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Detecting Temporal Trends in Freshwater Fisheries Surveys: 
Statistical Power and the Important Linkages between 
Management Questions and Monitoring Objectives

Detección de tendencias temporales en 
muestreo de pesquerías continentales: 
poder estadístico y las relaciones entre 
temas de manejo y objetivos de moni-
toreo
RESUMEN: el monitoreo que se realiza para detectar ten-
dencias en el tiempo de índices biológicos y de hábitat es 
un componente crítico para el manejo de pesquerías. Por 
tanto, es crucial que los objetivos de manejo estén con-
certados con los objetivos de monitoreo. Estas relaciones 
requieren de la definición de los constituyentes de una “ten-
dencia temporal” que sea relevante para el manejo. Tam-
bién es importante desarrollar expectativas acerca de la 
cantidad de tiempo necesaria para detectar una tendencia 
(i.e. poder estadístico) y elegir un modelo estadístico ap-
ropiado para el análisis. En este trabajo (1) se presenta un 
panorama de las tendencias temporales que comúnmente 
se encuentran en el manejo de pesquerías, (2) se revisa la 
literatura publicada sobre evaluación del poder estadístico 
en la detección de tendencias temporales y (3) se aplicaron 
modelos lineales dinámicos de contexto Bayesiano, como 
un enfoque analítico adicional enfocado en cambios de 
corto plazo. Se muestra que los programas de monitoreo 
generalmente tienen bajo poder estadístico para detec-
tar tendencias lineales en el tiempo y se argumenta que 
el manejo debiera enfocarse en diferentes definiciones de 
tendencias, algunas de las cuales pudieran ser mejor estu-
diadas mediante enfoques analíticos alternativos.
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FEATURE

ABSTRACT: Monitoring to detect temporal trends in bio-
logical and habitat indices is a critical component of fisheries 
management. Thus, it is important that management objectives 
are linked to monitoring objectives. This linkage requires a 
definition of what constitutes a management-relevant “tempo-
ral trend.” It is also important to develop expectations for the 
amount of time required to detect a trend (i.e., statistical power) 
and for choosing an appropriate statistical model for analysis. 
We provide an overview of temporal trends commonly encoun-
tered in fisheries management, review published studies that 
evaluated statistical power of long-term trend detection, and 
illustrate dynamic linear models in a Bayesian context, as an 
additional analytical approach focused on shorter term change. 
We show that monitoring programs generally have low statisti-
cal power for detecting linear temporal trends and argue that 
often management should be focused on different definitions of 
trends, some of which can be better addressed by alternative 
analytical approaches.

Introduction

Fisheries management agencies use a variety of methods 
to survey fish populations and their habitats. These surveys 
provide a wealth of information, including indices of relative 
abundance, descriptions of the size and age composition of the 
population, and assessment of habitat conditions (Murphy and 
Willis 1996; Roper et al. 2002). Although data obtained from 
these surveys are used to assess a variety of management and 
conservation objectives, a common theme is to monitor trends 
in biological or habitat indices over time (for conciseness, we 
use the term “trend” to include linear and nonlinear changes 
over time, including abrupt step changes). Detecting temporal 
trends has many implications in fisheries management. Some 
reasons why trend detection is important include (1) manage-

ment actions often have time-oriented objectives (e.g., use 
stocking to restore fish populations within 10 years or stabi-
lize eroding stream banks to immediately reduce sedimentation 
rates); (2) aquatic ecosystems may respond in complex and non-
linear ways to both natural and anthropogenic factors, resulting 
in unanticipated changes (Hayes et al. 2003a; Irwin et al. 2009; 
Rudstam et al. 2011); and (3) knowledge of previous system 
dynamics can inform structured decision-making processes by 
helping to identify what can realistically be considered accept-
able or unacceptable outcomes of management (Irwin et al. 
2011). 

Although the concept of trend detection is not unique to 
fisheries assessment, the critical role that monitoring plays in 
fisheries management decision making emphasizes the impor-
tance of linking value-based management objectives to statis-
tically based monitoring objectives. Establishing this linkage 
requires a definition of what constitutes a management-relevant 

D
ow

nl
oa

de
d 

by
 [

Pe
nn

sy
lv

an
ia

 S
ta

te
 U

ni
ve

rs
ity

] 
at

 0
5:

11
 1

2 
Ju

ly
 2

01
3 



Fisheries • Vol 38 No 7 • July 2013• www.fisheries.org   310

trend. It is also important to develop expectations for the amount 
of time required to detect a management-relevant trend in a 
system indicator, with some level of confidence (i.e., statistical 
power), as well as choose an appropriate statistical model for 
analyzing survey data. Knowing the amount of time required to 
detect a temporal trend allows managers to identify cases where 
the time frame for management (e.g., stocking decisions that are 
made annually or every few years) differs from the time frame 
necessary to detect responses in the state of a system. Even 
when managers have access to long-term monitoring data, the 
reality is that many fishery management decisions are made in 
a “low statistical power environment” (see section Summary of 
Published Power Analyses). The negative consequences of this 
unfortunate reality may be at least partially alleviated by delib-
erate coordination of monitoring and management efforts. When 
properly designed, monitoring programs can provide a critical 
feedback loop for learning about system dynamics, which is 
fundamental to adaptive management (Lyons et al. 2008; Lin-
denmayer and Likens 2010). Thus, managers should be able to 
make more informed decisions when monitoring programs are 
designed to reduce key uncertainties. In turn, monitoring pro-
grams can also be used to evaluate how well observed outcomes 
correspond with anticipated responses to a management action.

In this article, we connect common fishery management 
questions to examples of monitoring objectives of detect-
ing temporal trends. We discuss how different trend detection 
monitoring objectives can be translated into different statistical 
models and why this translation is critical for evaluating value-
based management objectives. Within this context, we charac-
terize several common issues that influence the statistical power 
of trend detection, and we discuss some advantages of Bayesian 
inference as an alternative to null hypothesis testing for making 
inferences about temporal trends. There are four major com-
ponents to this article: (1) a brief overview of different types 
of temporal trends encountered in fisheries management, (2) a 
review of previously published studies that evaluated statistical 
power of long-term trend detection, (3) presentation of newly 
generated power analyses for detecting long-term trends using 
data from several fishery-independent surveys in the Great 
Lakes basin, and (4) an illustration of an additional, flexible 
analytical approach (i.e., dynamic linear modeling) geared to-
ward alternative definitions of temporal trends. Our intent is that 
our literature review, illustrative examples, and discussion will 
better position resource managers to establish and communicate 
realistic expectations for temporal trend detection in freshwater 
fishery surveys.

Temporal Trend Detection in Fisheries Monitoring

The degrees to which time-oriented management objectives 
are met are often assessed by (sometimes implicit) monitoring 
objectives that require detecting temporal trends. Simply put, 
fishery managers are often interested in whether important met-
rics have changed over time, particularly in response to manage-
ment interventions (e.g., changes in fishing regulations). For 
example, consider a management action that has an objective of 
increasing the abundance of legal-size sport fish and a fishery-

independent survey expected to assess the degree to which this 
management objective is being reached. In this case, a fishery 
manager may wish to “… detect an increase in the catch per ef-
fort (CPE) of legal-size fish within 5 years.” When monitoring 
objectives are stated this way, they are often interpreted analyti-
cally as “… detect a statistically significant linear trend in in the 
logarithm of CPE of legal size fish within 5 years.” Typically 
when assessing trends, a constant percentage change is esti-
mated and hence an exponential trend is estimated using loga-
rithms. Thus, to evaluate the management action, survey data 
are often examined for a statistically significant linear increase 
or decrease over time (Urquhart et al. 1998; Larsen et al. 2001), 
although the relative familiarity with statistical approaches that 
assume linearity may be partly responsible for the commonal-
ity of these types of analyses. Linear trend detection may often 
be sufficiently informative, even for nonlinear time series, as 
a long as a monotonic increase or decrease is present in the 
data (Urquhart and Kincaid 1999). However, this definition of 
temporal trend does not capture all of the important nuances of 
how aquatic systems can undergo temporal change, particularly 
when management actions are being frequently adjusted.

In addition to detecting short- or long-term trends persistent 
in monitoring data, fisheries managers are often interested in 
abrupt shifts to system conditions. Thus, detecting a long-term 
linear trend may not adequately represent monitoring objectives 
associated with large-scale management actions or system dis-
turbance (e.g., establishment of invasive species). In this case, 
alternative statistical models must then be used to adequately 
address monitoring objectives. For instance, there are a vari-
ety of analytical approaches that can be used to detect thresh-
olds in aquatic systems (e.g., Brenden et al. 2008; Baker and 
King 2010) that occur when the response of a system changes 
abruptly at some threshold value. For instance, Thomson et al. 
(2010) used a Bayesian change point analysis to identify periods 
of step changes in absolute abundance and in trends of change 
in abundance of four pelagic fish species in the upper San Fran-
cisco Estuary, California. In their case, identifying whether, and 
when, abrupt changes occurred helped to elucidate underlying 
causes and could help identify potential mitigation measures 
(Thomson et al. 2010): causes and management options that 
may not have been identified if statistical methods were used 
that only focused on detecting linear trends. Likewise, the de-
tection and assessment of regime shifts in aquatic systems has 
been receiving increasing attention (Carpenter 2003; Carpenter 
et al. 2011). Thus, monitoring programs are often expected to 
provide answers to management questions about changes occur-
ring over time, and frequently there can be multiple definitions 
(or interpretations) as to what these questions mean in terms of 
detecting temporal trends (Panel 1). 

Statistical Power to Detect Long-Term Linear Trends

As reviewed above, detecting a temporal trend is often 
equated with finding a statistically significant long-term linear 
trend. This definition of temporal trend relies on linear models 
and null hypothesis testing as a means of making inferences 
about temporal dynamics, and thus the concept of statistical 
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Panel 1. Interpreting temporal trends. 

Fisheries management objectives often specify a desire to detect temporal trends in an ecosystem response variable of in-
terest. As a result, monitoring is included as part of the management process in an effort to evaluate whether or not a temporal 
trend has occurred. In this situation, translating management questions to monitoring objectives becomes a critical part of the 
overall management process. A key component to this translation is defining what is meant by “temporal trend.” including both 
the duration of change sought to detect (a short- vs. long-term trend) and the anticipated form of the trend (e.g., linear, nonlin-
ear, step change). The figure shows hypothetical nonmonotonic temporal dynamics of a fishery ecosystem response variable 
(solid black circles). The time series includes a long-term trend (grey line) describing an underlying long-term average decline 
over most of the time period. Within this period of long-term decline are shorter term trends, both increases and more severe 
declines compared to the long-term average (e.g., solid and dashed orange lines), illustrating that short-term trends may or may 
not be representative of long-term dynamics. The dashed red line indicates an abrupt step change (i.e., a threshold or “tipping 
point”) in the time series. To translate management questions to monitoring objectives, we suggest that managers specify the 
anticipated rate, duration, and form of temporal trend to be detected. We have provided some illustrative examples in Table P1.

Table P1. Examples of common management questions related to temporal trends encountered in fisheries and descriptive characteristics 
related to translating these questions to monitoring objectives.

Example management 
question Rate of temporal change Duration of temporal 

change Form of temporal trend Example monitoring 
objective

Is the target population long-
term average declining over 
time?

Usually gradual, sustained Long-term cycles or 
permanent

Linear: Long-term trenda Detect an underlying trend in 
the population over time

Is a strong year-class present? Usually moderate Short-term Nonlinear: Short-term trenda Detect a large recruitment 
event

How different are two time 
periods from one another 
(e.g., before and after a man-
agement action was imple-
mented)

Rapid Permanent over moderate to 
long-term time scales

Step change: Potentially a 
regime shift; steady-state 
conditions of meaningful 
duration

Detect a shift in system 
productivity

Has the target population 
increased each of the last 5 
years

Moderate Short-term to permanent Linear: Short-term trend Detect an increase/decrease 
in abundance due to a 
management action

aIn practice, linear trends are often estimated on the natural logarithm scale.
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power is used for evaluating trend detection capabilities. This 
approach also implies that whether or not a long-term (e.g., de-
cades) linear trend is detected provides meaningful information 
on whether a system is responding to a management action as 
predicted. However, monitoring data may also be used to evalu-
ate management actions over relatively short ecological time 
frames (e.g., 5–10 years). In this case, managers may not be 
interested in the long-term dynamics of a population but, rather, 
in whether conditions have changed from year to year or per-
haps in the last 5 years. If traditional linear models are used to 
make inferences about the success of management actions under 
these circumstances, managers may be setting themselves up 
for failure because of the low statistical power to detect linear 
trends over relatively short, management-relevant time frames 
(<10 years). Failure can come in the form of not detecting a sig-
nificant trend even though some biologically important change 
has occurred (although perhaps less likely in fisheries, failure 
could also come in the form of detecting a significant trend, due 
to relatively low total variability, that is not meaningful from a 
biological or management perspective; Wade 2000). To illus-
trate this point, we conducted a literature review on the power 
to detect statistically significant linear trends for freshwater bio-
logical and habitat indices. 

Statistical power is the probability of rejecting the null hy-
pothesis when it is, in fact, false (e.g., detecting a trend when a 
trend is present). Generally, power is a function of sample size, 
the choice of a type I error rate (usually represented as α; i.e., 
stating that a trend is present when, in fact, there is not a trend), 
effect size (i.e., trend magnitude), the underlying variance in the 
observations, and the statistical model used to evaluate power. 
When survey data are analyzed for temporal trends, sample size 
is often quantified as the number of years sampled and the num-
ber of sampling units sampled within a year. Common examples 
of fishery-related sampling units include the number of reaches 
surveyed within a stream, the number of sites visited within a 
lake, or the number of lakes sampled. In many power analyses, 
the significance level (α) is set at a conventional value of 0.05, 
but larger values are sometimes chosen if failing to detect a real 
trend in an index is deemed more important than detecting a 
false trend (e.g., Dauwalter et al. 2010). The magnitude of the 
effect size is generally stated as the desired amount of change 
over time that a management body is interested in detecting. 
Therefore, the desired detectable trend magnitude is often 
stated as a percentage change per year (e.g., detect a 3% per 
year decline in fish abundance) for power analyses evaluating 
the statistical power of detecting long-term linear trends. There 
are several sources of variability that affect statistical power 
to detect trends in fishery survey data (e.g., spatial, temporal, 
sampling [observation] error; Urquhart et al. 1998; Larsen et 
al. 2001), and previous work has also shown that how the total 
variability is partitioned among different sources is an important 
determinant of the statistical power associated with temporal 
trend detection (Wagner et al. 2007).

Summary of Published Power Analyses

Using previously published power analyses, we summa-
rized the number of sampling years required to detect statisti-
cally significant linear trends, and we used statistical power as 
a means to compare across studies and biological and habitat in-
dices. This review highlights the low statistical power of many 
fishery surveys that are evaluated in this manner as well as the 
nontrivial nature of explicitly defining temporal trend when de-
veloping management/monitoring objectives and, importantly, 
when deciding on the analytical method used for estimating 
temporal trend-related parameters.

We focused our literature review on recently published 
studies (from 1999 to 2011) that examined the statistical power 
to detect temporal trends in biological and aquatic habitat survey 
data. Specifically, we summarized the number of years needed 
to detect a trend of a given magnitude with a power ≥ 0.80. For 
fisheries survey data, power ≥ 0.80 is typically deemed as ac-
ceptable or “high” power. From the papers we reviewed, we re-
port the stated temporal duration required for trend detection or 
we estimated the number of years from presented power curves 
when the number of years required to detect a trend was not 
directly indicated in the text. Although there are several factors 
that affect statistical power, we summarized the number of years 
required to detect a trend with respect to both the type I error 
rate and trend magnitude. We focused on these two influential 
factors because (1) they represent critical aspects of develop-
ing objectives for monitoring programs and (2) relative to other 
factors, such as within-year sample size, they have a large in-
fluence on power estimates. Although within-year sample size 
can influence statistical power for an individual study, we did 
not summarize the published power analyses based on sample 
size because for a given trend magnitude and sample duration, 
the range of sample sizes evaluated in the published literature 
did not often result in large changes in power. For example, 
the number of years required to detect a 1% per year trend in 
canopy cover with 80% likelihood ranged from 15 years when 
10 sites were sampled each year to 13 years when 50 sites were 
sampled each year (Larsen et al. 2004). This small to moder-
ate gain in power as a result of increasing within-year sample 
size is not unexpected because increasing sample size will not 
reduce all sources of variation affecting observations of fish 
populations and their habitat. Specifically, if coherent tempo-
ral variation is high (i.e., a strong year effect), neither increas-
ing within-year sample size or within-year revisits to the same 
sites will have much influence on power (Urquhart et al. 1998; 
Larsen et al. 2001). Thus, plots of statistical power often display 
an asymptotic relationship with sample size in ecological stud-
ies. If a study did report the number of years to detect a trend 
for multiple sample sizes, however, we recorded and report all 
power estimates in an effort to capture some of the variability 
in power that is due to sample size. For studies that evaluated 
different sample designs (i.e., fixed site versus revisit monitor-
ing designs), we report the average power across designs. This 
approach was used because survey sampling design tended to 
have a minimal impact on power estimates (e.g., Dauwalter et 
al. 2010) and relatively few designs were evaluated in most 
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published studies. For studies that reported power analyses 
based on actual variance estimates and alternative hypothetical 
variance structures (e.g., Wagner et al. 2007), we report power 
based on the actual variance estimates. Because we were inter-
ested in routine monitoring programs, we did not consider stud-
ies that examined the power to detect trends as a result of using 
management experiments (e.g., before–after–control–impact 
designs), although we comment on such management experi-
ments in our discussion. 

We found seven studies evaluating multiple biological indi-
ces (41 power analyses) and two studies evaluating habitat indi-
ces (43 power analyses) that met our criteria and were included 
in our summary of power. Biological indices included mea-
sures of fish abundance, biomass, density, CPE, redd counts, 
and mean length at age. In these studies, the biological indices 
were usually related to salmonids (Salmo, Salvelinus, and On-
corhynchus spp.), with the exception of two studies (Wagner et 

al. 2007, 2009) with Walleye Sander vitreus as the focal spe-
cies. Habitat indices included measures of large wood volume, 
residual depth, riparian canopy cover, and percentage of fine 
substrate (Table 1). Not unexpectedly, on average, the number 
of years required to detect a trend decreased with increasing 
trend magnitude and the chosen significance level. Though 
there was moderate variation in the number of years required to 
detect a trend for the same significance level and trend magni-
tude (Figure 1), some generalizations emerged. The number of 
years required to detect trend magnitudes less than a 5% change 
per year (e.g., 0.5, 1, 1.5, or 2%) was ≥ 10 years (mean ± stan-
dard deviation [SD], 19 ± 5, n = 15) for biological indices. The 
number of years to detect a trend was < 10 years only when 
relatively large trend magnitudes were specified (e.g., a 10% 
or 20% change per year) or when moderate trend magnitudes 
(e.g., 5% change per year) and a type I error rate of 0.10 or 0.20 
were adopted (see Figure 1). Although a smaller range of trend 
magnitudes was evaluated for habitat indices, similar patterns 

Table 1. Summary of studies examining the statistical power to detect temporal trends in freshwater fishery survey data.

Indicator System 
type

Design 
evaluateda/
scope of 
inference

Trend magnitude 
(percentage per 
year)b

Sampling 
duration 
(years)

Number 
of sites 
sampled per 
yearc

α-Level Reference

Biological

Abundance and biomass for 
stream trout (Salmo, Salveli-
nus, and Oncorhynchus spp.d)

Streams Rotating 
panel/single 
site and net-
work of sites

−2.5, −5 5–30 1–30 0.05, 0.10, 
0.20

Dauwalter et al. 
(2009)

Trout biomass (Brook Trout 
S. fontinalis, Rainbow Trout 
O. mykiss, and Brown Trout 
S. trutta)

Streams Rotating 
panel/
National 
Forest

−1, −2.5, −5 6–30 20–30 0.05, 0.10, 
0.20

Dauwalter et al. 
(2010)

Bull Trout S. confluentus 
indices of abundance and 
population estimates

Streams Fixed sites/
watershed

−25, −50, −75e 5, 15, 30 10–39 0.10 Al-Chokhachy et al. 
(2009)

Coho O. kisutch and Steel-
head O. mykiss redd densi-
ties

Streams Generalized 
random tessel-
lation strati-
fied design 
and stratified 
random de-
sign/regional

±5, ±10 3–18 8–40 0.05, 0.10 Gallagher et al. 
(2010)

Bull Trout S. confluentus redd 
counts

Streams ND/state 0, ±10, ±20, ±50 3–30 1 0.05, 0.20 Maxell (1999)

Walleye Sander vitreus mean 
length at age

Inland 
lakes

Fixed sites/
regional

−0.5, −1.0, −1.5, −2.0 5–25 10–40 0.05 Wagner et al. 
(2007)

Walleye S. vitreus catch per 
effort

Great 
Lakes

Fixed sites/
single lake

−3, −5, −10, −20 5–25 10–100 0.05 Wagner et al. 
(2009)

Habitat

Large wood volume (m3/100 
m)f

Streams Rotating 
panel/coastal 
streams

1, 2 5, 10, 15 48 0.10 Anlauf et al. (2011)

Residual depth, riparian can-
opy cover, percentage of fine 
substrate (<2 mm in diam-
eter), volume of large wood 
per unit length of channel

Streams Fixed sites/
regional

1, 2 3–30 10–50 0.05 Larsen et al. (2004)

aFor conciseness, we used “rotating panel” to include several types of revisit panel designs (see Urquhart and Kincaid 1999 for design details). ND = no design specified.
bNegative values indicate declines; positive values indicate increases over time; ± indicates that both increases and decreases for a given trend magnitude were evaluated.
cThe definition of a “site” varies by study; see reference for details.
dExamined data from eight studies representing 22 streams.
eStatistical power was performed to detect a specified decline (e.g., 25, 50, or 75%) over a given time period, not on a per year basis.
fVariance structures for active channel width (in meters), percentage fine sediment, and percentage pool habitat were similar to large wood volume and assumed to have similar power.
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emerged. For instance, for a 2% per year change, the average 
number of years to detect a trend was 13 ± 4 (±SD, n = 22). 
Similar to biological indices, at the smallest trend magnitude 
evaluated (e.g., 1% change per year), it always required > 10 
years to detect a trend (mean ± SD, 21 ± 6, n = 21; see Figure 1). 

Great Lakes Basin Power Analysis Examples

To supplement the literature review, we performed power 
analyses based upon Walleye and Yellow Perch Perca flaves-
cens fishery-independent gillnet surveys in three lakes in the 
Great Lakes basin. Specifically, we analyzed surveys from the 
Wisconsin waters of Lake Superior (Walleye and Yellow Perch); 
the Bay of Quinte, Lake Ontario (Walleye and Yellow Perch); 
and Oneida Lake, New York (Walleye only) to estimate vari-
ance structures. Catch per effort data were from fixed site gillnet 
surveys, where gillnets were fished at multiple sites within each 
lake each year, and the same sites were revisited each year. We 
then used a simulation approach for power analysis following 
the methods outlined in Wagner et al. (2007). Briefly, for each 
simulation for each lake, we used variance components esti-
mated for each observed time series to simulate a hypothetical 
30-year time series of catch data for 1,000 sites. These 1,000 
sites were then treated as the total population of sites from which 
samples could be taken for that lake. A known population-av-
erage temporal trend (a 2% per year decline) was then imposed 
on each site-specific time series. However, each simulated site 
could deviate from this population-average trend; the magnitude 

of the deviation was dependent on the estimate of trend varia-
tion used in the simulation. We ran 250 simulations based on the 
survey estimates for each lake. For all data sets, at the start of 
each simulation 30 sites were randomly chosen and then treated 
as the fixed sites that were sampled throughout a 30-year sam-
pling period. Although we observed minimal effect of within-
year sample size on power through our literature review, we also 
performed simulations where 60 sites were sampled each year 
to further evaluate the influence of within-year sample size on 
power. These supporting sensitivity analyses using 60 sites were 
performed for Lake Superior Walleye and Lake Ontario Walleye 
and Yellow Perch. During 3-year intervals of each simulation 
(i.e., at years 3, 6, 9, etc.), we used a negative binomial mixed 
model to estimate the fixed slope parameter and test the null 
hypothesis that it was equal to zero by calculating a test statistic 
and comparing to a critical value (α = 0.05). Because the data 
were generated assuming a negative slope, the null hypothesis 
of a zero slope is false, and power was estimated as the percent-
age of simulations (out of 250) that rejected the null hypothesis. 

These analyses demonstrated similar statistical power pat-
terns to those reported in the literature we reviewed. We present 
detailed results for the 30 site simulations only, given that the 
number of sites sampled had a modest influence on the results, 
which supports findings in the literature review. For example, 
for Lake Superior Walleye, going from 30 to 60 sites resulted 
in an average percentage increase of power over the 30-year 
time period of 0.28%, and for Lake Ontario Walleye and Yel-

low Perch the average percentage increase in power 
was 6.4% and 1.3%, respectively. For the 30-site case 
approximately 15 years of sampling was required to 
detect a 2% per year decline in Walleye CPE (power 
≥ 0.8) in Oneida Lake and Lake Superior, whereas 
>30 years of sampling was required to detect the 
same trend for Lake Ontario Walleye (Figure 2). The 
results were similar for Yellow Perch, with approxi-
mately 15 and 22 years of sampling required to detect 
a 2% decline per year in lakes Ontario and Superior, 
respectively (Figure 2). The aforementioned percent-
age increases in power as a result of sampling 60 sites 
per year had minimal to no influence on the number 
of years required to detect a 2% trend with power > 
0.8 when compared to sampling 30 sites per year. An-
other way of saying this is that power approaches an 
asymptote well within the range of sample sizes typi-
cally considered in fisheries studies, and thus power 
for trend detection is dominated by the influence of 
among-year variation and number of years sampled, 
rather than only among-site variation and the number 
of sites samples.

Dynamic Linear Modeling of Time Series Using 
Bayesian Estimation Techniques

Familiarity with standard linear regression tech-
niques probably leads to their use even when man-
agement interest is not really in detecting a long-term 
overall trend across a time series. Rather, management 

Figure 1. Summary of literature describing the years needed to detect a trend of 
a given magnitude with statistical power ≥ 0.80 for (A) biological and (B) habitat 
survey indices. Results are summarized by the significance level (α). Points have 
been jittered along the x- and y-axes to aid visualization. See Table 1 for studies 
used in the summary.

D
ow

nl
oa

de
d 

by
 [

Pe
nn

sy
lv

an
ia

 S
ta

te
 U

ni
ve

rs
ity

] 
at

 0
5:

11
 1

2 
Ju

ly
 2

01
3 



            Fisheries • Vol 38 No 7 • July 2013 • www.fisheries.org   315

interest often may center on what the rate of change is over a 
shorter term and how changes in this rate might coincide with 
management actions or other events. Estimates of the probabil-
ity that the rate of change is less than some specified value (e.g., 
zero) can often be more useful than estimates of the probability 
that observed data arose in the absence of an underlying trend 
(the P-value from a hypothesis test). Given this, dynamic linear 
modeling in a Bayesian context is one tool that might better fit 
some management objectives. Dynamic linear models provide 
greater flexibility than linear regression by allowing the rate of 
change to also change over time. The use of Bayesian inference 
has grown in usage over time (e.g., Ellison 2004; Fabricius and 
De’ath 2004); however, it remains less commonly used than 
frequentist approaches for evaluating trends. One of the major 
advantages of Bayesian inference is that it emphasizes the rela-
tive probability of given rates of change, allowing for a more 
complete picture of the plausibility of different system dynam-
ics. 

Bayesian estimation can provide a flexible analytical 
framework for quantifying temporal trends, which also allows 
for probabilistic statements about outcomes that can facilitate 
communication of uncertainty to stakeholders. For instance, 
Bayesian analyses provide a probabilistic uncertainty estimate 
for all estimated parameters and derived quantities. Rather than 
relying on null hypothesis testing and with the resulting binary 
decision of a statistically significant or nonsignificant trend, 
Bayesian estimation allows for multiple decision possibilities 
and a more intuitive interpretation about the probability of a 
decline occurring in the time series (Wade 2000). As 
a result, trends can be evaluated and decisions made 
based on policy-relevant criteria that have been iden-
tified for any specific problem under consideration. 
In addition, although beyond the scope of this article, 
power analyses can be performed within a Bayes-
ian context, providing estimates of the probability of 
achieving specific goals (rather than rejecting the null 
when the null is false) under different monitoring sce-
narios. Lastly, Bayesian analyses can take advantage of 
information that existed prior to a study to help inform 
inferences from the study (i.e., the use informative pri-
ors), whereas frequentist approaches assume that there 
is no relevant existing information (Ellison 2004). This 
may be useful in cases where information is available 
for the potential value of a parameter of interest. 

To illustrate the concept of matching statistical 
models with monitoring objectives and the use of 
Bayesian inference, we further investigate the poten-
tial impacts of the establishment of an invasive spe-
cies on Walleye in Oneida Lake, New York. Like many 
aquatic systems, Oneida Lake has been affected by 
many natural and anthropogenic stressors, including 
invasive species. Of notable importance was the inva-
sion of zebra mussels Dreissena polymorpha, which 
were found in high abundance in the lake by 1992. 
Although the effects of zebra mussel establishment can 
cascade through trophic levels and vary among spe-

cies and across life stages, for Walleye it was hypothesized that 
the establishment of zebra mussels would have a net negative 
impact, such that Walleye abundance was expected to decline 
(Irwin et al. in press). Specifically, it was predicted that declines 
in Walleye CPE would be evident post–zebra mussel invasion 
(i.e., post-1992), although double-crested cormorants also likely 
influenced Walleye abundance during this time period (Rudstam 
et al. 2004; Irwin et al. 2008). 

For illustrative purposes, suppose that a monitoring objec-
tive related to Oneida Lake Walleye involved detecting temporal 
trends in CPE after zebra mussel invasion. The prediction that 
declines in Walleye CPE would occur after zebra mussels were 
abundant does not translate naturally to detecting a long-term 
linear decrease in Walleye CPE or its log. For this hypotheti-
cal monitoring objective, we are not interested in the long-term 
average trends in CPE; rather, we are interested in a potentially 
abrupt change in CPE connected to when zebra mussels be-
came established. Specifically, we predict nonmonotonic trends 
in Walleye CPE over time, with a substantial decline occurring 
over a relatively short period after 1992, when zebra mussels 
were first observed at high densities in the lake. Further, it is 
likely that Walleye CPE would eventually level off at some 
lower but positive abundance (i.e., zebra mussels alone were 
not expected to drive any fish species to extinction). 

To translate our prediction and monitoring objective for de-
tecting nonmonotonic trends into a Bayesian statistical model, 
we fitted a dynamic linear model (DLM) to the time series 

Figure 2. Power curves for detecting a 2% per year decline in species catch per 
effort for annual gillnet surveys in Oneida Lake, New York (Walleye only), the Wis-
consin waters of Lake Superior (Walleye and Yellow Perch), and the Bay of Quinte in 
Lake Ontario (Walleye and Yellow Perch). Horizontal line at power = 0.8 was added 
as a reference.
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of gillnet catches for Oneida Lake Walleye. The time series 
spanned the years 1957–2006 (except 1974 and 2005). Specifi-
cally, we fitted a DLM outlined in Panel 2. For this example, 
Bayesian estimation was performed using the program Win-
BUGS (WinBUGS 1.4; Spiegelhalter et al. 2003). An important 
feature of DLMs, which is relevant for addressing our monitor-
ing objective, is that DLMs allow model coefficients (e.g., slope 
parameters) to change with time, enabling the elucidation of 
nonmonotonic trends. 

The DLM considers both intra-annual (e.g., variation in 
CPE among sites within a year) and interannual (e.g., variation 
among years in average CPE) variability on Walleye CPE trends 
and captures the overall temporal dynamics of the Walleye CPE 
time series (Figure 3A). Note the increased uncertainty for the 
year 2006 (the final year of this time series), which is partly due 
to the missing data in 2005 and partly because the estimate is 
not constrained to be consistent with subsequent years of data. 
In addition, the Bayesian estimation allowed us to make infer-
ences about changes to Walleye CPE relative to 1992. Specifi-
cally, negative annual rates of change occurred with a greater 
than 80% probability twice during the time series, one of which 
roughly overlaps with the period when the lake was experienc-
ing zebra mussel establishment (Figure 3B, solid line). The re-
sults illustrate that the rate of temporal change likely changed 
over time. 

Summaries and inferences from a Bayesian analysis are 
straightforward. In particular, the posterior distributions of es-
timated parameters are easily summarized and thus can be used 
to address specific management objectives. For instance, if it 
was important in the Oneida Lake example for a management 
agency to know the probabilities of annual rates of change being 
outside of a specified value, then such summaries can quickly 
be obtained (Figure 3B, dashed lines for >−0.25 or >0.25).  

Discussion 

Monitoring for temporal trends is an integral component of 
many fisheries management programs. What constitutes a man-
agement-relevant trend is not trivial and should be addressed 
within the broader decision-making process that, ultimately, will 
result in the implementation and evaluation of specific man-
agement actions. Ideally, this process will take place within a 
formal decision-making framework that includes appropriately 
diverse stakeholder groups from the onset, thereby defining 
what the problem is and why management action is required in 
the first place (Irwin et al. 2011). A transparent and inclusive ap-
proach to decision making will help ensure that all participants 
are aware of relevant monitoring objectives, such as the antici-
pated trend (i.e., duration and anticipated form; Panel 1) that is 
desired to be detected or if multiple types of temporal changes 
are important. Such a process will also help ensure reasonable 
expectations for the amount of time that may be necessary to 
detect a management-relevant trend. As we have illustrated 

across several sources, the statistical power to detect 
relatively subtle changes over time is often quite low 
for many freshwater fishery indicators. 

As a result of this low statistical power environ-
ment, it may take 10 years or more to detect a small to 
moderate trend, which may be unacceptable to manag-
ers or stakeholders. For example, waiting 20 years to 
evaluate the effects of experimental length limits on 
a fishery would likely not garner much political sup-
port. This low statistical power does not suggest that 
biologists must necessarily wait a significant portion 
of their entire career to determine whether indices of 
interest have changed over time. In fact, if the assess-
ment of management actions is the primary objective 
(e.g., versus detecting a sustained trend related to long-
term changes in influential environmental conditions), 
then in addition to well-defined objectives, manage-
ment experiments represent an alternative approach to 
routine monitoring that will potentially decrease the 
amount of time required to detect temporal trends. 

Designed management experiments often include 
the monitoring of a reference or control site, in addi-
tion to the monitoring of the manipulated system. The 
use of control and manipulated systems can increase 
the rate at which we are able to learn about a system by 
providing additional evidence of how the manipulated 
system would be expected to have responded in the 
absence of the management action. Although a vari-

Figure 3. Posterior mean fitted values (curved solid line) and 95% credible intervals 
(shaded area) from a dynamic linear model fitted to loge-transformed Walleye CPE 
from annual gillnet surveys (solid circles) from Oneida Lake, New York (Panel A). 
Panel B summarizes the estimated probability of annual rates of change <0 (i.e., 
probability of annual declines in CPE; solid line), >−0.25 (large dashed line), or 
>0.25 (small dashed line) occurring throughout the time series. 
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ety of experimental designs can be implemented, before–after, 
control–impact paired designs (BACIP; Stewart-Oaten et al. 
1986; Stewart-Oaten and Bence 2001) are often used. Under a 
BACIP design, experimental (manipulated) and control (refer-
ence) systems are monitored before and after the impact, which 
could be the implementation of a management action. In such 
management experiments, the reference site acts like a covariate 
and functions in a different way than the control of a random-
ized experiment (Stewart-Oaten et al. 1992; Bence et al. 1996). 
Paired sampling of the manipulated and reference sites during 
the period before the management action allows such predic-
tions and estimation of the effect of the action. The simplest 
form of BACIP is just one approach to evaluating management 
experiments. The nature of spatial and temporal variability and 
the extent to which “before” sampling is possible influence ap-
propriate sampling designs (e.g., Hewitt et al. 2001; Underwood 
and Chapman 2003; Hayes et al. 2003b; Paul 2011). In some 
cases, the existence of other covariates can even alleviate the 
need for before sampling at reference sites (Bence et al. 1996; 
Paul 2011). Regardless of the specifics, the more general point 
is that use of data other than the response data from the ma-
nipulated site can be used to develop a statistical model predict-
ing the manipulated site in the absence of the manipulation and 

greatly reduce the time required to detect ecologically meaning-
ful trends. 

We also stress that our review of power analyses and our 
analyses of data on Great Lakes Percids must be viewed within 
the specific context they were meant to address: detecting 
long-term average trends. If monitoring objectives pertain to 
detecting short-term and/or nonmonotonic trends, then a power 
analysis based on linear regression may not produce the most 
relevant information. As illustrated with the DLM example, al-
ternative analytical tools, combined with Bayesian inference, 
may provide a better match to management and monitoring ob-
jectives than linear models and null hypothesis testing. There-
fore, when it seems likely that the rate of change is changing 
over time, we might expect that managers and stakeholders will 
often be more interested in a local (in time) rate of change. Ad-
ditionally, we might become interested in how frequently the 
sustained directionality (i.e., positive or negative) of the rate of 
change is changing. DLM is an approach better suited for such 
situations and allows for useful inferences, whereas repeatedly 
applying standard linear regression to subsets of the data would 
likely increasingly suffer from reduced power. Analytical ap-
proaches that are able to provide a more flexible framework for 

Panel 2. Dynamic linear modeling. 

Dynamic linear models (DLMs) are a class of state-space models. DLMs have several features that make them desirable 
for modeling fisheries-independent survey time series data, including (1) the estimated CPE at each year is related to 
the CPE at earlier years (Stow et al. 2004), which is consistent with temporal dynamics of fish populations; (2) time-
varying parameters most strongly influenced the current year’s information and data from other years closest in time, 
as opposed to traditional linear regression where parameters (i.e., slope and intercept) are influenced directly by all 
observations; and (3) DLMs easily accommodate missing and unequally spaced and missing data, which is common 
for fishery-independent survey data.

Dynamic linear models consist of observation and systems equations. Briefly, a DLM can be parameterized as follows:

Observation equation:

loge (CPE)ti=levelt + ψti ,   ψti ~ N(0,Ψt )	 (1)

Systems equations:

levelt= levelt-1 + ratet + ωt1,  ωt1 ~ N(0,Ωt1 )	(2)

ratet= ratet-1 + ωt2,  ωt2 ~ N (0,Ωt2 ),	 (3)

where loge (CPE)ti  is the loge of CPE (a small constant is typically added to accommodate zero catches) at site i in year 
t; levelt is the mean loge (CPE) at time t; ratet is the expected rate of change of mean loge (CPE) and can be interpreted 
as the slope between consecutive time periods; and ψti and ωtj (j = 1, 2) are the error terms for year t sampled, which 
here are distributed as N(0,Ψt ) and N(0,Ωtj ). In a Bayesian analysis, priors are needed for each estimated parameter, 
so to complete the model description we note that we assumed level1, rate1 ~ N(0,1000); 1⁄Ω2

tj = ξt-1∙ 1⁄Ω2
1j, 1⁄Ψ2

t =ξt-

1∙1⁄Ψ2
1  for t > 1 and J = 1, 2; and 1⁄Ω2

1j, 1⁄Ψ2
1 ~gamma(0.001,0.001), where ξ is a discount factor (between zero and 

one) representing the fact that older information in the time series is not as useful for forecasting (Sadraddini et al. 
2011). The priors used on the initial year parameters are considered noninformative. Because individual gillnet sets 
(i.e., sample sites) were used as the response variable, as opposed to using annual mean CPE, this model accounts for 
both intra-annual (Ψt ) and interannual variation ([Ωtj ]; see Lamon et al. [1998]; Congdon [2010]; and Sadraddini et al. 
[2011] for details).
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linking management and monitoring objectives should also be 
able to contribute to designing monitoring programs and evalu-
ating management actions.

In summary, statistical power analysis is one tool that is 
useful for the design of monitoring programs and experiments; 
however, fisheries managers work in high-variability, low-sta-
tistical-power environments. Decisions about temporal trends 
and expected future trajectories will be made regardless of low 
statistical power, so the question is “In the light of low power, 
what can we do to ensure that we make the best decision pos-
sible, given the data in hand?” A critical step is the formulation 
of monitoring objectives that include a statement defining what 
is meant by detecting temporal trend. The definition must be 
translated to an appropriate statistical model that maximizes 
the utility of subsequent inferences for informing the decision-
making process. If null hypothesis testing is used as the inferen-
tial framework, communicating results from power analyses to 
develop realistic expectations about the time required to detect 
trends is essential to ensure legitimate assessments of manage-
ment actions. In many cases, Bayesian inference may provide 
a reasonable alternative to traditional null hypothesis testing. 
Although changing the inferential framework does not neces-
sarily increase our ability to detect trends over a shorter time 
frame, it does remove the constraint of a temporal trend being 
interpreted as significant or not significant. Rather, Bayesian 
inference forces explicit consideration of the ecologically and 
management-relevant effect sizes to be detected in addition to 
acceptable levels of uncertainty while providing the ability to 
make probabilistic statements about estimated parameters de-
scribing temporal trends that may facilitate communications 
with stakeholders.
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