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ABSTRACT ARTICLE HISTORY
Audio sampling of the environment can provide long-term, land- Received 1 October 2018
scape-scale presence-absence data to model populations of sound- Accepted 2 April 2019

producing wildlife. Automated detection systems allow researchers KEYWORDS
to avoid manually searching through large volumes of recordings, Automated acoustic
but often produce unacceptable false positive rates. We developed monitoring; bioacoustics;

methods that allow researchers to improve template-based auto- false positives; machine
mated detection using a suite of statistical learning algorithms learning; species
when false positive rates are problematic. To test our method, we identification; statistical
acquired 668 hours of recordings in the Sonoran Desert, California learning

USA between March 2016 and May 2017, and created spectrogram
cross-correlation templates for three target avian species. We
trained and tested five classification algorithms and four perfor-
mance-weighted ensemble classifier methods on target signals
and false alarms from March 2016, and then selected high-
performing ensemble classifiers from the train/test phase to predict
the class of new detections thereafter. For three target species, our
ensemble classifiers were able to identify 98%, 81%, and 100% of
false alarms compared with the baseline template detection system,
and comparative positive predictive values improved from 6% to
69%, 87% to 95%, and 2% to 77%. We show that statistical learning
approaches can be implemented to mitigate false detections
acquired via template-based automated detection in automated
acoustic wildlife monitoring.

Introduction

Tracking wildlife population dynamics at regional scales requires methods that effi-
ciently accumulate data on species of interest (Pollock et al. 2002). Automated acoustic
monitoring of sound-producing wildlife offers one path for characterizing baseline
species status and trends across vast landscapes, important within the context of climate
change and rapidly shifting land uses. Because obtaining species abundance data is
often inefficient, costly, and impractical, research at large spatial scales may instead
collect species presence-absence data for use in occupancy models; remote acoustic
monitoring is well-positioned to support such data collection because it affords the
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opportunity to identify presence or absence of species based on sounds captured on
audio recordings (Furnas and Callas 2014; Cerqueira and Aide 2016).

Recent efforts have yielded tremendous growth in large-scale, long-term bioacoustic
monitoring programs that accumulate vast amounts of acoustic data well beyond
human capacity for efficient examination (Shonfield and Bayne 2017). Such large-
scale data acquisition is accompanied by methodologies and software that enable semi-
automated detection of sound-producing wildlife species from audio recordings. No
approach for automated detection is perfect, and detection methods can vary based on
research goals, soundscape characteristics, and acoustic features of a target species
sound (Towsey et al. 2012; Stowell et al. 2016). Hidden Markov models (Agranat
2009; Aide et al. 2013; Potamitis et al. 2014; Wildlife Acoustics 2016; Ranjard et al.
2017), spectrogram cross correlation (Mellinger and Clark 2000; Avisoft Bioacoustics
2016; Hafner and Katz 2018), binary point matching (Towsey et al. 2012; Hafner and
Katz 2018), band-limited energy detection (Figueroa 2012; Bioacoustics Research
Program 2015) and convolutional neural networks (Knight et al. 2017) are common
approaches for automatically detecting species by their sounds. Probabilistic classifica-
tion methods also show promise (Ovaskainen et al. 2018).

Advantages of a template-based automated detection system are the low barrier to
entry and ease of use. Template-based detection strategies such as spectrogram cross-
correlation and binary point matching are well established in the literature and have
a freely available software platform (Hafner and Katz 2018), compared with proprietary
commercial software that costs $399 USD for a single user yearlong subscription
(Wildlife Acoustics 2016). Template matching systems require no signal processing
expertise; a researcher needs only to be familiar with sounds produced by their focal
species. Moreover, template-based acoustic monitoring can be initiated with a single
example of a sound issued by a target species — helpful when not many reference calls
are available. By contrast, state-of-the-art approaches like convolutional neural net-
works (CNNs) can demand large amounts of labelled training data beyond the capacity
of an individual acoustic monitoring project (Gibb et al. 2018), in addition to the
expertise required for hyperparameter tuning and construction of the network archi-
tecture. Though there are CNN pipelines available for public use (e.g. for detection of
echolocating bats as in Mac Aodha et al. 2018), the programming expertise and set-up
required to build a customized CNN for a specific monitoring need may be prohibitive.
Furthermore, in a side-by-side evaluation, template matching approaches have com-
pared favourably with CNNs (Knight et al. 2017).

Regardless of the automated detection approach, a detected audio signal is either
a true positive detection, which is a sound produced by the target species, or a false
positive detection, which is not a signal from a target species. Throughout this paper,
we will refer to true positive detections as ‘target signals’ and false positive detections as
‘false alarms.’ Regardless of the automated detection method employed, when acting
without human assistance, computer-automated methods often produce an unaccepta-
ble number of false alarms, wherein non-target noise is detected and incorrectly
assigned to a target species (Acevedo et al. 2009). False alarm rates from computer-
automated methods may vary widely from project to project based on the prevalence of
similar sounds from non-target sources in the soundscape, acoustic characteristics of
sounds made by the target species (Towsey et al. 2012), the type of automated detection
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routine used (Corrada-Bravo et al. 2017), the available number of target sound exam-
ples upon which automated methods may be trained (Stowell et al. 2016), the quality of
training data in terms of how well it represents the data that will be subject to the
automated detection method (Knight and Bayne 2018), and selection of score thresh-
olds above which detections may occur (Knight et al. 2017).

We illustrate the process of acquiring both true target signals and false alarms using
a spectrogram cross-correlation template as a screening mechanism to accumulate detec-
tions for a North American desert songbird, the Verdin (Auriparus flaviceps). First, we
render a spectrogram of an audio recording (Figure 1(a)), in which a Verdin vocalized
three times, each with a characteristic three note whistle at about 4 kHz on the y-axis. We
set time and frequency limits that define a cross correlation-based detection template for
the song occurring at ~24 seconds within the example recording (Figure 1(b)). This
template thus provides an acoustic pattern issued by a known target species, and can be
used to scan many recordings in pursuit of Verdin vocalizations. The template is
compared to an audio recording in a moving window analysis, in which a correlation
between the template and audio file is obtained for each window (Figure 2). We then
select a correlation detection threshold for the template, which is a user-specified detec-
tion threshold ranging from 0 (no correlation) to 1 (full correlation). Only peaks with
scores above the chosen threshold are considered detections. This process facilitates rapid
screening of acoustic data to acquire a set of detections, which are either true target
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Figure 1. (a) Verdin songbird vocalization within a recording. (b) example template created from
Verdin vocalization occurring at ~24 seconds.
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Figure 2. lllustration of event detection via template matching paired with a score threshold. Red
boxes in the top panel denote detections, while the red line in the bottom panel indicates a selected
threshold (0.3). The first red box is a false alarm produced as a result of electromagnetic interference.
The last three red boxes are all target signals wherein the Verdin is actually vocalizing. Note also two
occurrence-level false negatives (~4 seconds and 23 seconds), in which the species is vocalizing but
no detection occurred.

Table 1. Confusion Matrix Examples to distinguish between true and false
positives at the vocalization occurrence level vs. the detection level.

Actual Class: Actual Class:

Vocalization No Vocalization
Predicted Class: TP =3 FP =1 4
Vocalization
Predicted Class: FN =2 TN =38 40
No Vocalization

5 39 44

Following from Figure 2, a confusion matrix at the ‘vocalization occurrence level’
summarizes all vocalizations issued by the target species and captured within the
recording. Three vocalizations are correctly detected and referred to as ‘true
positives’ (TP = 3), while one non-vocalization is flagged as signal from the target
species, which is a ‘false positive’ (FP = 1). Meanwhile, two vocalizations are missed
by the system and are ‘false negatives’ (FN = 2). Lastly, approximately 38 time
bands within the recording are appropriately ignored since they contain no voca-
lizations from the target and are ‘true negatives’ (TN = 38). We highlight the top
row to indicate that only the true and false positive detections from Table 1 are
considered within this paper.

signals or false alarms (Table 1). Distinguishing target signals from false alarms is the
focus of this paper. Tangentially, this process also results in false negatives at the level of
actual vocalization occurrence, in which a species produced a sound but was not detected
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by the template matching process (Table 1; see Brauer et al. 2016 and Katz et al. 2016 for
assessment of false negatives using a template-matching system).

Although humans may distinguish between true target signals and false alarms by
visually examining the spectrogram or listening to the audio file, this approach is
inefficient against the sheer volume of data collected in an acoustic monitoring pro-
gram. Alternatively, after the template screening step has been performed, users may
manually verify a small subset of detections as target signals and false alarms and use
these to train a variety of classification algorithms that can predict whether template
detections are true or false positives. Such an approach describes a form of statistical
learning called supervised learning, in which a human labels a subset of data for the
algorithm so that it can map existing data to known output classes (Bishop 2006). Once
an algorithm has been trained on known data, it can be tested to predict the class -
target signal or false alarm - of unknown data.

Two key components must be addressed to undertake supervised statistical learning.
First, one must decide which acoustic features (predictive variables) of a detection can
be used by the algorithm to predict the outcome (target signal or false alarm). The best
predictive features may vary based on sounds produced by any given target species, as
well as soundscape circumstances such as wind, rain, anthropogenic noise, or non-
target species vocalizing within the same frequency range. Figure 1(b) shows an
example of a set of acoustic features: the coloured shading in each pixel of the spectro-
gram represents the amplitude (or sound intensity) at that point, and each of the
amplitude values in this spectrogram serves as an acoustic feature. Other potential
predictive features include binned zero-crossing rates, time and frequency contours of
the amplitude probability mass function, and summary statistics of the frequency
spectrum (Sueur et al. 2008) (Appendix 1). All features for a detected event are defined
based on the extent of the template that produced the event.

Once predictive features have been obtained, they are fed into a classification algo-
rithm that will map predictive feature inputs to known output labels (target signal or
false alarm). For example, the k-Nearest Neighbours classifier predicts the class of a new
observation based on its feature similarity to some ‘K’ number of observations within
the training set (Cover and Hart 1967). Support Vector Machines seek an equation that
optimally separates classes based on a high number of feature dimensions in geometric
space (Boser et al. 1992), while Random Forests average a number of feature-based
decision trees in order to make predictions (Breiman 2001). Regularized Logistic
Regression uses penalized maximum likelihood to shrink the values of predictive
feature coeflicients, reducing variance so that the resulting model is better equipped
to predict outside the range of data upon which it was trained (Zou and Hastie 2005).
To improve classification, multiple algorithms may be combined into an ‘ensemble’
method to predict the class of a new detection.

Classification methods for discriminating between target signals and false alarms
thus provide an opportunity in large-scale automated acoustic wildlife monitoring.
Climate and land use change are forces that shift the occurrence of species across
vast spatial scales, and monitoring these shifts at large scales is paramount for natural
resource practitioners tasked with maintaining and sustaining species, populations, and
ecosystems. Acoustic monitoring can produce vast amounts of data for this purpose,
but existing automated detection algorithms often deliver high rates of false positives
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(Acevedo et al. 2009; Buxton and Jones 2012; Marques et al. 2013; Duan et al. 2013;
Shonfield and Bayne 2017). Without accessible, straightforward, and generalizable
methodologies for the mitigation of false positives in long-term data sets, occurrence-
based bioacoustics research will continue to suffer the complications imposed by
prohibitive numbers of detection errors, which often pre-empt poor model inference,
ill-informed management decisions, and undesirable conservation outcomes (Royle and
Link 2006; Miller et al. 2011; Ruiz-Gutierrez et al. 2016).

Objectives

The aim of this study was to explore methods for the semi-automatic removal of false
positives to increase the quality of monitoring data. These approaches have been
implemented in the R package AMMonitor (Balantic et al. unpublished results). Our
objectives were to 1) use spectrogram cross-correlation templates as an initial screening
step to accumulate detections for focal species in a pilot acoustic monitoring program,
2) train and test statistical learning classification algorithms to distinguish between
target signals and false alarms acquired during the template screening phase, 3) use
a trained and tested classifier on new detections and compute overall classification
performance in comparison to the template screening system.

Materials and methods

Objective 1: use templates as a screening step to acquire focal species detections
from field data

Acquire acoustic recordings

We piloted an acoustic monitoring program in the Colorado-Sonoran Desert on public
land managed under the auspices of the U.S. Bureau of Land Management (BLM).
Autonomous recording units were installed at 16 sites within the BLM-managed
Riverside East Solar Energy Zone, a 599 square-kilometre patch allocated as a utility-
scale solar renewable energy hub. Because this work is a proof of concept with a focus
on methodology rather than on ecological inference, study sites were selected non
randomly near microphyll woodland habitat to record songbirds, and historic breeding
pond locations with the intention of recording Couch’s Spadefoot Toad (Scaphiopus
couchii). Acoustic monitoring units were located at least 800 metres away from one
another to maximize independence of acoustic events.

Each audio recording unit was a modified Android cellular phone (2015
Generation Motorola Moto E model XT1527 with 5.0.2 Lollipop Android
Operating System) contained within a weatherproof case and attached to an
external 10-watt solar panel for power. Each unit was outfitted with an external
omnidirectional electret condenser microphone (JLI-61A, JLI Electronics). All
units were secured to U-posts elevated 1.83 metres aboveground. Units recorded
in WAV format at a sampling rate of 44.1 kHz. The data collection period ran
from March 2016 to May 2017. Units located in microphyll woodland habitats
recorded every day for one minute at 6:00, 6:30, 7:00, 7:30, 8:00, 16:00, 16:30,
17:00, and 17:30 PST. Two units located next to historic toad breeding ponds also

2nd
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recorded for one minute each day at 5:30, 6:00, 6:30, 7:00, 21:00, 21:30, 22:00,
22:30, and 23:00 PST (n = 9 surveys per phone per day). We used the CinixSoft
Remote Schedule Voice Recorder App (CinixSoft 2014) and Easy Voice Recorder
Pro (Digipom 2016) to schedule recordings and remotely send them to our server
using the cellular network. All units were in airplane mode while recording to
prevent electromagnetic interference that occurs while in cellular data mode.

Create templates for target species

As monitoring targets for this environment, we chose three avian species common to
the region: Eurasian Collared-Dove (Streptopelia decaocto), Gambel’s Quail (Callipepla
gambelii), and Verdin (Auriparus flaviceps). The canonical call from Eurasian Collared-
Dove is a three note ‘advertising coo’ used for mate attraction and territory defense
(Romagosa 2012), with calls occurring at frequencies around 0.5 kHz (Figure 3(a)). The
Gambel’s Quail kaa or cow call emitted by males, whose principal function is to
announce mating availability, is a single upside-down u-shaped note typically occurring

5 0.7

4 0.65

3 0.6

2 0.55

1 0.5
00:00:01 00:00:04 00:00:07 00:00:10 44 46 48 5 52
b.

Frequency (kHz)
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Figure 3. Vocalization examples (a-c) and templates (d-f) for Eurasian Collared-Dove, Gambel’s Quail,
and Verdin, respectively.



8 e C. M. BALANTIC AND T. M. DONOVAN

between 1-3 kHz (Gee et al. 2013) (Figure 3(b)). The male Verdin’s ‘whistle song’ is
a two to four note whistle occurring around 4-6 kHz; little documentation exists with
regard to individual or geographic variation (Webster 1999) (Figure 3(c)).

We created one template for each species from song events chosen out of the
recordings acquired in Objective 1 (Figure 3(d-f)), using the monitoR R package func-
tion makeCorTemplate() with a window length of 512, zero overlap, and the Hanning
window function. As suggested by Katz et al. (2016), we developed the templates and
their accompanying score thresholds iteratively, testing them on recording data outside
the recording from which the template was constructed before settling on finalized
versions. We conducted this process manually. Recommendations for optimal template
creation are sparse, and there is minimal consistency across detection methodologies
for selection of the template detection threshold (Shonfield and Bayne 2017). The
difficulty in creating and assessing templates, as well as the lack of best practices
available for template creation, in fact provided substantial motivation for developing
the methods in this paper.

Accumulate detections and obtain associated predictive features

Using the templates and accompanying score thresholds, we ran the AMMonitor
function scoresDetect() to accumulate detections for all recordings. The scoresDetect()
function employs Pearson’s correlation coefficient to score amplitude values of
a moving frame against those in the template, and then isolates local maxima in the
score vector to identify detection events (Katz et al. 2016). As in Figure 2, peaks with
scores exceeding the score threshold were considered detections, which were either true
target signals or false alarms.

Concomitant with the accumulation of detections, we used the scoresDetect() func-
tion to extract the raw amplitude matrix values associated with each detection, the
correlation score, and a number of acoustic summary features acquired via the
R package seewave (Sueur et al. 2008). These features included binned zero-crossing
rates, time and frequency contours of the empirical amplitude probability mass function
for each time and frequency bin, quantiles calculated from the empirical cumulative
distribution functions of the empirical time and frequency probability mass functions,
and statistical properties of the frequency spectrum such as the spectral mean, standard
deviation, standard error, median frequency, dominant (mode) frequency, frequency
quartiles, centroid, skewness, kurtosis, flatness, and entropy (Appendix 1).

Objective 2: train and test classification algorithms to distinguish between target
signals and false alarms for each species

Manually label a subset of detections; split into training and testing data

Once detections had been acquired via the template screening step in Objective 1, we
manually verified all detections within the first month of field sampling (March 2016)
(Figure 4(a,b)). We used the AMMonitor function scoresVerify() to assist with manual
labelling of all detections as true and false positives for each target species. Each
detection was labelled by the lead author primarily by visual identification on the
spectrogram. We made additional effort to listen to visually ambiguous detections to
confirm their class labels. For Eurasian Collared-Dove (hereafter ECDO), we labelled
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Figure 4. We illustrate the classifier training, testing, and application process using events detected
by the Verdin template. (a) After creating the templates in Figure 3 and running the template
matching algorithm as shown in Figure 2, we collected all detected events from March 2016 -
May 2017 for a single template. Here, all detected events are shown side by side. For model training
and testing, we focused on all detected events from March 2016. (b) We used the AMMonitor
scoresVerify() function to label all March 2016 detections as target signals or false alarms. (c) We split
the labeled March 2016 detections into training (70%) and testing (30%) data, using the caret
function createDataPartition() to preserve any existing class imbalances of target signals and false
alarms. We performed 10-fold cross-validation on the training data. We evaluated classifier perfor-
mance on the test data, which was withheld from the classifier algorithms during cross-validation.
(d) After the classifier models were trained, tested, and evaluated, we applied a performance-
weighted average ‘ensemble’ classifier to make predictions on all remaining detections (April 2016 —
May 2017).

detections as target signals if at least two notes were contained within the detection
frame. For Gambel’s Quail (hereafter GAQU), we labelled detections as target signals if
they contained one frequency-modulated call signal. For Verdin (hereafter VERD), we
labelled detections as target signals if at least one frequency-modulated whistle note was
contained within the detection frame. Any other detections were labelled as false
alarms. After verification, we split the labelled datasets into training (70%) and testing
(30%) data, which is a common heuristic data split in statistical learning problems
(Weinberger et al. 2006), and used the probability-based createDataPartition() function
in the R package caret (Kuhn 2016) to obtain a balanced split of features, target signals,
and false alarms (Figure 4(c)).

Train and test statistical learning classifiers

To construct models for each species and train them on the training data sets, we
invoked the AMMonitor function classifierModels(), which utilizes functions from
the machine learning R package caret (Kuhn 2016). We trained our classifiers on
raw data with no preprocessing (i.e. no scaling or transformation of the acoustic
feature data). We used the method ‘kknn’ for kernelized k-nearest neighbours which
tunes to select an optimal k, ‘svmLinear’ for linear support vector machines, which
entails the optimization of a cost parameter, ‘svmRadial’ for radial support vector
machines, which optimizes both a cost parameter and the ¢ value of the radial basis
function kernel, ‘rf’ for random forests, which involves tuning a parameter for the
number of randomly selected predictor variables, and ‘glmnet’ for regularized logis-
tic regression, which requires tuning a regularization parameter (A) and a mixing
parameter (a).
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Because a prohibitive entry point to the use of statistical learning methods involves
meticulously tuning algorithms to produce acceptable models, and because our aim was
to generate extensible methodology accessible to researchers with little or no statistical
learning experience, we used the default caret package tuning grids for all five models.
Though default values should always be used with care, we opted for the defaults here
to keep the methodology as simple as possible (in practice, users are free to use
customized values rather than defaults). We used all acoustic features listed in
Appendix 1 to train each classifier; we did not select or exclude any features a priori,
and did not incorporate any higher order terms. After the classifiers were trained and
tested, we used the caret function varImp() to investigate which acoustic features had
been most important for distinguishing between target signals and false alarms, but did
not use this information to select or exclude features manually. Lastly, within the
AMMonitor function classifierModels(), we used the caret function trainControl() to
apply 10-fold cross-validation during the training phase to reduce model overfitting
(Figure 4(c)).

After the training phase, we tested the trained classifiers on the 30% of unseen data
(also using the AMMonitor function classifierModels()) (Figure 4(c)). Although we used
cross-validation during the training phase to reduce overfitting, this technique can
produce overly optimistic estimates of the training error (Hastie et al. 2009).
Therefore, to get a more unbiased understanding of the system’s overall performance,
we applied the trained model to completely unseen data during the testing phase to
avoid optimistic performance estimates. For every detection, each of the five classifiers
yielded a probability that the detection was of the target signal class. While the logistic
regression and random forest models output actual probabilities, the support vector
machines and k-nearest neighbours fit a sigmoid function on their outputs to return
probability-like values between 0 and 1 (Kuhn 2016). For simplicity in evaluation,
detections with values of 0.5 or above were classified as target signals; those below
were classified as false alarms.

Assess classifier performance on the test set

Since labels for the test data were already known (target signal or false alarm), the
training and testing procedure resulted in a confusion matrix summarizing the true
classes of each detection and the classes to which they were assigned by each classifier
(e.g. Table 2). We used the AMMonitor function classifierPerformance() to calculate
several measures of classifier performance (Table 2). The literature contains rich debate
over measures of classifier performance (Powers 2007), but the most useful evaluation
measures depend on the research motivation behind using classification, as well as on
the total number of observations and the balance of classes, which is why we sought
a range of evaluation measurements.

For our study, we gave special merit to four performance metrics, all of which
range in value from 0 to 1, with scores closest to 1 being most desirable (highlighted
in Table 2). First, sensitivity (a.k.a. recall or true positive rate) is of particular
interest because it denotes the proportion of target signals correctly identified by
the classifier [TP/(TP + FN)] (Table 2). Second, specificity (or true negative rate)
denotes the proportion of false alarms correctly identified as such, making them true
negatives within the confusion matrix [TN/(TN + FP)]. Third, positive predictive
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Table 2. Confusion Matrix for Detections Only.

Actual Class Label: Actual Class Label:
Target Signal False Alarm Row Sum
Predicted Class: TP =3 [3] FP =1 [0] 4[3]
Target Signal Pos. Pred. Value = 3/4 = 0.75
[Pos. Pred. Value 3/3 = 1]

Predicted Class: FN =0 [0] TN =0[1] 0[1]
False Alarm
Column Sum 3 [3] 11011 4

Sensitivity = 3/3 =1 Specificity = 0/1 =0 F1 = 2*(0.75%*1)/(0.75 + 1) = 0.86

[Sensitivity = 3/3 = 1] [Specificity = 1/1 = 1] [F1=2*(1*1)/(1 + 1) = 1]

The four detections highlighted in the top row of Table 1 are now subject to ‘detection level classification, in which an
algorithm is used to reclassify events in an effort to minimize false alarms. The goal of reclassification is to maximize
sensitivity, specificity, positive predictive value and F1 score. Ideal conditions are bolded and given in brackets next to
the actual condition.

value (a.k.a. precision) expresses the proportion of predicted positive detections that
are actually target signals [TP/(TP + FP)]. Finally, the F1 score represents a weighted
average of positive predictive value and sensitivity, quantifying the trade-off between
a desire for high positive predictive value and high sensitivity. The F1 score is
calculated as 2 * Positive Predictive Value * Sensitivity/(Positive Predictive Value
+ Sensitivity). Maximizing all four of these metric scores was a primary goal in
classifier evaluation.

We also constructed Receiver-Operating Characteristic (ROC) curves, which plot the
true positive rate (sensitivity) against the false positive rate (1 - specificity). Many
classification problems involve imbalanced datasets, in which the number of false
positive cases greatly outweighs the number of true positive cases or vice versa. Class
imbalances undermine performance metrics like accuracy and area under the ROC
curve (AUC): a classifier may predict the majority class for most or all observations in
the test set and still attain a high accuracy score, which is why measures beyond
accuracy are necessary (Zhu and Davidson 2007). To account for this, we also con-
structed Precision-Recall Curves, which plot positive predictive value (a.k.a. precision)
against sensitivity (a.k.a. recall) (Davis and Goadrich 2006). For both ROC and
Precision-Recall curves, we defined AUC values matching or exceeding 0.80 as accep-
table, and values matching or exceeding 0.90 as high performance, with values of 1
indicating perfect performance.

Create and assess performance-weighted class probability ensemble methods

After performance metrics were computed for each of the five classifiers individually,
we used the classiferEnsemble() function to aggregate the results of the five classifiers
using a weighted average with respect to a selected performance metric. In statistical
learning, methods combining predictions across multiple classifiers are known as
‘ensembles,” in which classification occurs as a consequence of aggregation or integra-
tion of multiple distinct algorithms to improve predictive performance. In our simple
implementation of an ensemble, the classifierEnsemble() function established four
performance-weighted ensemble methods, weighting each classifier’s probability that
a detection was of class ‘target signal” by the classifier’s test phase sensitivity, specificity,
positive predictive value, or F1 score (Appendix 2). Thus, contributions of lower-
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scoring classifiers are diminished, while higher-scoring classifiers have stronger impact
on ensemble class predictions for any given detection. We then computed the sensitiv-
ity, specificity, positive predictive value, and F1 of the ensemble results.

Objective 3: assess the performance of a trained and tested classifier on new
detections

In releasing our trained and tested classifiers ‘into the wild’ on new, incoming template
detections, our goal was to use classification to eliminate as many false alarms as
possible, while still retaining true target signals needed for meaningful estimations of
species occurrence. For this reason, we chose to proceed using the ensemble method
weighted by the F1 score as our predictive classifier on new data for all three species.

Using AMMonitor’s classifierPredict() function, we invoked the ensemble method
weighted by the F1 score to predict the class of all detections across the entire recording
dataset that were not seen during the training and testing phase. Thus, the training and
testing phase occurred on all data from March 2016, and the prediction phase occurred
on all data spanning the 14-month period from April 2016 to May 2017 (Figure 4(d)).
We then manually verified all detections in the prediction set, and computed metrics to
evaluate whether our classification method improved upon the initial template screen-
ing step. We calculated the positive predictive value and F1 score for the template
screening step, and calculated sensitivity, specificity, positive predictive value, and F1
score for the classifiers to compare performances of the two systems. We assumed that
the template screening method had a sensitivity of 1 and specificity of 0 with regard to
distinguishing target signals from false alarms.

Results

Objective 1: use templates as a screening step to acquire focal species detections
from field data

We collected a total of 40,094 one-minute recordings from March 2016 to May 2017
across 16 smartphone-based audio recorders. An unknown number of recordings
contained electromagnetic interference for reasons unknown, all of which were retained
in the dataset. We created spectrogram cross-correlation templates for ECDO, GAQU,
and VERD (Figure 3(d-f)), and identified score thresholds of 0.43, 0.33, and 0.23,
respectively, to use during the screening phase. At these score thresholds, we collected
a total of 4,427 detections for ECDO, 1,464 detections for GAQU, and 4,241 detections
for VERD, resulting in a total of 10,132 detections.

Objective 2: train and test classification algorithms to distinguish between target
signals and false alarms for each species

Manually label a subset of detections; split into training and testing data

There were 631 detections acquired from 54.3 hours of recordings from March 2016 at
the selected score thresholds: 323 ECDO, 62 GAQU, and 246 VERD (Table 3). It took
approximately one hour to manually verify all March 2016 detections using our chosen
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Table 3. Number of manually verified detections from March 2016 used as classifier training
and testing data for three focal species: Eurasian Collared-Dove (ECDO), Gambel’s Quail
(GAQU), and Verdin (VERD).

Template Total N Total True Total False
ECDO 323 135 188
Training Testing Training Testing
95 40 132 56
GAQU 62 34 28
Training Testing Training Testing
24 10 20 8
VERD 246 49 197
Training Testing Training Testing
35 14 138 59
a. Template: ECDO d. Average All (n =323) g. Average True (n = 135) j- Average False (n = 188)
| l | [ |
b. Template: GAQU e. Average All (n = 62) h. Average True (n =34) k. Average False (n = 28)

|

c. Template VERD f. Average All (n = 246) i. Average True (n =49) L. Average False (n = 197)

Figure 5. Visual summary of all manually verified detections used as training and testing data.
Templates used to collect detections (a-c) are juxtaposed against average spectrograms for all
verifications (d-f), all target signal verifications (g-i), and all false alarm verifications (j-L).

verification standards. The ECDO and GAQU datasets were adequately balanced, with
135 true and 188 false for ECDO, and 34 true and 28 false for GAQU. The VERD
dataset had a class imbalance with 49 true and 197 false (Table 3). A visual summary of
verifications is contained in Figure 5, wherein spectrograms for verified detections were
averaged across the amplitude values to show the mean target signal and mean false
alarm.

Train and test statistical learning classifiers
Despite the low total number of GAQU detections and considerable class imbalance for
VERD, all classification models converged during the training phase and were
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Table 4. Assessment of classifier performance on the training data after 10-fold cross-validation. The
classifier performance metrics in this table can take on values between 0 (worst) and 1 (best), with
NAs occurring where metrics are not possible to calculate. Rows indicate classifiers, and columns
indicate performance metrics. Recall that these performance metrics only evaluate the subset of
template-detected data, in support of the binary classification problem of distinguishing target
signals from false alarms (described in Tables 1 and 2).

Classifier Sensitivity Specificity Pos. Pred. Value F1

a. ECDO models

Regularized Logistic Regression 0.99 0.98 0.98 0.99
Linear Support Vector Machine 0.97 0.97 0.96 0.97
Radial Support Vector Machine 0.96 0.96 0.95 0.96
Random Forests 0.98 0.97 0.96 0.97
Kernelized k-Nearest Neighbours 0.98 0.93 0.92 0.95
b. GAQU models

Regularized Logistic Regression 0.96 0.98 0.98 0.97
Linear Support Vector Machine 0.95 0.96 0.96 0.96
Radial Support Vector Machine 0.83 0.13 0.51 0.63
Random Forests 0.90 0.94 0.94 0.92
Kernelized k-Nearest Neighbours 0.96 1.00 1.00 0.98
¢. VERD models

Regularized Logistic Regression 0.43 0.95 0.69 0.53
Linear Support Vector Machine 0.52 0.95 0.71 0.60
Radial Support Vector Machine 0.00 1.00 NA NA
Random Forests 0.44 0.98 0.87 0.58
Kernelized k-Nearest Neighbours 0.65 0.91 0.64 0.64

functional for testing and assessment. It took a total of 16 minutes to train and test the
models for all three species. Results from the 10-fold cross-validation training phase are
contained in Table 4. Performance varied based on the classifier and species of interest,
with classifier evaluation metrics ranging from 0.00 to 1.00. For ECDO, all classifiers
performed very well, with scores ranging from 0.92 to 0.99 depending on the classifier
and evaluation metric. For the GAQU models, performance metrics were very good for
all classifiers except for the radial support vector machine; the other GAQU classifiers
had scores ranging from 0.90 to 1.00 on all metrics. The VERD classifiers displayed
much greater performance variation. Though all VERD classifiers scored well on
specificity (values ranged from 0.91 to 1.00), remaining metrics turned out poor to
fair performances. A sensitivity score of 0.00 for the radial support vector machine
resulted in NA values for that classifier’s positive predictive value and F1 score.
However, the random forests classifier scored 0.87 on the positive predictive value
metric.

Because the k-nearest neighbours and support vector machines algorithms do not
provide readily interpretable output with regard to predictive importance of acoustic
features, here, we only report feature selection results from the regularized logistic
regression and random forest models. Using caret’s varImp() function, for regularized
logistic regression, variable importance is calculated based on the absolute values of the
coefficients, with highest absolute values indicating the most important features for
prediction. For random forests, variable importance is based on the ‘out-of-bag’ error,
which, essentially, observes the impact of a variable on model accuracy by comparing it
against the performance of trees that do not include this variable (see Liaw and Wiener
(2002) for details).
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Features summarizing statistical properties of the frequency spectrum served as the
strongest predictors for distinguishing between target signals and false alarms. For ECDO,
the regularized logistic regression classifier identified the standard error of the mean of the
amplitude matrix as the top predictor, with spectral standard deviation, mean, and centroid
also providing importance. The random forest model identified spectral mode as the top
predictor, with spectral centroid and mean also providing some predictive value. For
GAQU, the regularized logistic regression classifier identified spectral kurtosis and skew-
ness as the top predictors, with several time-binned zero-crossing rates also providing
importance. The random forest classifier identified a number of individual amplitude
values as the best predictors, with correlation score also supplying predictive capacity.
For VERD, the regularized logistic regression model identified spectral entropy as the top
predictor, followed by spectral flatness and spectral kurtosis. The random forest model
identified spectral skewness as the most important predictor, with spectral kurtosis and
correlation score supplying some predictive impact. Several time and frequency contours
and binned zero crossing rates also offered minor predictive value.

Assess classifier performance on the test set; create and assess
performance-weighted class probability ensemble methods

Performances on the test data across the various metrics, classification approaches, and
templates varied (Table 5). The random forests and kernelized k-nearest neighbours

Table 5. Assessment of classifier performance on the test data. The classifier performance metrics in
this table can take on values between 0 (worst) and 1 (best). Rows indicate classifiers, and columns
indicate performance metrics. Recall that these performance metrics only evaluate the subset of
template-detected data, in support of the binary classification problem of distinguishing target
signals from false alarms (described in Tables 1 and 2).

Classifier Sensitivity Specificity Pos. Pred. Value F1

a. ECDO Models:

Regularized Logistic Regression 1.00 0.00 0.36 0.53
Linear Support Vector Machine 0.20 1.00 1.00 0.33
Radial Support Vector Machine 0.1 1.00 1.00 0.21
Random Forests 1.00 0.98 0.97 0.99
Kernelized k-Nearest Neighbours 1.00 0.97 0.95 0.97
Ensemble weighted by Sensitivity 1.00 0.95 0.92 0.96
Ensemble weighted by Specificity 1.00 1.00 1.00 1.00
Ensemble weighted by Pos. Pred. Value 1.00 1.00 1.00 1.00
Ensemble weighted by F1 1.00 0.98 0.97 0.99
b. GAQU Models:

Regularized Logistic Regression 0.64 0.86 0.88 0.74
Linear Support Vector Machine 0.73 0.71 0.80 0.76
Radial Support Vector Machine 1.00 0.00 0.61 0.76
Random Forests 0.82 0.71 0.82 0.82
Kernelized k-Nearest Neighbours 0.73 0.86 0.89 0.80
Ensemble weighted by Sensitivity 0.73 0.86 0.89 0.80
Ensemble weighted by Specificity 0.73 0.86 0.89 0.80
Ensemble weighted by Pos. Pred. Value 0.73 0.86 0.89 0.80
Ensemble weighted by F1 0.73 0.86 0.89 0.80
c. VERD Models:

Regularized Logistic Regression 0.00 1.00 NA NA
Linear Support Vector Machine 0.07 0.93 0.20 0.10
Radial Support Vector Machine 0.00 1.00 NA NA
Random Forests 0.80 1.00 1.00 0.89
Kernelized k-Nearest Neighbours 0.47 0.97 0.78 0.58
Ensemble weighted by Sensitivity 0.67 1.00 1.00 0.80
Ensemble weighted by Specificity 0.00 1.00 NA NA
Ensemble weighted by Pos. Pred. Value 0.47 1.00 1.00 0.64

Ensemble weighted by F1 0.53 1.00 1.00 0.70
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classifiers performed well on the ECDO test data, with performance evaluation metrics
ranging from 0.95 to 1.00. Although the other three classifiers performed erratically on
the test data, the good performances from the random forests and kernelized k-nearest
neighbours classifiers caused all four weighted average ensemble classifiers to perform
well on the test data, with scores ranging from 0.92 to 1.00 across metrics. The GAQU
classifiers produced midrange performances, with positive predictive values and F1
scores that ranged from 0.61 to 0.89. All four weighted average ensemble classifiers
produced the same results, with scores ranging from 0.73 on sensitivity, to 0.89 on
positive predictive value. The VERD classifiers had much greater variation in perfor-
mance. As during the training phase, the random forests classifier displayed the most
promise in the testing phase, achieving scores that ranged from 0.80 (for sensitivity) to
1.00 (for specificity and positive predictive value). Meanwhile, the large class imbalance
in the VERD data, with many false alarms and few target signals, resulted in regularized
logistic regression and radial support vector machine models adept at identifying false
alarms (specificity = 1.00) but incapable of identifying target signals (sensitivity = 0.00),
consequently producing NA results for positive predictive value and F1 score. Indeed,
for VERD, all five classifiers were effective at identifying false alarms, as indicated by
specificities ranging from 0.93 to 1.00, but weaker at identifying target signals, with
sensitivities ranging from 0 to 0.80.

The weighted ensemble approaches all performed similarly across performance
metrics for both ECDO and GAQU, and displayed greater performance variation for
VERD (Table 5). The ensemble classifier weighted by F1 score, upon which we chose to
focus in advance, was a top-performing model for ECDO and GAQU on all metrics,
producing scores ranging between 0.98 and 1.00 (ECDO), and from 0.73 to 0.89
(GAQU). For VERD, the ensemble classifier weighted by F1 score had a specificity
and positive predictive value scores of 1.00, but was outperformed by the random
forests classifier on sensitivity and F1 score.

ROC curves (Figure 6) of the training data generated acceptable areas under the
curve (AUC) in most cases, aside from the radial support vector machine’s performance
for GAQU and VERD, which was indistinguishable from that of a random guess. ROC
curves of the test data varied widely across species: the F1-weighted average ‘ensemble’
classifier produced the best ROC AUC results for all three species, with AUC values of 1
(ECDO), 0.82 (GAQU), and 0.99 (VERD). Precision-Recall curves (Figure 7) exhibited
high performance for ECDO on the training data (all AUC 2 0.97), high performance
for GAQU despite the low amount of training data (aside from the radial support
vector machine, all training set AUC > 0.98), and variable performance for VERD. On
the test data, all three species had at least three classifiers that met or exceeded
precision-recall AUC values of 0.80.

Objective 3: assess the performance of a trained and tested classifier on new
detections

From April 2016 to May 2017, the template screening phase resulted in 9,485 new
detections: 4,104 ECDO, 1,402 GAQU, and 3,979 VERD. Applying the trained and
tested ensemble classifiers to these data yielded classifier sensitivities of 0.85 (ECDO),
0.59 (GAQU) and 0.54 (VERD) (Figure 8), compared to sensitivities of 1 in the
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Figure 6. Receiver-Operator Characteristic (ROC) curves describing classifier performance during the
training and testing phases. The upper panel shows ROC curves on the 10-fold cross-validated
training data for the five classifiers. The bottom panel shows ROC curves on the test data. The
ensemble classifiers only make predictions in the test phase, so the bottom panel also demonstrates
the ensemble classifier weighted by F1 score. Area under the curve (AUC) is denoted next to each
model’s name in square brackets. Curves that reach into the upper left corner, with AUC values close
to 1, show the best classification performance.

template screening phase. Classifier specificities were 0.98 (ECDO), 0.81 (GAQU), and
1.00 (VERD), compared to specificities of 0 for the template screening phase.

Overall positive predictive values from the classification application phase were
0.69 (ECDO), 0.95 (GAQU), and 0.77 (VERD), compared to positive predictive
values of 0.06 (ECDO), 0.87 (GAQU), and 0.02 (VERD) for the template screening
phase (Figure 8). F1 scores improved from 0.12 to 0.76 (ECDO) and from 0.04 to
0.63 (VERD) with the classifier system, but declined from 0.93 to 0.73 in the GAQU
model (Figure 8).

The majority of false alarms for ECDO stemmed from wind and anthrophonic
sources such as faraway highway traffic noise, though several false cases were prompted
by vocalizations from Greater Roadrunner (Geococcyx californianus), White-Winged
Dove (Zenaida asiatica), and Mourning Dove (Zenaida macroura). Most GAQU false
alarms resulted from electromagnetic inference, with a few due to Common Raven
(Corvus corax) and Phainopepla (Phainopepla nitens). VERD false alarms occurred
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Precision—Recall Curves of Training Data
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Figure 7. Precision-Recall Curves describing classifier performance during the training and testing
phases. The upper panel shows PR curves on the 10-fold cross-validated training data for the five
original classifiers. The bottom panel shows PR curves on the test data. The ensemble classifiers only
make predictions in the test phase, so the bottom panel also demonstrates performance of the
ensemble classifier weighted by F1 score. Area under the curve (AUC) is denoted next to each
model’s name in square brackets. Curves that reach into the upper right corner, with AUC values
close to 1, show the best classification performance.
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Figure 8. Comparison of performance metrics for the classification and template screening phases.
Scores closest to 1 are desired for all metrics.
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overwhelmingly as a consequence of electromagnetic interference, though some were
caused by crickets and other songbirds.

Discussion

We demonstrated that statistical learning approaches can be used to mitigate false
detections acquired within an automated acoustic wildlife monitoring dataset while
retaining sufficient true detections for inference about species occurrence status.
Compared to a basic template-matching system, the ability to identify false alarms
improved, and positive predictive values increased in all cases demonstrated here,
though there was a trade-off in capacity to identify all target signals: we observed
a decrease in the F1 score for GAQU, though F1 scores for ECDO and VERD increased
markedly. Since GAQU is known to be a highly gregarious and vocally available species
(Gee et al. 2013), the observed increase in positive predictive value to 0.95 at the
expense of sensitivity is likely a desirable trade-off. For a rare or acoustically cryptic
species, this trade-off in comparative sensitivity with respect to detected events would
not be advantageous.

One interesting outcome is that classifiers occasionally performed better on the test
data than on the training data. The Verdin random forests (‘rf’) model provides an
extreme example, performing markedly better during the testing phase than the train-
ing phase (compare training vs. testing phase performances in Figures 6 and 7; Tables 4
and 5). Schutten and Wiering (2016) showed that in a classification problem with a low
amount of training data, when a case is very close to a classifier’s decision boundary, it
may be more often classified correctly during the test phase than during the training
phase. This is because, during the cross-validation phase, model parameter settings may
sacrifice performance during training so that the model will be able to generalize better
to unseen cases during the testing phase, particularly when total N is low during
training. We note the low number of target signal examples available for Verdin and
cite this as a potential explanation for the unexpected result (see Table 3; Verdin
training phase N = 35 target signals, testing phase N = 14 target signals).

In this work, we trained and tested our models on all detected events from
March 2016, and used the trained models for prediction on all remaining data from
April 2016-May 2017. Because there were only 631 detected events to manually label
from March 2016, we were able to label all events. In practice, however, researchers may
collect thousands of template-detected events over much longer periods of time before
choosing to train and test a classification model on that data, which is useful if target
species calls are likely to vary seasonally throughout the year. Additionally, the
AMMonitor framework allows a classification model to be continually updated as new
data are labelled. Here, researchers may not have time to label all available detections
when training or updating a model. In such cases, to capture the most variation in
target species sounds, we recommend taking a spatially and temporally-stratified sample
of available detections to choose which events to label.

Several main concepts emerge from this work: first, although other auspicious
classification methods implicitly strive to minimize false positives (e.g. Heinicke et al.
2015; Bas et al. 2017; Corrada-Bravo et al. 2017; Ranjard et al. 2017), none that we know
of explicitly address false positive mitigation within the context of template-based or
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threshold-based detection. In addition to making binary predictions about each detec-
tion’s class, this method also has the advantage of producing probability values for each
detection, which may be aggregated in dynamic occupancy models to predict the overall
probability of species occurrence (Balantic and Donovan 2019).

Second, an advantage of this method is the opportunity to create ensemble classifiers
that overtly capture a research program’s monitoring needs with regard to vocalization
characteristics of focal species. For example, researchers might opt for a positive pre-
dictive value-weighted ensemble classifier for gregarious species, or a sensitivity-
weighted ensemble for rare or cryptic species. Research groups could make a variety
of decisions about which classification method(s) to employ in production based on
research objectives, characteristics of focal species, and classifier performance during
the training and testing phase. Systematic decision tools do not presently exist in this
arena, and the interpretation of classifier assessment metrics persists as an under-
appreciated challenge when applying statistical learning approaches to real-world
problems.

Third, template creation, including selection of the score threshold, is a highly
influential component of the detection and classification process. The balance of target
signals and false alarms occurring in a dataset is a function of the quality of data from
which a template is constructed (Katz et al. 2016; Knight and Bayne 2018), the score
threshold selected (Brauer et al. 2016; Katz et al. 2016; Knight et al. 2017), verification
standards for manual labelling of target signal and false alarm training data, soundscape
features such as non-target noise sources that contribute to detections, individual
variation in sounds produced by the target species, and overall vocal availability of
the target species, much of which is difficult to know in advance. Low template score
thresholds may be necessary for research programs pursuing rare or vocally elusive
species, or for circumstances where there is considerable uncertainty around how the
template will perform in practice; it follows that large numbers of false alarms are
possible, though there is little consistency across detection methodologies for detection
threshold selection (Shonfield and Bayne 2017). Large numbers of false negatives, which
we did not consider in this paper, are also possible. However, the template-matching
approach upon which this work was built performed well in a comparison of different
software methods (Knight et al. 2017), and the classification-based framework posed
here may offer further improvements to template matching.

Fourth, though we are focused here on methods for eliminating false positives at the
event detection level, other avenues for managing false positives may be appropriate
depending on the ultimate objective of the study. For example, if detection data are to
be used in occupancy models, Miller et al. (2011, 2013) have developed model-based
methods for accommodating false positives. We have used the concept of target signal
probability values (as described in this work) in dynamic occupancy models that apply
the Miller et al. (2013) approach to acoustic monitoring data (Balantic and Donovan
2019). Chambert et al. (2015, 2018) also describe approaches applicable to acoustic
monitoring, which are based on detection counts rather than on target signal prob-
ability values for any given detection. Banner et al. (2018) extended and applied the
Chambert et al. (2018) model in the context of bat monitoring, with software available
in the R package OCacoustic (accessible via USGS BitBucket). Such occupancy model-
based alternatives to the mitigation of event-level false positives may be preferable
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depending on study objectives and circumstances. Although we did not focus on event-
level false negatives in this paper, many automated acoustic monitoring programs may
have an ultimate objective of using automated detection data in occupancy models; it is
worth emphasizing that occupancy model-based approaches do accommodate false
negatives at the level of the site and species.

Increasing use of automated methods for detecting target species signals from
audio recordings demonstrates the growing importance of accessible automated
detection methods for acoustic monitoring programs. Template-based software
methods like spectrogram cross-correlation and binary point matching present an
accessible approach with a low barrier to entry for researchers (Hafner and Katz
2018), but factors like inappropriate score detection thresholds, an unwittingly poor
template choice, noisy soundscapes, and acoustic features of the target signal may
conspire to generate unacceptably high numbers of false alarms. Here, we investi-
gated statistical learning methods that allow researchers to semi-automatically elim-
inate large numbers of false alarms, and showed that these methods may improve the
monitoring quality of automated detection data from template-based detection
systems.
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Appendix 1. Summary of acoustic features used as inputs to classification
models that predict whether a detection is a true or false positive

Feature

Description

Raw amplitude values

Correlation Score
Zero-Crossing Rate for

each time bin

Time Contours for each
time bin

Frequency Contours for
each frequency bin

Time.P1

Time.M

Time.P2

Time.IPR

Freq.P1

Freq.M

Freq.P2

Freq.IPR

Spectral Mean

Spectral Standard
Deviation

Spectral SEM

Spectral Median

Spectral Mode

Q1: First quartile
(0.25 quantile)

Q3: Third quartile

(0.75 quantile)
Interquartile range (IQR)
Spectral Centroid
Spectral Skewness

Spectral Kurtosis

Spectral Flatness

Spectral Entropy
(Shannon's)

Acquired by way of Fourier Transform. Every single raw amplitude value (in dB) in the
matrix of a detected event. Each amplitude value is a measure of signal intensity at
that point, and is rendered in coloured shading on the spectrogram.

Correlation score produced by moving window analysis during template matching.

zcr = 0.5 * mean(abs(sgn(x(t + 1)) — sgn(x(t))))
with: N the length of the signal x, and where: sgn(x(t)) = 1 if x(t) = 0 and sgn(x(t)) = -1
if x(t) < 0.

Amplitude probability mass function for each time bin
Amplitude probability mass function for each frequency bin

Time initial percentile based on cumulative distribution function generated from time
probability mass function

Time median based on cumulative distribution function generated from time probability
mass function

Time terminal percentile based on cumulative distribution function generated from time
probability mass function

Time interpercentile range based on cumulative distribution function generated from
time probability mass function

Frequency initial percentile based on cumulative distribution function generated from
frequency probability mass function

Frequency median based on cumulative distribution function generated from frequency
probability mass function

Frequency terminal percentile based on cumulative distribution function generated from
frequency probability mass function

Frequency interpercentile range based on cumulative distribution function generated
from frequency probability mass function

Sum of the product of the spectrogram intensity (in dB) and the frequency, divided by
the total sum of spectrogram intensity.

Standard deviation of the mean frequency

Standard error of the mean of the amplitude matrix

The value of the halfway point in ordered frequency values in the data set

Dominant frequency of the amplitude matrix

The first quartile; a measure of statistical dispersion. Value that divides the lowest 25% of
data from the highest 75%.

The third quartile; a measure of statistical dispersion. Value that divides the highest 25%
of data from the lowest 75%.

IQR = Q3 - Q. A statistical dispersion (variability) measure based on dividing the detected
event into quartiles.

C = sum(x*y)with x = frequencies, y = relative amplitude of the i frequency, and
N = number of frequencies.

A measure of signal asymmetry.
S = sum((x-mean(x))A3)/(N-1)/sdA3Spectrum asymmetry increases with |S].

A measure of signal peakedness.
K = sum((x-mean(x))"\4)/(N-1)/sd"\4

F = N*(prod(y_i)\(1/N)/sum(y_i))
With y = relative amplitude of the i frequency, and N = number of frequencies. Ratio
between geometric mean and arithmetic mean. Flatness of noisy signals are closer to
1; flatness of pure tone signal is closer to 0.

S = -sum(ylogy)/log(N).
Noisy signals have S closer to one, while pure tone signals have S closer to 0.
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Appendix 2. Example of weighted average ensemble probability
computation

Each performance-weighted ‘ensemble’ method produced a single class probability of true
detection (Target Signal,), calculated as

P(Target Signal), = [0] - [S]

where [O] is a vector of length five consisting of the individual probability of a target signal for
each of the five classifiers, and [S] is a length five vector of normalized performance scores that
sums to 1.0. The [S] vector is computed by dividing each classifier’s score on the metric of
interest by the maximum score within the vector, resulting in a vector that represents how
proportionally close each score is to the top score for that metric, which is then normalized to
sum to 1

1. For a single detection, take the vector of true positive class probabilities for all five classifiers, [P]:
(P] = [p1, p2, p3, p4, p5]
[P] = [0.02, 0.29, 0.20, 0.29, 0.09]

2. Gather each classifier’s score on the metric of interest (e.g. Sensitivity) in vector [S]
[S] = [0.86, 0.77, 0.00, 0.86, 0.73]

3. Compute a vector representing how proportionally close each score is to the highest score:
[D] = [S]/max([S]
[D] = [0.86, 0.77, 0.00, 0.86, 0.73]/0.86 = [1.00, 0.895, 0.00, 1.00, 0.849]

4. Compute a vector of weights normalized to add to 1, [N]:
[N] = [D]/sum([D])
[N] = [1.00, 0.895, 0.00, 1.00, 0.849]/3.74 = [0.27, 0.24, 0.00, 0.27, 0.23]

5. Compute dot-product of the vector of probabilities [P] times the vector of normalized

weights [N] to get a single weighted-average value for the class probability, py.

pw = [P] ¢ [N] = [0.02, 0.29, 0.20, 0.29, 0.09] « [0.27, 0.24, 0.00, 0.27, 0.23] = (0.02%0.27) +
(0.29%0.24) + (0.20%0.00) + (0.29*0.27) + (0.09%0.23) = 0.17

6. For p,, < 0.5, class = false alarm. For p,, > 0.5, class = target signal. If ties, coinflip for class.
pw = 0.17 = false alarm class
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