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ARTICLE
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Carolina Stream Fish

Stephen R. Midway*
Pennsylvania Cooperative Fish and Wildlife Research Unit, Pennsylvania State University,

406 Forest Resources Building, University Park, Pennsylvania 16802, USA

Tyler Wagner
U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, Pennsylvania State

University, 402 Forest Resources Building, University Park, Pennsylvania 16802, USA

Bryn H. Tracy
North Carolina Department of Environment and Natural Resources, Division of Water Resources,

1621 Mail Service Center, Raleigh, North Carolina 27699, USA

Abstract
The southeastern USA is home to one of the richest—and most imperiled and threatened—freshwater fish

assemblages in North America. For many of these rare and threatened species, conservation efforts are often
limited by a lack of data. Drawing on a unique and extensive data set spanning over 20 years, we modeled
occurrence probabilities of 126 stream fish species sampled throughout North Carolina, many of which occur more
broadly in the southeastern USA. Specifically, we developed species-specific occurrence probabilities from
hierarchical Bayesian multispecies models that were based on common land use and land cover covariates. We also
used index of biotic integrity tolerance classifications as a second level in the model hierarchy; we identify this level
as informative for our work, but it is flexible for future model applications. Based on the partial-pooling property of
the models, we were able to generate occurrence probabilities for many imperiled and data-poor species in addition
to highlighting a considerable amount of occurrence heterogeneity that supports species-specific investigations
whenever possible. Our results provide critical species-level information on many threatened and imperiled species
as well as information that may assist with re-evaluation of existing management strategies, such as the use of
surrogate species. Finally, we highlight the use of a relatively simple hierarchical model that can easily be
generalized for similar situations in which conventional models fail to provide reliable estimates for data-poor
groups.

Flowing waters are increasingly viewed as part of the larger

landscape they occupy, and together rivers and their landscapes

provide a more holistic context in which to study ecosystems.

Despite this recognition, the number of threats to and stressors

on rivers is growing (Malmqvist and Rundle 2002; Carpenter

et al. 2011). In addition to local threats, such as altered flow,

pollution, and habitat degradation, we now know that seem-

ingly distant threats like catchment land use and climate

change can have devastating impacts on the health of streams.

The numerous pressures that are now placed on rivers fre-

quently manifest in habitat degradation, pollution, and other

impacts that collectively threaten freshwater biodiversity

(Dudgeon et al. 2006). Although much can be done to amelio-

rate proximate threats to rivers (e.g., riparian buffers and

increased discharge regulation), changes in catchment land

use are increasingly considered a major threat (Allan 2004), as

nonforested catchment lands alter the quality and fate of sur-

face water (Foley et al. 2005). For example, agricultural land
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depletes freshwater, erodes soil, and increases nutrient runoff

(as reviewed by Carpenter et al. 2011). Urbanization of catch-

ment land creates problems similar to those generated by agri-

culture, with the addition of increased stream flashiness

(Walsh et al. 2005) and greater volumes of inorganic contami-

nants (e.g., arsenic and lead; Paul and Meyer 2001).

Within the setting of changing and uncertain threats to

streams is the need to develop useful species distribution mod-

els that can assist in conservation efforts without relying on

comprehensive data. Species distribution models have a long

history in ecology, and much work continues on their develop-

ment and validation (reviewed by Elith and Leathwick 2009).

One particular area of species distribution models that has

drawn attention for improvement is the reduction in and evalu-

ation of model uncertainty (Elith and Leathwick 2009). Leung

and Steele (2013) cautioned that there is no magic bullet for

dealing with uncertainty; however, even in data-poor situa-

tions, certain species–environment relationships can be

improved with very little data. This practice of species distri-

bution models is particularly important in cases of rare and

imperiled species—often those species with the most to gain

from the application of models to conservation efforts.

Although aquatic species distribution models have evalu-

ated a wide variety of possible environmental effects, the con-

tinued investigation of catchment land cover has proven to be

informative (e.g., Allan et al. 1997; Gevrey et al. 2009). The

negative impacts of catchment deforestation on streams are

widely known; however, a growing literature is reporting neg-

ative impacts of deforestation at much finer scales. For exam-

ple, Sutherland et al. (2002) reported elevated sediment levels

at base flow conditions in catchments with as little as 22% and

13% deforestation. Lu et al. (2013) found that degradation

rates of dissolved organic matter differed based on source; dis-

solved organic matter originating from agricultural and urban

catchments degraded much slower and remained in streams

longer than dissolved organic matter originating from forested

catchments. At the organismal level, Blevins et al. (2013)

reported that riparian land use influenced the stress responses

of Creek Chub Semotilus atromaculatus, thereby highlighting

the sublethal physiological stresses that altered land use can

place on fish. Collectively, these studies demonstrate how

altered land use impacts the fine-scale physical, chemical, and

biological conditions that may influence species distributions.

The southeastern USA is home to one of the richest—and

most imperiled and threatened—freshwater fish assemblages

in North America (Warren et al. 2000). Although the high

degree of endemism may contribute to species vulnerability

(Brooks et al. 1992), it also means that the southeastern USA

is an area where a variety of land use impacts on streams will

first be detected and therefore is a harbinger for other regional

fish assemblages. Much work with stream fishes, particularly

imperiled species, in the southeastern USA has generated valu-

able knowledge regarding their conservation status (see Jelks

et al. 2008). However, aside from conservation status and

range, conservation efforts rarely have additional information

upon which to base conservation action. Often, imperiled

stream fish assemblages benefit from specific actions that are

designed for priority or surrogate species (Caro and O’Doherty

1999; Chittick et al. 2001). For example, protecting forested

land in an effort to improve stream habitat for one species may

improve stream habitat for a suite of species. (Although we

avoid a discussion on the differences among terms such as

“umbrella species,” “indicator species,” and “flagship spe-

cies,” throughout this study we refer to the underlying concept

with the term “surrogate species.”) The surrogate species

approach is not a poor tactic; however, it operates on the

assumption that multiple threatened species benefit from the

same conditions. This highlights the potential disconnect

between species and habitats: we tend to focus biodiversity

thinking at the species level, yet we act at the ecosystem level.

Additionally, because it is rare for one species to have a distri-

bution identical to that of another species, there is an inherent

violation of the assumption that what is optimal for one spe-

cies is also optimal for the community.

We recognize that it is unrealistic to collect detailed infor-

mation on all species in a community and that the surrogate

species approach does have utility. However, improved esti-

mates of landscape-related occurrence uncertainty for an entire

assemblage of species would greatly improve the evaluation of

surrogate species conservation strategies by better characteriz-

ing the species-specific heterogeneity of a group or assem-

blage. In the present study, we used hierarchical Bayesian

multispecies models (HBMMs), which provide a number of

advantages over conventional models. First, HBMMs consti-

tute one method of estimating information on individual spe-

cies in situations where comprehensive data are lacking.

Specifically, the random effects in hierarchical models expand

the scope of inference so that generalizations can be made in a

case where a limited sample of populations can yield informa-

tion representing unobserved populations (K�ery and Schaub

2012). The grouped nature of random effects also eliminates

the assumption of independence; thus, estimates for data-poor

species are improved through the sharing of group-level

information. Of additional importance is the ability of

HBMMs to explicitly model and draw inference from multiple

ecological levels (Royle and Dorazio 2008). This increases the

overall realism of the model in addition to providing a robust

and flexible framework in which many covariates may be

evaluated.

We used HBMMs to quantify uncertainty in stream fish

species presence based on common land use attributes. Draw-

ing from an extensive 20-year sampling effort covering the

state of North Carolina, we modeled different a priori species

groupings to not only estimate a group response but also to

provide species-specific estimates that improve upon existing

information and may be used to manage and conserve threat-

ened stream fish assemblages within North Carolina and

throughout the southeastern USA.

HIERARCHICAL MULTISPECIES OCCURRENCE MODEL 1349
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METHODS

Study area and fish sampling.—The data used in this study

came from an ongoing stream sampling program conducted by

the North Carolina Department of Environment and Natural

Resources (Division of Water Resources, Biological Assess-

ment Branch). Since 1991, a standardized protocol has been

used to sample 835 stream reaches throughout North Carolina

(Figure 1). Sample sites are wadeable, 183-m (600-ft)

reaches. Although sites are sampled approximately once every

5 years, mainly between April and June, we selected only the

most recent annual survey for each site. Stream conditions

were also relatively similar among samples, reducing concern

about fish detection; a regular time of year for all samples

meant that water temperatures and conductivity were consis-

tent (B. H. Tracy, unpublished data), and sampling did not

occur unless turbidity was very low. Sampling included back-

pack electrofishing units (most frequently two units) along

with an appropriate number of dipnetters based on the stream

size. Reaches were sampled using two-pass depletion, cover-

ing all available habitats; the first pass moved upstream, and

the second pass returned downstream. All fish were collected

and identified to species. Unidentifiable individuals of all sizes

were preserved in 10% neutral buffered formalin and were

identified upon return to the laboratory. Additional program-

matic details can be found in the standard operating proce-

dures (NCDENR 2006).

Land use and land cover data.—In addition to mean net-

work catchment elevation and slope, we examined percentages

of developed, agricultural, forested, and impervious surfaces

in the upstream network catchment. These landscape charac-

teristics were chosen because of their documented effects on

fish occurrence. For example, forested catchment cover is pos-

itively correlated with the presence of native fish assemblages

and endemic fish species. Deforested lands, including devel-

oped and agricultural lands, are known to have negative

impacts on many native stream fish assemblages and endemic

species.

Landscape covariates were quantified for each site at the

network catchment level (i.e., the entire upstream catch-

ment of the reach as opposed to the local catchment) and

included percentages agricultural land, developed land, and

forested land. Data on percentage agricultural land and for-

ested land were from the National Land Cover Database

(Homer et al. 2007), and human population density was

expressed as the number of people per square kilometer

(NOAA 2010).

Data analysis.—We used community models based on

detection–nondetection data (i.e., apparent species distribution

models; K�ery et al. 2010) to examine the effects of natural and

anthropogenic landscape characteristics on the fish

community’s occurrence probability. We conducted a sensitiv-

ity analysis on the lower limit of observations that defined a

species’ inclusion in our model. Models that were run with

cutoffs of 5, 10, and 15 observations yielded nearly identical

parameter estimates, suggesting that inclusion or exclusion of

infrequently occurring species did not detectably impact the

overall model. Therefore, because we were interested in esti-

mating occurrence for rare (i.e., infrequently detected) species,

we chose a cutoff of five observations (occurrences > 5) for

use in all subsequent modeling. We adopted the HBMM

approach to quantify among-species variability in the effects

of landscape characteristics on occurrence probability. The

modeling framework allowed for the inclusion of site- and

species-specific covariates: site-specific covariates were land-

scape characteristics of the upstream network catchment for

each sample site, and the species-specific covariate was a spe-

cies’ tolerance level (intolerant, intermediate, or tolerant) with

respect to stream physiochemical habitat and water quality deg-

radation. Tolerance levels were taken directly from the existing

North Carolina index of biotic integrity program, which was

modified from Karr (1981). The response variable for the anal-

ysis was binary, with y(i,j) D 1 if species i was detected at site j,

and y(i,j) D 0 otherwise (y[i,j] » Bernoulli[pi,j]). The general

form of the model was

logit pi;j
� �Db.0;i/ Cb.1;i/ ¢Xj;

where

b.0;i/ »N.g00 C g01 ¢Z1;i Cg02 ¢Z2;i;s2
b0/;

b.1;i/ »N.g10 C g11 ¢Z1;i Cg12 ¢Z2;i;s2
b1/;

b(0,i) is the species-specific intercept, and b(1,i) is the species-

specific effect of the site-specific landscape covariate Xj on

the logit probability of occurrence for species i (all covari-

ates were standardized prior to analysis: [Xj – X]/SD[X]).

The species-specific intercepts and slopes were modeled as

normally distributed random effects and as a function of hab-

itat tolerance level, for which there were three categories

(intolerant, intermediate, and tolerant) and two covariates
FIGURE 1. Map of stream fish sampling sites (n D 835) in North Carolina.

[Color figure available online.]
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(Z1,i D 1 if species i is intermediate, and Z1,i D 0 otherwise;

Z2,i D 1 if species i is intolerant, and Z2,i D 0 otherwise; tol-

erant species was the reference cell). Thus, gx0 is the grand

mean intercept or slope for tolerant species; gx1 and gx2 are the
effects of intermediate species and intolerant species,

respectively.

Vague normal priors (N » [0, 1,000]) were used for all

slope and intercept parameters, and vague uniform priors (Uni-

form » [0, 10]) were used for sb0 and sb1. The fish survey

sampling design did not allow for the estimation of detection

probability (i.e., repeat visits to sites within a season were not

performed; data from the two electrofishing passes were

pooled). As such, we recognize that the effects of landscape

covariates on species occurrence may be biased if detection

probability is less than 1.0 (Gu and Swihart 2004), resulting in

underestimates of the effects of covariates for some species

(Tyre et al. 2003). The fish community data, however, were

from surveys that were performed with the specific goal of

assessing the entire fish community, and sampling followed

standardized methods by trained field crews. Furthermore,

studies have suggested that in many cases, stream reach

lengths of 235–555 m (reaches in our study totaled 366 m) are

sufficient for presence–absence sampling (Paller 1995). There-

fore, efforts were made to minimize the possibility of making

false-negative errors (i.e., recording a species as absent when

it was in fact present). All models were fitted using WinBUGS

version 1.4 (Spiegelhalter et al. 2004).

RESULTS

In total, 126 fish species from 835 stream sites were

included in the multispecies hierarchical modeling. Of the 126

species, there were 27 intolerant species, 84 intermediate spe-

cies, and 15 tolerant species (see Supplementary Table S.1 in

the online version of this article for the full list of species). Of

the landscape covariates considered, our final covariates for

analysis included the percentages of developed, agricultural,

and forested lands in the upstream network catchment. These

land use and land cover types were chosen because (1) they

were correlated with other landscape metrics (e.g., percentage

developed land and percentage impervious surface:

Spearman’s rank correlation coefficient r D 0.96; percentage

forested land and mean slope: r D 0.82) and (2) they represent

anthropogenic (developed and agricultural lands) and natural

(forested land) landscape characteristics that were hypothe-

sized to structure aquatic communities, mediate the invasion

and spread of tolerant species, and mediate the loss and range

contraction of intolerant species across the landscape. The per-

centage forested land in the upstream network catchment

(mean § SD) was 57§ 25% (rangeD 0.6–100%). The percen-

tages developed land and agricultural land (mean § SD) were

13 § 18% (range D 0.1–98%) and 19 § 15% (range D 0.0–

66%), respectively.

Multispecies Hierarchical Modeling

Two separate multispecies models were fitted: one that

included the percentages agricultural land and developed land

as covariates; and one that contained only forested land as a

covariate. The three covariates could not be included in a sin-

gle model because of the relatively high correlation between

the percentage forested land and the percentage developed

land (r D 0.56) or agricultural land (r D 0.57). The r-value for

the correlation between percentage developed land and per-

centage agricultural land was ¡0.20.

Across all intolerant species, the effect of percentage for-

ested land in the network catchment was positive (posterior

mean D 0.54; 95% credible interval [CI] D 0.08–0.99). In

contrast, the effect of percentage forested land on intermediate

species did not differ from zero (posterior mean D 0.03; 95%

CI D ¡0.44 to 0.47) and the effect on tolerant species was

negative (posterior mean D ¡0.74, 95% CI D ¡1.21 to

¡0.30; Figure 2). However, it was not until forested land

reached approximately 70% and 90% that the probability of

occurrence for intermediate and intolerant species, respec-

tively, became higher than the probability of occurrence for

tolerant species. The effects of percentages developed land

and agricultural land were examined while holding the other

land use type at the minimum value (i.e., the effect of devel-

oped land was assessed while holding agricultural land at 0%;

the effect of agricultural land was assessed while holding

developed land at 0.1%). The effects of developed land and

FIGURE 2. Species-specific occupancy probabilities (thin gray lines) in

response to percentage forested land in the upstream network catchment; mean

responses for intolerant (solid green line), intermediate (dashed blue line), and

tolerant (dotted red line) fish species are also presented. [Color figure available

online.]
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agricultural land on intolerant species were negative (devel-

oped land: posterior mean D ¡0.75, 95% CI D ¡0.99 to

¡0.50; agricultural land: posterior mean D ¡0.37, 95% CI D
¡0.64 to 0.01); although the 95% CI overlapped zero for the

effect of agricultural land, the 90% CI (¡0.58 to ¡0.05) did

not overlap zero. The effect of percentage developed land on

intermediate species was relatively weak and negative (poste-

rior mean D ¡0.21; 95% CI D ¡0.45 to 0.04; 90% CI D
¡0.41 to ¡0.002), whereas the 95% CI for the effect of per-

centage agricultural land overlapped zero (posterior mean D
0.04; 95% CI D ¡0.29 to 0.34).

The effects of developed land and agricultural land on tol-

erant species were positive (developed land: posterior mean D
0.46, 95% CI D 0.22–0.71; agricultural land: posterior mean

D 0.55, 95% CI D 0.22–0.87; Figures 3, 4). The probability of

occurrence for tolerant species was lower than those for intol-

erant species and intermediate species at very low percentages

of developed land (less than »5%). However, once developed

land reached approximately 10% and 20%, the probability of

occurrence for tolerant species exceeded the probabilities of

occurrence for intolerant species and intermediate species,

respectively. A similar pattern was observed for the effect of

percentage agriculture in the network catchment; however,

agricultural land had to exceed approximately 10% and 20%

for the occurrence probability of tolerant species to exceed

those of intolerant species and intermediate species, respec-

tively (Figures 3, 4). Individual species occurrence curves and estimates are pre-

sented in Supplementary Figure S.1 and Table S.1; however,

to highlight heterogeneity in occurrence probability, we pres-

ent results from nine species (three species from each toler-

ance level; Figures 5–7). The species in each group represent

those with some of the largest sample sizes, thus allowing for

comparisons to highlight the heterogeneity in occurrence prob-

abilities and to reduce uncertainty associated with some infre-

quently sampled species. Occurrence for select intolerant

species (Highback Chub Hybopsis hypsinotus, Piedmont

Darter Percina crassa, and Roanoke Darter Percina roanoka)

was low for all three land use covariates, although this was

expected based on their rare occurrence or limited spatial

ranges. Less expected was the variety in the direction of slopes

for the covariates. For example, the Highback Chub and Pied-

mont Darter exhibited positive slopes in response to increasing

forest land cover, while the Roanoke Darter exhibited a nega-

tive slope as forest land cover increased. Responses to devel-

oped and agricultural lands also included positive and

negative slopes (slope coefficients and associated 95% CIs are

presented in Table S.1).

We also report on three select intermediate species (Blue-

gill Lepomis macrochirus, Bluehead Chub Nocomis leptoceph-

alus, and Tessellated Darter Etheostoma olmstedi) and three

tolerant species (Redbreast Sunfish Lepomis auritus, Creek

Chub, and White Sucker Catostomus commersonii). In both of

these tolerance groupings, the species showed clear differen-

ces in occurrence probability relative to the same covariate,

FIGURE 3. Species-specific occupancy probabilities (thin gray lines) in

response to percentage developed land in the upstream network catchment;

mean responses for intolerant (solid green line), intermediate (dashed blue

line), and tolerant (dotted red line) fish species are also presented. [Color figure

available online.]

FIGURE 4. Species-specific occupancy probabilities (thin gray lines) in

response to percentage agricultural land in the upstream network catchment;

mean responses for intolerant (solid green line), intermediate (dashed blue

line), and tolerant (dotted red line) fish species are also presented. [Color figure

available online.]
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although some of this can be attributed to both larger sample

sizes and occurrence across a greater range of covariates than

was observed for most of the intolerant species. The HBMM’s

influence on low sample sizes was largely absent for the well-

sampled intermediate and tolerant species we highlight; there-

fore, the heterogeneity in slope direction and magnitude within

the groupings represents well-estimated results (as opposed to

interpreting heterogeneity in uncertain results).

DISCUSSION

Although we expected heterogeneity in occurrence proba-

bility among tolerance groups, we found a substantial amount

of heterogeneity within tolerance groups in response to all

three landscape covariates. This information can be used to

improve both species-level and assemblage-level responses to

land use. It may be unrealistic to think that management and

conservation efforts will soon place equal priority on all

stream species; therefore, our occurrence models for rare and

intolerant species can provide information for re-valuation of

surrogate species management—the strategy currently used by

the U.S. Fish and Wildlife Service. Occurrence patterns for

intermediate species in our study were more similar to those

of intolerant species than to those of tolerant species. Although

our model does not suggest why this might be the case, we can

begin to hypothesize that land use impacts tolerant species dif-

ferently than intermediate and intolerant species. For example,

tolerant species could comprise a greater proportion of intro-

duced species, which include more generalists than other

groups. Other studies have shown that introduced species can

be linked to landscape-level characteristics (Lapointe and

Light 2012) and that invasive species may be more suited to

anthropogenically disturbed habitat (but for insects: Grez et al.

2013). Either explanation or both explanations could support

the unique occurrence probability patterns we found.

We also found that it took a relatively small amount of land

use change for tolerant species to become the dominant spe-

cies group (i.e., most likely to occur). Tolerant species were

projected to be the most common species by the time 20% of

catchment cover was either agricultural land or developed

land. Particularly concerning was the fact that tolerant species

became more common than intolerant species when

Figure 5. Responses of select intolerant (top row), intermediate (middle row), and tolerant (bottom row) fish species to percentage forested land in the upstream

network catchment. Solid lines are posterior means; shaded regions are 95% credible intervals (Hybopsis hypsinotus D Highback Chub; Percina crassa D Pied-

mont Darter; Percina roanoka D Roanoke Darter; Lepomis macrochirus D Bluegill; Nocomis leptocephalus D Bluehead Chub; Etheostoma olmstedi D Tessel-

lated Darter; Lepomis auritus D Redbreast Sunfish; Semotilus atromaculatus D Creek Chub; Catostomus commersonii D White Sucker). [Color figure available

online.]
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anthropogenic land use in the catchment was as little as 5%.

These occurrence probability curves are reporting on a variety

of species from different sites; however, they do permit us to

better quantify the expected relative occurrences of different

tolerance groups. Our species groupings may also be respond-

ing in relation to a landscape threshold, which has been a dem-

onstrated response in other studies.

Model Strengths and Limitations

There is often no shortage of environmental covariates from

which to choose when modeling species distributions. Due to

the scale of our study and the available data, land cover and

land use covariates were the most appropriate, and we

benefited from the fact that land cover should be particularly

robust, as all streams have terrestrial catchments with varying

amounts of forest, agriculture, and development. By investi-

gating basic covariates, we also did not risk overfitting our

models, and therefore our results should generalize to systems

outside of those we investigated. Of course, basic land use

covariates may not capture all of the complex mechanisms

structuring fish assemblages, but they are known to affect the

distribution of many fish species (regardless of mechanism),

and they represent landscape characteristics that can be man-

aged to some degree in many systems and thus are useful for

rare species conservation and management.

The use of hierarchical models allowed for the inclusion of

species for which there was little information about their

response to anthropogenic alterations in the landscape; we

were able to include these species by borrowing information

from the entire community through the use of a species ran-

dom effect. This capability, referred to as partial pooling, is

important because limited information on distribution or

response to landscape alterations is commonplace for many

species; however, conservation decision-making often cannot

be postponed until more data become available (Leung and

Steele 2013). In contrast, estimating species-specific model

parameters using only species-specific data (i.e., no pooling)

would be difficult if not impossible because a wide range of

land use values is required to reveal the effects of land use on

species occurrences. Our results can also be a hypothesis-gen-

erating tool for identifying and prioritizing species for which

little information is known or that are of interest for other rea-

sons. Additionally, the use of Bayesian estimation provides

probabilistic interpretation of results, making it a better tool

for ranking management alternatives. This may be useful in a

FIGURE 6. Responses of select intolerant (top row), intermediate (middle row), and tolerant (bottom row) fish species to percentage developed land in the

upstream network catchment. Solid lines are posterior means; shaded regions are 95% credible intervals. Common names of species are defined in Figure 5.

[Color figure available online.]
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management scenario where only a fixed number of species or

habitats will receive management or conservation resources.

The probabilistic results of our model create a situation in

which species can be ranked based on estimates of effects and

uncertainty, regardless of statistical significance.

In addition to the borrowed strength that informs the spe-

cies-specific occurrence probabilities, the second level of the

HBMM can be modified for any covariate that is appropriate

for a specific conservation question. We used tolerance levels

from the North Carolina index of biotic integrity due to their

wide applicability and inclusion of a variety of information,

whereas future applications of this model could explore a

range of covariates and would be adaptable to those covariates

that are most appropriate for the species or system in question.

Ricketts et al. (1999) pointed out that no taxon or indexing is

without error but that continual improvement of species infor-

mation and geographic patterns will produce more informative

combinations of assemblages and perhaps better surrogate spe-

cies. In this way, our study contributes to the growing list of

efforts to better describe communities and surrogate species

through developments in species distribution models (e.g.,

Azeria et al. 2009; Meador and Carlisle 2009; Ovaskainen and

Soininen 2011).

One limitation to our approach is that land use correlations

and issues of scale prevent explicit conclusions about causal

mechanisms. Frequently, the effects of agriculture and devel-

opment are similar in streams (e.g., increased sediment load,

greater nutrient and pollution loads, and changes in stream

morphology; Allan 2004). Further compounding this is the

variable effect of scale on a stream reach. Because streams

and catchments are hierarchies of smaller units and because

large-scale features may constrain the development of smaller

features (particularly within stream), it can be difficult to parti-

tion the influence of different factors at different scales (Lam-

mert and Allan 1999). Despite these challenges, hierarchical

models are useful in characterizing some of the spatial vari-

ability that presently confounds the covariate effects of species

distribution models (Wagner et al. 2006).

Another factor possibly influencing our results is the pres-

ence of introduced species. Introduced species are often gener-

alists (Olden et al. 2004), although this attribute is somewhat

accounted for in the tolerance framework we adopted. In fact,

many of the tolerant species we modeled were introduced spe-

cies; however, the statewide scale of our investigation would

not have been appropriate for categorizing introduced species

because the native–introduced factor operates at much smaller

Figure 7. Responses of select intolerant (top row), intermediate (middle row), and tolerant (bottom row) fish species to percentage agricultural land in the

upstream network catchment. Solid lines are posterior means; shaded regions are 95% credible intervals. Common names of species are defined in Figure 5.

[Color figure available online.]
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scales. Perhaps more importantly, conservation typically needs

to address what is present in a community; therefore, modeling

the factor of native versus introduced would have addressed a

different question. We sought to provide estimates that reflect

current communities rather than introduction potential.

Despite the overall quality of our data, we recognize that

without detection probabilities, our results are limited to pro-

ducing apparent species distributions (K�ery et al. 2010). Based
on the consistency of our sampling methods and the inferred

high detection rates, we still caution against the use of our

results to infer true occupancy. Additionally, caution must be

taken when interpreting species-specific patterns from multi-

species models (Zipkin et al. 2010). To this end, we suggest

that the primary use of our models should be to highlight the

broad-scale relationships between species presence and land-

scape features rather than to predict a given species’ occur-

rence at a single site. In fact, in some cases of single-species

occurrence prediction, we might anticipate low or variable

accuracy based on the relatively few predictors used in our

models and the inherent complexities required for fine-scale

prediction (Wagner et al. 2014). Although we could have cho-

sen to fit a model with a large number of covariates in order to

maximize prediction (even if certain predictors’ effects could

not be explained), we opted to limit predictors and thus maxi-

mize our understanding of species–landscape relationships

(Kuhn and Johnson 2013).

Species distribution models have a long history in ecology

and continue to be developed and improved (Elith and Leath-

wick 2009). Our investigation was focused on streams in

North Carolina; however, not only is the model easily adapted

for other species, covariates, and groupings, but many of the

estimates we calculated could likely be applied in other south-

eastern U.S. stream habitats for which species data are

unavailable. Our approach posits a useful combination of

existing groups with quantified species information. For exam-

ple, rather than developing conservation strategies solely on a

single imperiled (e.g., surrogate) species or purely on a biodi-

versity index (e.g., species richness), our method provides the

opportunity to quantify responses for nearly all species in an

assemblage. Existing frameworks like tolerance levels, conser-

vation status, or reproductive guild can be implemented into

our approach, and the resulting estimates can be used to

develop new conservation priorities. For many species, we cur-

rently await conservation efforts that require the best possible

information, knowing that such information will be incomplete.

Our approach uses existing information to better quantify and

reduce uncertainty in predicting the presence of a limitless list

of species over a range of possible predictors.
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