, with a 
mean of 62 lakes per region (Fig. 1). Mean TP 
was 38.7 μg/L and ranged from 1 to 1122 μg/L, 
whereas mean CHL was 15.8 μg/L and ranged 
from 0.03 to 549 μg/L. The mean percentage 
agricultural land use across the 61 regions was 
37.4% and ranged from 1.7% to 78.6%. For the 
Tn–CHL analysis, there were 3107 lakes located 
in 62 regions (Fig. 1). The number of lakes per 
region ranged from 1 to 284, with a mean of 49 
lakes per region. Tn ranged from 55 to 
11,860 μg/L, with a mean of 849.2 μg/L. Mean 
CHL was 16.3 μg/L and ranged from 0.15 to 
307 μg/L. The mean percentage agricultural land 
use across the 62 regions was 36.8% and ranged 
from 1.7% to 78.6%.

Statistical models.—LAGOS data revealed a 
positive relationship between TP (and Tn) and 
CHL; those relationships were spatially variable, 
although the relationship between TP and CHL 
was less variable both within and across regions 
than the Tn–CHL relationship (Fig. 2, Table 1). 
There was a significant CSI for the TP–CHL 
relationship (γ̂β1 = 0.003 [95% CI = 0.001, 0.005]), 
with increasing regional agriculture land use 
resulting in an increasing rate of response of CHL 
to increasing TP (Fig. 2B). For example, at 0% 
agricultural land use in a region, a 1% increase in 
TP resulted in a 0.85% increase in CHL. However, 
in a region with 75% agricultural land use, a 1% 
increase in TP results in a 1.1% increase in CHL 
(Fig. 3). Although the CSI effect size is relatively 
small, it could promote shifts in phytoplankton 
community composition if increases in agri-
cultural land use result in lower water clarity so 
that additional chlorophyll is required to capture 
the available light energy. This relatively small 
CSI effect size may also have more biological 
significance once its effects (e.g., on carbon 
fixation) are scaled up to subcontinental or 
continental scales. The CSI for the Tn–CHL 
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relationship was small and not different than 
zero, with the 95% CI overlapping zero 
(γ̂β1 = 0.0008 [−0.003, 0.004]; Fig. 2D, Table 1).

Power analysis
The patterns of the relationships between sta-

tistical power and changes in effect size, sample 
size, and model error term variance align with 
expectations (Mathieu et al. 2012). However, the 
power analyses provided important insight into 
the actual magnitude of the CSI effect sizes that 
could be detected under different sampling sce-
narios and the influence of Levels 1 and 2 sample 
sizes and variance terms on detecting macroscale 
CSIs in freshwater inland lake ecosystems 
(Table 2). For the TP–CHL analysis, power 
increased with increasing effect size and number 
of regions (Fig. 4A). Statistical power was low 
(less than the conventional 0.8 deemed as 

adequate power and used as a reference in these 
analyses; Peterman 1990) when the CSI effect size 
was low (γβ1 = 0.001), regardless of how many 
regions were used in the analysis. For the CSI 
effect size that we estimated from LAGOS 
(γβ1 = 0.003), power did not reach 0.8 until the 
number of regions was approximately >50. For 
large effect sizes (γβ1 ≥ 0.005), power was high 
regardless of the number of regions used in the 
analysis. A similar pattern in power was observed 
for the Tn–CHL analysis (Fig. 4C); however, 
power was lower across all effect sizes and num-
ber of regions due in part to larger residual vari-
ances (as illustrated in Fig. 2C). Although 
increasing the mean number of lakes sampled 
within each region increased power, this effect 
was small compared with increasing the number 
of regions or increasing the effect size, for both 
TP–CHL and Tn–CHL analyses (Fig. 4B, D).

Fig. 1. Map of study lakes. Blue circles indicate lakes with total phosphorus and chlorophyll a (CHL) data 
(n = 3781), and red circles indicate lakes with total nitrogen and CHL data (n = 3107).
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Changing the conditional standard deviation, 
σβ, influenced power in a predictable manner, 
with increasing among- region variability in 
the relationship between TP–CHL and Tn–
CHL resulting in decreased power (Fig. 5A, C), 
although the increase in power was negligible 
for the Tn–CHL analyses when the CSI effect 
size was small (Fig. 5C). Changing the model 

error term standard deviation, σy (i.e., the Level 
1 residual standard deviation), had minimal 
influence on power for both analyses (Fig. 5B, 
D); however, this pattern partly reflected the 
parameter values that were used in the analyses 
(i.e., we chose the estimated value and upper 
and lower 95% CI as values to investigate, and 
the residual standard deviation estimate from 

Fig. 2. relationship between total phosphorus (TP) and chlorophyll a (CHL; A) and total nitrogen (Tn) and 
CHL (C). Solid circles in A and C are data points, the thick blue line is the overall relationship between TP or 
Tn and CHL across all lakes, and thin gray lines are region- specific relationships. Panels B and D illustrate the 
cross- scale interaction between the percentage of agricultural land use in a region and the relationship between 
TP or Tn and CHL (i.e., the relationship between regional percent agriculture and the slopes [β̂j] of the TP or 
Tn–CHL relationships). Points are estimated means, vertical bars are ±1 SE, and solid line is hierarchical 
regression model fit.

Table 1. Estimated parameters used to parameterize power analysis simulations from a varying intercept, 
 varying slope hierarchical model, followed by 95% confidence intervals in parentheses.

Model
Parameters

γ̂
𝛼

γ̂β γ̂β1 σ̂ σ̂α σ̂β

TP–CHL 2.00 (1.92, 2.09) 0.85 (0.77, 0.94) 0.003 (0.001, 0.005) 0.68 (0.66, 0.69) 0.27 (0.21, 0.34) 0.14 (0.09, 0.19)
Tn–CHL 2.19 (2.03, 2.34) 0.80 (0.64, 0.96) 0.0008 (−0.003, 0.004) 0.76 (0.74, 0.78) 0.59 (0.48, 0.72) 0.30 (0.23, 0.37)

Notes: Separate models were fitted for loge total phosphorus (TP)–loge chlorophyll a (CHL) and loge total nitrogen (Tn)–loge 
CHL relationships. note that γ̂β1 is the estimated cross- scale interaction.
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LAGOS had a relatively narrow CI). However, 
additional analyses (not reported herein) 
showed low sensitivity of the power to detect 
CSIs in response to larger changes in the resid-
ual standard deviation, σy, as compared to the 
other factors investigated.

dIscussIon

Our analysis highlighted several important 
points. First, estimating CSIs using a hierarchical 
model requires consideration of sample size at 
both the level of the individual “system” (e.g., 
number of lakes within regions) and the level of 
the region (number of regions). Second, detect-
ing CSIs was much more sensitive to the number 
of regions used in the analysis as compared to 
the average number of lakes within regions. This 

is because the number of regions used in the 
analysis is the sample size for the second level of 
the hierarchical model where the CSI is esti-
mated. Thus, expending resources to sample 
many systems in all regions may not be neces-
sary and resources could be better spent sam-
pling fewer systems across more regions. The 
relative insensitivity to within- region sample 
size is likely influenced by the fact that hierarchi-
cal models are able to accommodate the spatial 
imbalance in the number of lakes within each 
region through the effects of partial pooling 
(Gelman and Hill 2007). Partial pooling allows 
estimates of regions to borrow strength from the 
entire ensemble of data by shrinking the region- 
specific estimates that are supported by relatively 
sparse data toward the common mean. In our 
case study, there were always some regions with 

Fig. 3. Effect of increasing the percentage agricultural land use in a region on the rate of increase in chlorophyll a 
(CHL) in response to a 1% increase in total phosphorus (TP; A) or total nitrogen (Tn; B) across a range of cross- scale 
interaction (CSI) effect sizes (γβ1). Effect sizes labeled in figures and corresponding solid lines represent CSI effect 
sizes examined in power analyses. γβ1 = 0.003 represents the CSI estimated from the data for the TP–CHL 
relationship. The lowermost solid line in panel B corresponds to the estimated CSI in the Tn–CHL relationship 
(γβ1 = 0.0008), which is shown for comparative purposes, but was not used in the power analyses. A horizontal line 
at a 1.2% and 1.6% increase in CHL in response to a 1% increase in TP or Tn was added to aid in comparing panels.
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many lakes (even if the mean number of lakes 
per region was small) that helped inform the esti-
mates for data- poor regions.

We also documented the importance of 
 considering within- region and between- region 

vari abilities with respect to detecting CSIs. The 
power to detect CSIs was sensitive to changes in 
the variability in the nutrient–CHL and the CSI 
(slope–regional agriculture) relationships (i.e., 
the Levels 1 and 2 standard deviations). As with 
the sample size results, statistical power was 
more sensitive to changes in regional (Level 2) 
variability as compared to within- region (Level 1) 
variability. Thus, if detecting CSIs is the objec-
tive of a study, then the allocation of resources 
in terms of how the landscape is sampled is an 
important consideration. This type of trade- off 
is similar to that observed for other ecological 
questions, such as detecting regional temporal 
trends in a variable of interest. The trade- off in 
this case is whether to devote more resources to 
obtain a precise estimate of each system’s status 
in each year or to obtain less precise estimates of 
status and sample more systems in each year. If 
regional trend detection is the goal, resources are 
better spent on sampling more systems versus 

Table 2. Parameter values used in simulation scena-
rios for estimating the statistical power to  detect 
cross- scale interactions (CSIs).

Scenario Parameter value

1. CSI effect size (γβ1) γβ1 = 0.001, 0.003, 0.004,  
0.006, 0.008, 0.01

2. Level 1 mean sample size (n̄) n̄ = 10, 20, 40, 60, 80, 100
3. Level 2 standard deviation (σβ) σβ = 0.228, 0.298, 0.374
4. Level 1 standard deviation (σy) σy = 0.738, 0.756, 0.778

Notes: See Eq. 1 for descriptions of model parameters. 
Parameter values not changed during a simulation were held 
at estimated values (see Table 1). All scenarios were 
 performed across a range of number of regions, J, where 
J = 10, 15, 20, 35, 40, 50, 100. Scenarios 2–4 were performed 
with a CSI effect size (γβ1) of 0.001 and 0.003.

Fig. 4. Power curves for detecting cross- scale interactions (CSIs) with increasing trend magnitude (γβ1) and 
mean number of lakes (n̄) sampled within each region for the total phosphorus (TP)–chlorophyll a (CHL; A, B) 
and total nitrogen (Tn)–CHL relationships (C, D) across a range of region numbers. The CSI is the effect of 
increasing the proportion of regional agricultural land use on the slope of the TP–CHL and Tn–CHL relationships. 
In panels B and D, the upper set of curves are for γβ1 = 0.003 and the lower set of curves are for γβ1 = 0.001.
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obtaining a more precise estimate of each system 
(Wagner et al. 2007).

Estimating CSIs at macroscales is becoming 
increasingly possible due to the availability of 
diverse data sets on ecosystem components and 
satellite and aircraft- collected high- resolution 
data that allow for potential driver variables 
to be quantified at multiple spatial scales. We 
suggest that the use of CSI power analyses will 
not only help ecologists design large- scale stud-
ies aimed at detecting CSIs, but will also focus 
attention on explicitly considering ecologically 
relevant CSI effect sizes—what an ecologically 
relevant effect size is for any given system and 
the ability to detect the effect with some level 
of confidence. Such studies are only possible 
through the creation and integration of var-
ied data sources, with data quantified at mul-
tiple spatial extents, which is challenging and 
labor- intensive (Soranno et al. 2015). Because 
CSIs are likely important for extrapolation and 

scaling up local- scaled results to continental and 
global- scaled inferences, such integration efforts 
and power analyses will become increasingly 
important for future continental-  and global- 
scaled analyses of ecosystem change.
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Fig. 5. Power curves for detecting cross- scale interactions (CSIs) with increasing conditional standard devi-
ation (σβ) in the CSI regression in the total phosphorus (TP)–chlorophyll a (CHL; A) and total nitrogen (Tn)–CHL 
(C) models and residual variation (σy) (B: TP–CHL; D: Tn–CHL) across a range of region numbers. The CSI is the 
effect of increasing the proportion of regional agricultural land use on the slope of the TP–CHL and Tn–CHL 
relationships. The upper set of curves are for γβ1 = 0.003 and the lower set of curves are for γβ1 = 0.001.
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