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Understanding the impacts of landscape change on species distributions can help inform
decision-making and conservation planning. Unfortunately, empirical data that span large
spatial extents across multiple taxa are limited. In this study, we used expert elicitation
techniques to develop species distribution models (SDMs) for harvested wildlife species
(n ¼ 10) in the New England region of the northeastern United States. We administered an
online survey that elicited opinions from wildlife experts on the probability of species
occurrence throughout the study region. We collected 3396 probability of occurrence
estimates from 46 experts, and used linear mixed-effects methods and landcover variables
at multiple spatial extents to develop SDMs. The models were in general agreement with
the literature and provided effect sizes for variables that shape species occurrence. With
the exception of gray fox, models performed well when validated against crowdsourced
empirical data. We applied models to rasters (30 � 30 m cells) of the New England region
to map each species’ distribution. Average regional occurrence probability was highest for
coyote (0.92) and white-tailed deer (0.89) and lowest for gray fox (0.42) and moose (0.52).
We then stacked distribution maps of each species to estimate and map focal species
richness. Species richness (s) varied across New England, with highest average richness in
the least developed states of Vermont (s ¼ 7.47) and Maine (s ¼ 7.32), and lowest average
richness in the most developed states of Rhode Island (s ¼ 6.13) and Massachusetts
(s ¼ 6.61). Our expert-based approach provided relatively inexpensive, comprehensive
information that would have otherwise been difficult to obtain given the spatial extent and
range of species being assessed. The results provide valuable information about the current
distribution of wildlife species and offer a means of exploring how climate and land-use
change may impact wildlife in the future.
Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Changes in land cover (the ecological characteristics of the land), land use (how land is utilized), and climate patterns can
alter the ecology and biological diversity of an area (Brown and Laband, 2006; Foley et al., 2005; Lindenmayer and Franklin,
2002; Vitousek et al., 1997). The New England region in the northeastern United States encompasses the states of Connecticut,
Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont (186,458 km2; Fig. 1), and has a long history of profound
social, economic, and ecological changes (Dupigny-Giroux et al., 2018; Jeon et al., 2014; Thompson et al., 2013). New England
is currently the most forested and densely populated region in the country. However, this economically and ecologically
important region (Dupigny-Giroux et al., 2018; Foster et al., 2010) is undergoing relatively rapid changes in land cover
composition, land use intensities, and climatic conditions (Foster, 1992; Olofsson et al., 2016; Rustad et al., 2012; Thompson
et al., 2013).Withmodern pressures of a human population that hasmore than doubled over the last century (~107% increase;
U.S. Census Bureau, 2019), forests throughout the region are in decline (Olofsson et al., 2016). Moreover, the New England
region has experienced a 10mm/decade increase in average annual precipitation and a ~1 �C increase in average temperature
over the last century (Hayhoe et al., 2007; Huntington et al., 2009; Rogers and Young, 2014). In New England, these changes
Fig. 1. The study area (dark gray) within the northeastern United States (light gray). The study area included the full extent of the six New England states (Rhode
Island, Connecticut, Massachusetts, Vermont, New Hampshire, and Maine).
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have significantly impacted the diversity, distribution, and abundance of wildlife (DeGraaf and Yamasaki, 2001; Rustad et al.,
2012; Thompson et al., 2013).

Limited funding and resources preclude management of all wildlife species, highlighting the need for focal species
strategies. A focal species strategy identifies and directs attention to key wildlife species, making it easier to track man-
agement and conservation success (U.S. Fish andWildlife Service, 2015). In New England, game species typically attract public
attention, help generate funding for agencies, and can trigger management activities on the landscape (Lueck, 2005). With
diverse life histories and habitat requirements, game species can act as surrogates for the protection of non-gamewildlife and
overall biodiversity (Caro, 2010). For example, game species with large home ranges, such as the bobcat (Lynx rufus), often act
as umbrella species benefiting other non-target species through their protection and management (Simberloff, 1998). Other
game species such as moose (Alces alces) may act as indicator species signaling the effects of environmental changes (Caro,
2010). Because annual harvest is often tracked through time and space (typically at the town level or within wildlife man-
agement units), localizedmonitoring programs are already in place for game species. Thus, using game species as focal species
may alleviate monitoring demands and help facilitate the conservation of a broader range of taxa.

When developing a regional conservation effort, species distribution models (SDMs) e or models that describe how a
species is distributed across an area of interest e can provide important information and predictive insight (Guisan and
Thuiller, 2005; Pearce et al., 2001; Rustad et al., 2012; Turner and Gardner, 2015). Unfortunately, even for highly moni-
tored game species, regional species distribution models for New England wildlife are lacking. Given that management is
regulated at the state level, studies of harvested species are typically focused on single species and concentrated on local
extents or on a state-by-state basis (Organ et al., 2012). Localized studies may fail to capture a geographic region’s complex
and variable environmental conditions and often overlook important landscape level influences (Murray et al., 2008; Turner
and Gardner, 2015). Broad scale distribution data are needed to better capture the influence of climate and land-use change
on regional population dynamics and inform priority conservation and management activities across the region (James et al.,
2010; Murray et al., 2008; Pearce et al., 2001). Inadequate assessments of species distributions may contribute to 1) ineffi-
cient, expensive, and unsustainable conservation and management practices, 2) declines in biodiversity, and 3) the loss of
ecologically, economically, and culturally important species (Franklin, 2010).

To address these issues, we used expert elicitation methods to collect species probability of occurrence data for a set of
managed wildlife species in New England. Our objectives were to: 1) Develop a regional, multi-species survey that collects
species-specific probability of occurrence data at numerous sites across New England; 2) Conduct the survey with expert
elicitation methods, in which experts were asked to report the probability of occurrence of target species at a subset of study
sites; 3) Analyze results to develop SDMs with generalized linear mixed-effect and stepwise modeling approaches; and 4)
Mapwildlife species regional distributions and identify areas of multispecies conservation interest. This approach allowed for
quick and effective data collection and the generation of geographically consistent and ecologically relevant SDMs for wildlife
species in New England. The SDMs provide insight into the factors that shape species’ distributions and a means of better
assessing the effects of management actions and landscape change on wildlife in the region. Our approach can be applied to
other species, regions, and spatial extents, and is especially relevant to species of highmanagement or conservation value and
contexts in which little empirical data exist.

2. Methods

2.1. Study area

The study area included the six New England states (Connecticut, Rhode Island, Massachusetts, Vermont, New Hampshire,
and Maine) in the northeastern United States (Fig. 1). This region covers 186,458 km2 with topography ranging from coastal
plains to mountain peaks nearly 2000 m above sea level. Climatic conditions vary by season and geographic location
throughout the region. Long-term climate records indicate an average annual precipitation of 104 cm and monthly tem-
perature ranging from 6 �C (Jan) to 19 �C (Jul) (Huntington et al., 2009).

The region supports a growing human population (ca. 14, 735, 000 in the 2016 U.S. Census) with three-quarters of the
population concentrated in the major metropolitan areas of southern New England (U.S. Census Bureau, 2018). This uneven
population distribution contributes to regional variability in land use patterns and intensities. Approximately 80% of the
region is covered in forest (Foster et al., 2010). Forested regions are ecologically diverse with areas dominated by northern
hardwood, spruce-fir, oak-hickory, and pine-oak forest types (Brooks et al., 1992; Duveneck et al., 2015). Development (9.3% of
the region), agriculture (5.9% of the region) and water (12.3% of the region) constitute the majority of the non-forested
landscape (Homer et al., 2015).

2.2. Focal species

We elicited information and developed models for 10 commonly harvested species in New England (Table 1). The focal
group included seven species in the Carnivora order (American black bear, bobcat, coyote, gray fox, raccoon, red fox, and
striped skunk), two species in the Artiodactyla order (moose and white-tailed deer), and one species in the Galliformes order
(wild turkey). We selected these species because they are frequently the target of wildlife management programs in New
England.



Table 1
List of wildlife species in the New England region of the northeastern United States included in expert elicitation and model development. Sample size
ranged between 188 and 535 and indicates the number of occurrence estimates collected for each species through an expert elicitation survey. Species
models were validated using iNaturalist datasets that included between 106 and 1771 occurrence records. Generalized home range scales (500m, 3km, and
5km) indicate the secondary analysis scale(s) used for each species during model development.

Common name Genus Species Sample size Home range scale iNaturalist sample size

American black bear Ursus americanus 423 5km 249
Bobcat Lynx rufus 373 3km 424
Coyote Canis latrans 355 3km 338
Gray fox Urocyon cinereoargenteus 188 3km 106
Moose Alces alces 459 5km 280
Raccoon Procyon lotor 233 500m 556
Red fox Vulpes vulpes 253 3km 443
Striped skunk Mephitis mephitis 198 500m 193
White-tailed deer Odocoileus virginianus 535 3km 1771
Wild turkey Meleagris gallopavo 379 500m, 3km 1652
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2.3. Objective 1 e Develop wildlife survey

We developed a survey to capture expert opinions of the probability of occurrence of each species. The survey asked
experts to evaluate a set of sites and provide an occurrence estimate for target species at each site (see below). Development
of the survey involved: 1) identifying survey sites, 2) estimating site characteristics, and 3) selecting appropriate experts.

2.3.1. Survey sites
Survey sites were U.S. Department of Agriculture (USDA) Forest Service Forest Inventory and Analysis (FIA) plot locations

(see Bechtold and Patterson, 2005). Forest inventory plots occur in all forested lands in the United States and are spatially
distributed across a national base grid (hexagonal grid with a plot randomly locatedwithin each 6000-acre hexagon; Bechtold
and Patterson, 2005). The New England region included 6930 plots. Our sites were uniform circles, 3.14 km2 in area (1-km
radius), centered on the perturbed coordinates (see McRoberts et al., 2005) of all of these FIA plots. We used a 1-km
radius in an effort to include diverse land cover within sites while also keeping the site small enough for survey partici-
pants (i.e., wildlife experts; see below) to accurately estimate occurrence.

2.3.2. Site covariates
We compiled a comprehensive covariate list that incorporated all potentially important drivers of distribution based on a

literature review of each species’ behavior and ecology. Site-specific information for a total of 54 covariates was provided to
experts during the elicitation survey (see below). These covariates included 47 land cover variables (32 associated with forest
species and 5 associated with forest age), 3 topographic variables, and 4 climate variables (Table A1). Covariate data were
extracted and summarized for each site using the statistical computing language R (R Core Team, 2019) and the Geographic
Information System, ArcGIS 10 (ESRI, Redlands, California, USA).

2.3.3. Experts
Wildlife experts were selected based on experience and qualifications. Baseline qualifications required experts to have a

background in wildlife management, conservation, or related field, and strong knowledge of one or more of the focal species
in the New England region. Experts were identified predominantly by their current and past research contributions, academic
contributions, and work experience related to wildlife management and conservation. Professional wildlife biologists were
recruited by contacting state and federal agencies. Additional experts e including experienced hunters and trappers e were
identified according to their field-based knowledge and through expert nomination. All participation was voluntary; survey
protocols were approved by the University of Vermont Institutional Research Board (IRB 17e0417).
2.4. Objective 2 e Conduct wildlife survey

2.4.1. New England Wildlife Survey
Expert opinion datawere collected through aweb-based survey interface developed by the Vermont Cooperative Fish and

Wildlife Research Unit called AMSurvey (https://code.usgs.gov/vtcfwru/amsurvey). The survey tool was inspired by the
’Elicitator’ framework developed by James et al. (2010) and consisted of three main sections, as described below.

2.4.1.1. Section 1. This section provided introductory information and a pre-survey questionnaire. Each expert was provided
with written instructions, reference materials and a video tutorial to guide them through the elicitation process (see https://
code.usgs.gov/vtcfwru/amsurvey/wiki for example materials). Experts were asked to identify their area of expertise (six
possible regions, separated by state boundaries; multiple regions could be selected) and their target species of expertise

https://code.usgs.gov/vtcfwru/amsurvey
https://code.usgs.gov/vtcfwru/amsurvey/wiki
https://code.usgs.gov/vtcfwru/amsurvey/wiki
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(more than one species could be selected). Experts also completed a short pre-survey questionnaire, which focused on de-
mographic information and the nature of their expertise (Appendix A).

2.4.1.2. Section 2. This section was the elicitation survey itself. A subset of the FIA sites (n ¼ 30) were selected for each expert
through a k-means clustering approach (Likas et al., 2003). Sites within the user’s spatial area of expertise were clustered into
30 groups based on site covariate values. Then, we randomly sampled one site within each of the 30 groups to create an
expert-specific subset of study sites. This approach ensured that an expert’s sites were spatially and compositionally diverse
in multivariate space.

The survey presented sites in random order one by one, and experts were asked to estimate the probability of occurrence
for each of their selected target species during the breeding season at each site. Experts could complete less than 30 sites (e.g.,
skipping sites in which they were unfamiliar) and could elect to complete an additional 30 sites. Site-specific covariate data
(Table A1) were displayed in awindow containing an interactive satellite image, pie charts depicting land cover, forest species
and forest age composition, and a list of relevant site characteristics (Fig. 2). The interactive satellite image (Google Maps,
Google, Inc., Mountain View, California USA) was featured in the left portion of the browser window with an imbedded
boundary circle to indicate the survey site location and extent (Fig. 2A). Experts could adjust the view of the satellite image
(e.g., zoom or drag) to aid in site evaluation. Above the map image were two tabs (“Land Cover” and “Forest Composition”;
Fig. 2B) that experts could select to view pie charts with percent cover information for site variables. An additional table of site
characteristics related to climate, topography/geography, and road cover was displayed below the satellite image (Fig. 2C). The
right portion of the browser window displayed an output graph of the expert’s response (Fig. 2D). The title of this graph
included the expert’s target species, with the active selection designated by bolded text. Below the graph were two sliding
scale bars (“Probability of Occurrence” and “Confidence in this Estimate”) that experts were able to manipulate to provide an
estimate of species occurrence within the site.

Experts were asked to estimate occurrence on a probability scale ranging from “low” (0 probability of occurrence or
absent) to “high” (equal to a probability of 1.0, or 100%), and then indicate their confidence in each estimate on a scale from
“low” (confidence value of 0) to “high” (confidence value of 1.0). Confidencemeasures were used to generatewhat the experts
believed was the “true range” of probability of occurrence (e.g., an estimate with low confidence would have a large range of
possible values). The manipulation of these estimate measures instantaneously altered the output graph, providing experts
with visual feedback of their estimations.

2.4.1.3. Section 3. This section involved a covariate importance ranking exercise and a brief post survey questionnaire. Experts
were able to define additional variables they believed influence species distribution; these variables were combined with the
covariates presented in the site surveys during model development. Experts then allocated directionality (positive, negative,
or neutral) to each variable and ranked them in their perceived order of importance (Fig. A1). The post survey questionnaire
collected information about the survey experience and allowed experts to provide feedback on the elicitation process
(Appendix A).
2.5. Objective 3 e Develop species distribution models

2.5.1. Data
Expert survey responses were downloaded into a comprehensive dataset that provided expert opinion data in the form of

occurrence probabilities and measures of uncertainty (ranging from 0 to 1), as well as site data and site-specific covariate
information. The dataset contained site level information for 74 different covariates; these covariates included the site var-
iables used in the elicitation survey (n ¼ 54; Table A1); however, additional expert-identified variables (n ¼ 6), forest clas-
sification variables (n ¼ 9), and climate variables (n ¼ 5) were also included, as described later.

2.5.2. Model covariate reduction
For each species, the full covariate list was reduced to a “working” covariate list by three criteria: 1) Variables from the

comprehensive list that demonstrated a strong linear correlation (r � 0.6) with the probability of occurrence data were
included in the species’working covariate list; 2) The top ranked variables identified in the survey’s covariate ranking exercise
were included in the working covariate list. An importance score was calculated for each of the top ranked variables (i.e.,
variables ranked 1e5) by dividing the variables average rank by the number of times the variable appeared in the top five.
Variables with an importance score less than or equal to 1 were identified as expert covariates and were included in the
working covariate list; and 3) Any variables that were not specified by covariate rank or expert response criteria, yet were
commonly identified in the literature, were also included in theworking covariate list. Ultimately, the “working” covariate list
was reduced to a simplified “final” covariate set (Table 2) to be used in species-specific distribution modeling.

We considered each variable in the working list at two spatial scales: A uniform site scale (1-km radius) was used for all
species as well as a secondary species-specific landscape scale, which roughly corresponded to the species’ home range size
(500m, 3km, or 5km radius; Table 1). Scaled working covariates were compared using single variable models; the better
performing scale for each variable was retained in the working list. Finally, we examined correlations within the working



Fig. 2. Expert elicitation survey interface: A) interactive satellite map; B) additional images tabs (found to the right of the Map tab, above the satellite image)
displaying Land Cover and Forest Composition pie charts; C) table of covariates and corresponding site values; and D) expert response sliders and linked output
graph.
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Table 2
Final covariates used in step-wise model selection for each species. Each species’ covariate list was simplified from 74 variables assessed at the standard site
scale (1km) and a species-specific landscape scale (500m, 3km, or 5km). Standardized step-based methods were used to identify the 6 to 13 most influential
(scaled) variables believed to impact species occurrence throughout the New England region.

Covariates Species (scale)

American black bear Bobcat Coyote Gray fox Moose Raccoon Red fox Striped skunk White-tailed deer Wild turkey

mean_annual_precip_mm 5km e e e e e e e e e

mean_DEM_km e e e 1km e 500m e 500m e e

mean_fall_tmax_degC e e e e 1km e e e e e

mean_winter_precip_mm e 3km 1km e e e 3km e 3km e

prop_agriculture 5km 1km e 3km e 500m 1km 500m 1km e

prop_all_roads 1km e e e e e e e e e

prop_conif_forest e e e e 5km e 3km e 3km e

prop_decid_forest e e e e e 500m e e e 1km
prop_developed e 1km e e 1km 500m e e e e

prop_early_succession 1km 3km e e 5k e 3km e 3km 3km
prop_fagugran 5km e e e e e e e 3km 1km
prop_forest 5km e e e 5km e 3km e e e

prop_forest_edge e 1km 1km 1km e e e 500m e 1km
prop_grassland e e 1km e e e e 500m e 3km
prop_hemlock_tamarack_cedar e e e e e e e e 3km e

prop_high_dev e e e e e e 1km e 1km 500m
prop_major_roads e e 3km e e e e e e e

prop_mature_forest 1km e e e e 500m e 500m 1km 500m
prop_oak 5km e e e e 500m e 500m e 3km
prop_old_forest e e e e e e e e e 3km
prop_riparian e e e 1km 5km 1km 3km e 1km 1km
prop_rock e e e e e e e 500m e e

prop_shrubland e 3km 3km 3km 1km 500m 3km 1km 3km 3km
prop_waterbodies e e 1km e e 1km e e e e

prop_wetland 5km e 3km e e e e 1km e e

prop_young_forest e e e 1km 1km e 1km e 3km 3km
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covariate list to eliminate redundant variables, providing a “final” covariate set for species-specific distribution modeling.
Variables that did not exhibit correlation were retained in the final covariate list. Variables that exhibited correlation were
compared using preliminary single variable models. Within a correlated set, only the top performing variable was retained
and the remaining variables were removed from the covariate list.

2.5.3. Model selection
We used generalized linear mixed modeling approaches to develop SDMs from expert elicited probability of occurrence

data. Species-specific models were analyzed in the R package lme4 (Bates et al., 2014) with stepwise modeling methods
(described below). We used a glmer weighted approach (from the lmer4 package) to weight each expert’s occurrence esti-
mate by the expert’s corresponding confidence estimate at a given site. This allowed us to account for expert identified
uncertainty during model selection, giving higher influence to site elicitations in which experts were confident and lower
influence to potentially less accurate estimates. For all models the response variable was probability of occurrence; expert,
site, eco-region and state terms were specified as random-effects and covariates from the species’ final covariate list were
considered fixed-effects. Null models only contained random-effect variables for site and expert (these random-effects were
included in all models).

Our stepwise model development incorporated forward and backward model selection and tested every variable com-
bination to determine the best-fit model. Beginning with forward selection, a species’ null model was run with glmer (from
the lmer4 package) to create a logistic start model, and covariates were added sequentially based on the model’s p-value
criterion (0.05). Backward selection followed a similar approach with the glmer function (lmer4 package), beginning with the
comprehensive model and dropping covariates from the model during each step of selection based on the p-value. To ensure
that the best combination of variables was identified during stepwise selection, a secondary check was run to test all com-
binations of the variables retained during forward and backward selection. All combination models were ranked according to
Akaike’s Information Criterion (AIC; Burnham and Anderson, 2002) and the top performing model was selected. The top
performing variable combination e typically consistent with the model identified by forward and backward selection e

represented the final “best-fit” model.

2.5.4. Model validation
We used research grade species occurrence data (presence-only) from the crowdsourced biodiversity application, iNa-

turalist (iNaturalist, 2019) to test the performance of each species’ top ranked model. For each species, we extracted occur-
rence data for sightings reported in the New England region between 2010 and 2018 (breeding season only). We trimmed
datasets to help ensure that records were both confirmed (i.e., records included photo or audio evidence and an accurate
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species identification) and unique observations (i.e., records were distinct through time and space; Table 1). To test model
performance, sighting (i.e., presence) locations were buffered (100m radius) and then superimposed on the species regional
distribution map. Model estimated occurrence was calculated for each iNaturalist sighting. Predicted occurrences were then
binned from 0 to 1 in increments of 0.1, and then plotted in a histogram to display howwell themodel predicted occurrence at
these sites. Histograms that were skewed to the right (toward 1) indicated that the model estimated high occurrence like-
lihoods for many of the iNaturalist sites, suggesting that the model performed well against empirical data.

2.6. Objective 4 e Map species distributions

2.6.1. Mapping
We developed distribution maps for each species across New England using the raster package in R (Hijmans, 2016). For

each species, we multiplied the parameter coefficients from the top model to each corresponding covariate value in a given
cell (30� 30m) in rastermaps of the study area. These values were then summed to obtain a logit score for each cell. Any SDM
with significant random-effects (such as state or ecoregion random-effects) were added at this time. Logits were then
transformed to occurrence probabilities with the logit link function. This process generated a set of spatially uniform maps
that depicted the distributions of focal species throughout the New England region. The resulting distributionmaps were also
stacked and then cell values summed across all species to create an aggregate occurrence map. This community-aggregated
map provided a measure of species richness for the focal group (Sauer et al., 2013). Richness values potentially ranged from
0 (no species present) to 10 (all species present).

3. Results

3.1. Objectives 1 & 2 e Multispecies expert opinion survey

A total of 46 wildlife experts participated in the New England Wildlife Survey and completed surveys from August to
November 2017. Expert participants were primarily scientists, state agency personnel, and hunters/trappers. Experts
contributed to site surveys in Connecticut (n ¼ 4), Maine (n ¼ 11), Massachusetts (n ¼ 6), New Hampshire (n ¼ 20), Rhode
Island (n ¼ 4), and Vermont (n ¼ 25). A total of 3396 occurrence estimates were collected at 1258 different survey sites.
Occurrence estimates were collected for American black bear (n¼ 423), bobcat (n¼ 373), coyote (n¼ 355), gray fox (n¼ 188),
moose (n ¼ 459), raccoon (n ¼ 233), red fox (n ¼ 253), striped skunk (n ¼ 198), white-tailed deer (n ¼ 535) and wild turkey
(n ¼ 379; Table 1).

3.2. Objective 3 e Species distribution models

Species-specific “final” covariate lists contained between six and thirteen probable drivers of distribution (Tables 2 and 3).
The final lists contained variables identified by expert opinion, literature review and correlationwith species occurrence, and
were specified as fixed-effects during species distribution modeling. Random-effects for state and eco-region were included
in 4 of 10 SDMs (Table 4) and shifted the model intercept within the corresponding regions (Table 5). Proportion agriculture
was included in the majority (7 of 10) of the SDMs; forest variables were included in 9 of 10 SDMs, and climate variables were
included in 6 of 10 SDMs.

Across species, top-ranking models contained two to six fixed-effect covariates and two or three random-effect covariates
(Table 4). All fixed-effect model covariates exhibited individual effects significantly different from zero (Table 5, Fig. A2). All
models had normally distributed residuals (mean ¼ 0), and adhered to the assumptions of probabilistic likelihood models
(Fig. A3).

Final SDMs converged and performed well when tested against crowdsourced empirical data. Seven of the 10 SDMs
estimated high occurrence probabilities (mean � 0.6) for greater than 75% of the iNaturalist sites (Fig. 3). Two of the
remaining SDMs performed with moderate success e i.e., high occurrence probabilities were estimated for 67% (bobcat) and
65% (wild turkey) of the iNaturalist sites. One species’ model (gray fox) exhibited low performance e i.e., high occurrence
probabilities were estimated at only 33% of the iNaturalist sites.

3.3. Objective 4 e Species distribution maps

Distribution maps provided fine scale species-specific probability of occurrence estimates throughout New England
(Fig. 4). American black bear occurrence was relatively high (average probability of occurrence, mp ¼ 0.80; Table 6), with
greatest occurrence likelihoods in central regions of Vermont, New Hampshire, and Maine (Fig. 4A). Bobcat occurrence
likelihoods were moderate throughout New England (mp ¼ 0.67; Table 6), with higher likelihoods in the less developed
northern regions (Fig. 4B). Coyote occurrence was high throughout the region (mp ¼ 0.92; Table 6), with lower probability of
occurrence in the highly developed regions of Massachusetts, Rhode Island, and Connecticut (Fig. 4C). Gray Fox occurrence
was low throughout New England (mp ¼ 0.42; Table 6), with moderate occurrence likelihoods in central regions of Vermont



Table 3
Covariates used inmodel development for 10 wildlife species in the New England region of the northeastern United States. A total of 26 fixed-effect variables
and 4 random-effect variables were included inmodel development. The fixed-effects included 22 land cover variables, 1 topographic variable, and 3 climate
variables. The random-effects included 2 variables (site and expert) that were included in all models and 2 candidate variables (state and eco-region). Fixed-
effect variables were included at the site scale (1km) or a generalized home range scale (500m, 3km, or 5km).

Variable Covariate name Description Source

Agriculture prop_agriculture Area where land cover is classified as pasture, hay and cultivated
crops.

National Land Cover Database
2011 (NLCD 2011; U.S.
Geological Survey, 2014)

All Roads prop_all_roads Area where land cover is classified asmajor roads (controlled access
highways, secondary highways or major connecting roads, ramps)
or local roads (local roads, 4WD roads, private driveways).

National Transportation
Database (NTD, 2016; U.S.
Geological Survey, 2016)

American Beech prop_fagugran Forested land that is occupied by American Beech (Fagus
grandifolia).

Duveneck et al. (2015)

Annual
Precipitation

mean_annual_precip_mm Average annual precipitation during the years 2010, 2011 and 2012. Duveneck and Thompson, 2017;
Stoner et al., 2013

Barren Land prop_rock Area where land cover is classified as barren land (i.e. rock, sand, or
clay).

NLCD 2011

Conifer Forest prop_conif_forest Area where land cover is classified as evergreen forest. NLCD 2011
Deciduous

Forest
prop_decid_forest Area where land cover is classified as deciduous forest. NLCD 2011

Developed prop_developed Area where land cover is classified as developed open space, low
intensity, medium intensity and high intensity development.

NLCD 2011

Early
Successional
Forest

prop_early_succession Forested land that is classified by tree cohorts between 2 and 19
years old.

Duveneck & Thompson 2017

Eco-Region EcoRegion Area classified by terrestrial Eco Regions. The Nature Conservancy (2009)
Elevation mean_DEM_km Height above sea level in kilometers. Digital Elevation Model (DEM

2017; U.S. Geological Survey,
2017)

Fall: Average
Daily High
Temperature

mean_fall_tmax_degC Average daily high temperature observed during the months of
September, October and November during 2010e2012.

Duveneck & Thompson 2017;
Stoner et al. 2013

Forest prop_forest Area where land cover is classified as deciduous, evergreen&mixed
forest.

NLCD 2011

Forest Edge prop_forest_edge Area classified as forest that is within 300m of non-forest land
cover.

NLCD 2011

Grassland prop_grassland Area where land cover is classified as grassland, herbaceous,
pasture or hay.

NLCD 2011

Hemlock-
Tamarack-
Cedar Forest

prop_hemlock_tamarack_cedar Forested land where AGB (above ground biomass) is dominated by
Eastern Hemlock (Tsuga canadensis), native Tamarak (Larix laricina)
and Northern White Cedar (Thuja occidentalis).

Duveneck & Thompson 2017

High
Development

prop_high_dev Area where land cover is classified as medium or high intensity
development.

NLCD 2011

Late
Successional
Forest

prop_old_forest Forested land that is classified by tree cohorts older than 100 years. Duveneck & Thompson 2017

Major Roads prop_major_roads Area where land cover is classified as a major road (i.e. controlled
access highways, secondary highways or major connecting roads,
ramps).

NTD 2016

Mature Forest prop_mature_forest Forested land that is classified by tree cohorts between 40 and 100
years old.

Duveneck & Thompson 2017

Oak Forest prop_oak Forested land where AGB is dominated by White Oak (Quercus
alba), Scarlet Oak (Quercus coccinea), Chestnut Oak (Quercus prinus),
Northern Red Oak (Quercus rubra) and Black Oak (Quercus velutina).

Duveneck & Thompson 2017

Riparian prop_riparian Area where vegetation is classified as riparian. U.S. Department of the Interior
et al., 2012

Shrubland prop_shrubland Area where land cover is classified as shrub/scrub. NLCD 2011
State State Area classified by USA state boundaries. MassGIS, 2018
Total Winter

Precipitation
mean_winter_precip_mm Average cumulative winter (DecembereFebruary) precipitation

during the years 2010e2012. Note: This measure includes all types
of precipitation, not just snowfall.

Duveneck & Thompson 2017;
Stoner et al. 2013

Water prop_waterbodies Area occupied by waterbodies; lakes, ponds, reservoirs, estuaries,
swamps and marshes.

NLCD 2011

Wetland prop_wetland Area classified as woody wetlands or emergent herbaceous
wetlands.

NLCD 2011

Young Forest prop_young_forest Forested land that is classified by tree cohorts between 20 and 39
years old.

Duveneck & Thompson 2017
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Table 4
Final distribution models for estimating species occurrence throughout the New England region of the northeastern United States. Models were developed
using expert opinion data and generalized linear mixed modeling. Expert and site specific random-effects and fixed-effects were included during model
fitting.

Species Model formula

American
black
bear

Mean ~ prop_mature_forest þ prop_all_roads þ prop_forest_5k þ mean_annual_precip_mm_5k þ prop_fagugran_5k þ (1 | State) þ (1 |
Expert) þ (1 | Site)

Bobcat Mean ~ prop_developed þ prop_forest_edge þ prop_agriculture þ (1 | Expert) þ (1 | Site)
Coyote Mean ~ prop_waterbodies þ prop_forest_edge þ prop_major_roads_3k þ prop_wetland_3k þ prop_agriculture þ (1 | Expert) þ (1 | Site)
Gray fox Mean ~ prop_forest_edge þ prop_agriculture_3k þ mean_DEM_km þ (1 | State) þ (1 | Expert) þ (1 | Site)
Moose Mean ~ prop_young_forest þ prop_developed þ prop_shrubland þmean_fall_tmax_degC þ prop_forest_5k þ (1 | Expert) þ (1 | Site)
Raccoon Mean ~ prop_agriculture_500m þ prop_mature_forest_500m þ mean_DEM_km_500m þ prop_oak_500m þ prop_developed_500m þ (1 |

Expert) þ (1 | Site)
Red fox Mean ~ prop_agriculture þ prop_high_dev þmean_winter_precip_mm_3k þ prop_shrubland_3k þ (1 | Expert) þ (1 | Site)
Striped

skunk
Mean ~mean_DEM_km_500m þ prop_mature_forest_500m þ prop_agriculture_500m þ prop_forest_edge_500m þ (1 | Expert) þ (1 | Site)

White-
tailed
deer

Mean ~ prop_agricultureþ prop_high_devþ prop_mature_forestþ prop_hemlock_tamarack_cedar_3kþ (1 | EcoRegion)þ (1 | Expert)þ (1
| Site)

Wild
turkey

Mean ~ prop_decid_forest þ prop_forest_edge þ prop_riparian þ prop_grassland_3k þ (1 | EcoRegion) þ (1 | Expert) þ (1 | Site)
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and New Hampshire (Fig. 4D), and distinctly higher mean occurrence observed in the less developed western regions of
Massachusetts (mp Massachusetts ¼ 0.69; Table 6). Moose occurrence varied considerably between northern and southern New
England (Fig. 4E), leading to moderate regional occurrence (mp ¼ 0.52; Table 6). Raccoon occurrence was high throughout
much of New England (mp¼ 0.87; Table 6), with lower occurrence probabilities moving north into themountainous regions of
Vermont, New Hampshire, and Maine (Fig. 4F). Red Fox occurrence was moderate throughout the region (mp p ¼ 0.64; Table
6), with highest likelihoods in regions of northwestern Vermont and northeastern Maine (Fig. 4G). Striped skunk occurrence
was moderate-high throughout much of New England (mp ¼ 0.75; Table 6), with higher likelihoods in the southern states and
lower elevation regions of Vermont, NewHampshire, andMaine (Fig. 4H).White-tailed deer occurrencewas high throughout
the region (mp ¼ 0.89; Table 6), except in the highly developed areas of Massachusetts, Rhode Island and Connecticut (Fig. 4I).
Wild turkey occurrence was moderate throughout much of the region (mp ¼ 0.68; Table 6) with highest occurrence likeli-
hoods in the less developed areas of Connecticut, Vermont, Rhode Island, and Massachusetts (Fig. 4J).

Overall, 5 focal species (American black bear, coyote, raccoon, striped skunk, and white-tailed deer) exhibited high
regional occurrence (mp > 0.75), 4 species (bobcat, moose, red fox, and wild turkey) exhibited moderately high regional
occurrence (0.50 < mp� 0.75) and 1 species (gray fox) exhibited moderately low regional occurrence (0.25 < mp � 0.50). State-
based statistics for each species show considerable variability in occurrence likelihoods across state-boundaries (Table 6).

Species richness estimates (s) ranged from 2.42 to 8.72, with a regional average of 7.16 (Fig. 5, Table 7). Occurrence across
all species was highest in the lower elevation regions of Maine, New Hampshire, and Vermont, and lowest in the most
developed regions of Massachusetts, Connecticut, and Rhode Island. The largest connected area with high focal species
richness (s � 8.0) was along the Connecticut River Valley in northern Massachusetts through Vermont and New Hampshire
and north into the Western Foothills of Maine. At the state level, focal species richness was highest in Vermont (average
species richness, ms ¼ 7.47) and Maine (ms ¼ 7.32) and lowest in Rhode Island (ms ¼ 6.13) and Massachusetts (ms ¼ 6.61; Table
7).

4. Discussion

Species distribution models capture the influence of landscape conditions onwildlife occurrence and can help inform and
prioritize conservation and management activities (Elith and Leathwick, 2009). We demonstrated that expert elicitation
techniques combined with stepwise mixed-effect modeling methods can be used to develop spatially compatible SDMs for
wildlife species. Our SDMs for 10 harvested species performed well at predicting species occurrence throughout the New
England region, offering new information on factors that shape distributions. This set of spatially compatible and regionally
applicable models offer probabilistic insight that can help inform conservation and management decisions.

4.1. Expert elicitation

Expert elicitation is used in many fields to gain information when empirical data are limited, unavailable, or difficult to
obtain (James et al., 2010). To overcome the limitations and challenges of observational studies, expert opinion data have been
used by numerous studies tomodel habitat quality and predict wildlife distributions (Aylward et al., 2018;Murray et al., 2009;
Pearce et al., 2001; Yamada et al., 2003), identify habitat linkages (Clevenger et al., 2002), and estimate species movement
corridors (Aylward et al., 2018). Elicitation offers a relatively quick and inexpensive approach to data collection that can be
particularly valuable to large-scale studies of rare or poorly documented species. Collecting an ample amount of occurrence



Table 5
Fixed-effect parameter estimates with standard error, upper and lower 95% confidence intervals (CI), and p-values for covariates in 10 species models.
Random-effects associated with state or eco-region are included when significant, noted in parentheses. Models estimate species-specific occurrence in the
New England region of the northeastern United States.

Species Covariate Estimate Standard error Lower CI Upper CI P-value

American black bear (Intercept) 25.64 11.34 3.42 47.86 0.0237
prop_mature_forest 3.27 0.86 1.59 4.95 0.0001
prop_all_roads �12.47 2.15 �16.68 �8.26 0.0000
prop_forest_5k 6.16 0.88 4.43 7.90 0.0000
mean_annual_precip_mm_5k �21.90 8.50 �38.57 �5.24 0.0100
prop_fagugran_5k 2.40 1.01 0.42 4.38 0.0174
(Connecticut) 1.90 e e e e

(Maine) 0.48 e e e e

(Massachusetts) �0.44 e e e e

(New Hampshire) �0.77 e e e e

(Rhode Island) 0.14 e e e e

(Vermont) �1.41 e e e e

Bobcat (Intercept) 0.22 0.36 �0.48 0.93 0.5322
prop_developed �2.6 0.50 �3.58 �1.62 0.0000
prop_forest_edge 1.02 0.42 0.19 1.85 0.0155
prop_agriculture 1.42 0.52 0.40 2.44 0.0064

Coyote (Intercept) 1.42 0.72 0.01 2.82 0.0481
prop_waterbodies �4.08 0.97 �5.99 �2.18 0.0000
prop_forest_edge 2.79 0.54 1.73 3.86 0.0000
prop_major_roads_3k �32.05 9.94 �51.54 �12.56 0.0013
prop_wetland_3k 2.85 1.34 0.21 5.48 0.0341
prop_agriculture 1.31 0.71 �0.07 2.70 0.0636

Gray fox (Intercept) �3.53 0.76 �5.02 �2.03 0.0000
prop_forest_edge 5.57 0.74 4.12 7.02 0.0000
prop_agriculture_3k 3.31 1.15 1.06 5.56 0.0039
mean_DEM_km �1.82 0.89 �3.57 �0.08 0.0408
(Connecticut) �0.84 e e e e

(Maine) �0.80 e e e e

(Massachusetts) 1.99 e e e e

(New Hampshire) �0.29 e e e e

(Rhode Island) 0.16 e e e e

(Vermont) 0.49 e e e e

Moose (Intercept) 8.13 1.61 4.97 11.29 0.0000
prop_young_forest 7.02 2.93 1.27 12.76 0.0167
prop_developed �4.59 0.78 �6.11 �3.06 0.0000
prop_shrubland 5.11 1.37 2.43 7.79 0.0002
mean_fall_tmax_degC �73.71 8.98 �91.32 �56.1 0.0000
prop_forest_5k 3.52 0.65 2.25 4.79 0.0000

Raccoon (Intercept) 1.65 0.71 0.27 3.04 0.0194
prop_agriculture_500m 3.04 0.75 1.58 4.51 0.0000
prop_mature_forest_500m 1.21 0.54 0.15 2.27 0.0248
mean_DEM_km_500m �2.09 0.66 �3.37 �0.80 0.0015
prop_oak_500m 1.66 0.83 0.03 3.3 0.0466
prop_developed_500m 2.26 0.60 1.07 3.44 0.0002

Red fox (Intercept) �3.16 1.77 �6.63 0.3 0.0735
prop_agriculture 3.28 0.61 2.09 4.47 0.0000
prop_high_dev �3.23 1.21 �5.60 �0.86 0.0076
mean_winter_precip_mm_3k 12.65 6.30 0.31 24.99 0.0445
prop_shrubland_3k 3.50 2.10 �0.63 7.62 0.0966

Striped skunk (Intercept) 1.91 0.79 0.36 3.45 0.0158
mean_DEM_km_500m �6.25 0.60 �7.44 �5.07 0.0000
prop_mature_forest_500m 0.91 0.58 �0.23 2.06 0.1182
prop_agriculture_500m 3.40 0.76 1.91 4.88 0.0000
prop_forest_edge_500m 0.74 0.49 �0.22 1.70 0.1288

White-tailed deer (Intercept) 1.17 0.68 �0.17 2.50 0.0872
prop_agriculture 4.22 0.83 2.60 5.84 0.0000
prop_high_dev �10.52 0.84 �12.17 �8.88 0.0000
prop_mature_forest 1.47 0.62 0.27 2.68 0.0168
prop_hemlock_tamarack_cedar_3k 10.50 1.69 7.18 13.82 0.0000
(Lower New England/Northern Piedmont) 0.33 e e e e

(North Atlantic Coast) 0.06 e e e e

(Northern Appalachian/Acadian) �0.09 e e e e

(St. Lawrence - Champlain Valley) �0.41 e e e e

Wild turkey (Intercept) �1.83 0.69 �3.18 �0.48 0.0080
prop_decid_forest 1.33 0.58 0.20 2.47 0.0214
prop_forest_edge 1.95 0.59 0.81 3.10 0.0008
prop_riparian 2.97 1.17 0.67 5.26 0.0112
prop_grassland_3k 16.76 2.52 11.81 21.70 0.0000

(continued on next page)
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Table 5 (continued )

Species Covariate Estimate Standard error Lower CI Upper CI P-value

(Lower New England/Northern Piedmont) 0.35 e e e e

(North Atlantic Coast) 0.82 e e e e

(Northern Appalachian/Acadian) �0.05 e e e e

(St. Lawrence - Champlain Valley) �1.49 e e e e

Fig. 3. Distribution of model estimated mean occurrence at sites with positive occurrence records (i.e., presence data). Species presence data were sourced from
iNaturalist and included community-sourced occurrence records for all focal species throughout the New England region of the northeastern United States.
Presence locations were buffered (circular; 100m radius) and model estimated mean occurrence was calculated for each site. Histograms show the distribution of
mean occurrence estimates. Note that the y-axis scale is different among species. The majority of the species models estimated high occurrence at >70% of the
presence locations indicating that that models have strong predictive ability.
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Fig. 4. Estimated occurrence of 10 focal wildlife species (AeJ) in the New England region of the northeastern United States. Occurrence estimates were based on
species-specific distribution models fit using expert opinion data and generalized linear mixed modeling. Species models incorporated site and expert associated
random intercept effects and fixed habitat effects. Distribution maps correspond with the following species: A) American black bear, B) Bobcat, C) Coyote, D) Gray
fox, E) Moose, F) Raccoon, G) Red fox, H) Striped skunk, I) White-tailed deer, and J) Wild turkey. (For interpretation of the references to colour in this figure legend,
the reader is referred to the Web version of this article.)
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data for 10 different wildlife species at the New England regional extent would be difficult and costly without the use of
expert elicitation techniques.

While expert elicitation generates valuable information and overcomesmany challenges of observational studies, opinion-
based studies introduce their own challenges. Using opinion-based data can create room for personal biases, and the possible
introduction of inaccurate information (Low Choy et al., 2009). Additionally, if an elicitation platform is challenging to use,
difficult to understand, or provides ambiguous instructions, experts may misinterpret how best to provide opinions, which
could lead to low quality data (James et al., 2010; Low Choy et al., 2009). We addressed these concerns by designing a survey
application that was user-friendly, provided clear and concise instructions, and offered an engaging and interactive experi-
ence (https://code.usgs.gov/vtcfwru/amsurvey/wiki). The survey was tested on several volunteers beforehand to ensure ease

https://code.usgs.gov/vtcfwru/amsurvey/wiki


Table 6
Regional and state-level mean occurrence estimates for 10 wildlife species in the New England region of the northeastern United States. Occurrence es-
timates were based on species-specific distribution models fit using expert opinion data and generalized linear mixed modeling. Species models incor-
porated site and expert associated random intercept effects and fixed habitat effects.

Species Region Minimum Maximum Mean Standard Deviation

American black bear Connecticut 0.00 1.00 0.73 0.31
Maine 0.00 1.00 0.91 0.15
Massachusetts 0.00 1.00 0.46 0.37
New Hampshire 0.00 1.00 0.84 0.23
Rhode Island 0.00 0.97 0.42 0.32
Vermont 0.00 1.00 0.74 0.31
New England 0.00 1.00 0.80 0.29

Bobcat Connecticut 0.09 0.81 0.57 0.20
Maine 0.09 0.84 0.70 0.07
Massachusetts 0.09 0.80 0.55 0.20
New Hampshire 0.09 0.80 0.69 0.11
Rhode Island 0.09 0.77 0.52 0.21
Vermont 0.09 0.84 0.72 0.07
New England 0.09 0.84 0.67 0.13

Coyote Connecticut 0.07 0.99 0.89 0.13
Maine 0.03 0.99 0.94 0.13
Massachusetts 0.02 0.99 0.87 0.16
New Hampshire 0.04 0.99 0.94 0.11
Rhode Island 0.03 0.99 0.83 0.20
Vermont 0.04 0.99 0.93 0.14
New England 0.02 1.00 0.92 0.14

Gray fox Connecticut 0.01 0.81 0.27 0.17
Maine 0.00 0.82 0.31 0.16
Massachusetts 0.12 0.99 0.69 0.25
New Hampshire 0.00 0.87 0.45 0.18
Rhode Island 0.03 0.88 0.36 0.25
Vermont 0.01 0.98 0.61 0.20
New England 0.00 0.99 0.42 0.24

Moose Connecticut 0.00 0.80 0.09 0.09
Maine 0.00 1.00 0.67 0.28
Massachusetts 0.00 0.87 0.15 0.18
New Hampshire 0.00 1.00 0.54 0.30
Rhode Island 0.00 0.66 0.06 0.08
Vermont 0.00 1.00 0.59 0.27
New England 0.00 1.00 0.52 0.34

Raccoon Connecticut 0.67 1.00 0.95 0.03
Maine 0.19 1.00 0.86 0.08
Massachusetts 0.49 1.00 0.93 0.06
New Hampshire 0.12 1.00 0.86 0.10
Rhode Island 0.81 1.00 0.96 0.03
Vermont 0.33 0.99 0.85 0.10
New England 0.12 1.00 0.87 0.09

Red fox Connecticut 0.08 0.97 0.68 0.12
Maine 0.11 0.98 0.63 0.08
Massachusetts 0.07 0.97 0.63 0.13
New Hampshire 0.07 0.95 0.62 0.08
Rhode Island 0.08 0.95 0.62 0.17
Vermont 0.10 0.98 0.67 0.11
New England 0.07 0.98 0.64 0.10

Striped skunk Connecticut 0.20 0.99 0.87 0.08
Maine 0.00 0.99 0.76 0.20
Massachusetts 0.03 1.00 0.82 0.16
New Hampshire 0.00 0.99 0.66 0.27
Rhode Island 0.71 0.99 0.90 0.03
Vermont 0.01 0.99 0.64 0.26
New England 0.00 1.00 0.75 0.22

White-tailed deer Connecticut 0.00 1.00 0.83 0.23
Maine 0.00 1.00 0.93 0.07
Massachusetts 0.00 1.00 0.79 0.26
New Hampshire 0.00 1.00 0.90 0.11
Rhode Island 0.00 0.99 0.70 0.32
Vermont 0.00 1.00 0.91 0.08
New England 0.00 1.00 0.89 0.15

Wild turkey Connecticut 0.19 1.00 0.79 0.19
Maine 0.13 1.00 0.61 0.14
Massachusetts 0.19 1.00 0.73 0.19
New Hampshire 0.13 0.99 0.70 0.13
Rhode Island 0.22 1.00 0.74 0.19

S.B. Pearman-Gillman et al. / Global Ecology and Conservation 21 (2020) e0085314



Table 6 (continued )

Species Region Minimum Maximum Mean Standard Deviation

Vermont 0.04 1.00 0.77 0.17
New England 0.04 1.00 0.68 0.17
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of use and clarity. We also recruited a large cohort (n ¼ 46) of experts from management agencies and research institutions
throughout New England, and had experts provide responses only for the species and regions in which they had self-
identified expertise. Contribution from numerous wildlife experts helped to reduce individual bias and collect regionally
representative data.

We developed models of distribution during the breeding season, which is often the focus of species and population level
management. However, because the actual timing of the breeding season varied among species in the focal group, the
seasonal accuracy of expert’s responses may have diminished when experts provided feedback for multiple species. This
could have led to more generalized occurrence data and may explain why variables in some of the SDMs were not breeding
season specific (e.g., the inclusion of grassland in the wild turkey model). Expert elicitation modeling could be improved by
reducing seasonal ambiguity (e.g., survey species with a common breeding season) or conducting more specific assessments
(e.g., survey a single species).

There are also several potential benefits of using expert elicitation to create SDMs. First, the approach incorporates in-
formation from expert knowledge and experience, as well as the literature. The elicitation process required experts to assign
occurrence probabilities along with their certainty, effectively aggregating the expert’s opinion as an informed prior prob-
ability distribution for each site. In setting this distribution, experts are using knowledge of the species, which is presumably
based on an amalgamation of their experiences with the species and the landscape. These educated responses provide a level
of information not necessarily obtainable from an empirical study (Kynn, 2005; Murray et al., 2009). Second, including ex-
perts in data collection may promote expert buy-in and user confidence in the data and resulting products (i.e., maps),
potentially leading to more proactive and collaborative conservation and management decisions (Reed, 2008). Third, the
trends observed in our SDMswere consistent with the literature and provide covariate effect sizes that allowed us to estimate
species occurrence throughout the study region.

4.2. SDM performance

We validated our models with observational data (presence records) from the crowd-source platform, iNaturalist. While
other sources of data were available for some of our focal species such as radio-collar and harvest data, these records were
often concentrated at small spatial scales or lacked a reasonable spatial resolution (e.g., harvest locations recorded at the town
or wildlife management unit scale), were inconsistent across space and time, or were collected in time periods that did not
coincide with our landcover data. We used iNaturalist data because they provided a consistent source of region-wide
occurrence data for all 10 focal species. The iNaturalist records were validated and classified as ‘research grade’, and
allowed us to test model performance with separate data, obtained through alternative methods e i.e., community obser-
vation rather than expert opinion.

Our SDMs generally fit the iNaturalist data well, suggesting that they reflected the effects of landscape conditions on
occurrence for all species in the focal group, except one, the gray fox. There are several possible explanations for the lower
performance of the gray fox model, including: 1) the sample size of expert opinion values may not have been adequate
enough to describe occurrence (samples size for this species was considerably less than for other species; Table 1); 2) experts
may have had less certainty about estimating occurrence for the species, which is poorly studied in the region; and 3) the
available validation data may have been biased and less representative for the species. Using community-sourced occurrence
data for validation purposes presents challenges (Sard�a-Palomera et al., 2012; Tulloch and Szabo, 2012).While measures were
taken to reduce bias and maximize data accuracy, community-sourced data is inherently skewed towards areas most
accessible to the human observer (i.e., developed and/or open land types) and is restricted by the voluntary nature inwhich it
is collected (Tulloch et al., 2013; Tulloch and Szabo, 2012). Testing the gray fox model against other independent data sets
would help assess the accuracy of the model. Despite the challenges of model development and validation, our SDMs provide
novel information about the effect size of important variables and can be used to estimate species occurrence in new locations
or changing landscapes.

4.3. Distribution models and maps

Many studies have been conducted to identify important habitats for wildlife species. However, few studies have quan-
tified the effects that habitat variables have on multiple wildlife species or large regional extents. Our approach generated
accessible expert informed models for multiple wildlife species, allowing us to determine species-specific effects and
compare effects across species in the focal group. Generally, most SDMs included variables at both site scale and the species-
specific landscape scale, emphasizing the importance of assessing variables at multiple spatial scales as certain variables may
be more or less influential at different scales.



Fig. 5. Species richness based on probability of occurrence estimates for 10 focal wildlife species in the New England region of the northeastern United States.
Each value represents the sum of occurrence values across all species at a given site.

Table 7
State-based species richness information for 10 wildlife species in the New England region of the northeastern United States. Species richness was calculated
using aggregate occurrence estimates from species-specific distributionmodels for 10wildlife species. Species models were fit using expert opinion data and
generalized linear mixed modeling.

Region Minimum Maximum Mean Standard deviation

Connecticut 2.50 8.35 6.68 1.24
Maine 2.52 8.58 7.32 0.64
Massachusetts 2.59 8.72 6.61 1.41
New Hampshire 2.42 8.41 7.19 0.81
Rhode Island 2.51 8.30 6.13 1.55
Vermont 2.69 8.68 7.47 0.73
New England 2.42 8.72 7.16 0.94
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Focal species occurrence was generally highest in structurally diverse forested areas and lowest in highly developed areas.
These relationships are not surprising as many of the focal species are forest obligates. All SDMs included at least one forest
variable. The two forest variables that appeared in SDMs most commonly were mature forest and forest edge; however, six
other forest composition and forest structure variables appeared across all SDMs. The inclusion of these forest variables
emphasizes the importance of habitat structure and habitat configuration for the wildlife species we included in the study,
and the need to effectively conserve forested lands in the face of human development and land-use change. Because forest use
activities can alter these variables on the ground, it is important to have models (and maps) that capture the influence of any
changes and can be continually improved or updated as new information becomes available (i.e., forming the basis of adaptive
management; Williams, 2011).

Observing lower occurrence probabilities in developed areas is also not surprising. While many species utilize urbanized
landscapes, the presence of development often reduces the availability and accessibility of important habitat (Fischer and
Lindenmayer, 2007). We found that high disturbance development variables, including roads and developed areas,
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exhibited negative relationships with occurrence in six of the SDMs. However, human-associated variables such as forest edge
and agriculture appeared in eight of our SDMs and exhibited positive relationships with occurrence. These differences
indicate that varied levels of human disturbance impact wildlife in different ways and suggest that certain levels of
anthropogenic influence can produce favorable habitat conditions within a landscape (Fahrig et al., 2011; Hunter and
Schmiegelow, 2011; Tews et al., 2004).

We were also able to quantify relationships between climate variables and species occurrence. Three species models
(American black bear, moose, and red fox) included climate variables as fixed-effects. Isolating climate variables as direct
influencers of distribution can provide insight on how shifts in climate directly impact wildlife species. While several studies
have identified climate change as a threat to wildlife (Chapin et al., 2000; Pacifici et al., 2017; Thomas et al., 2004), little is
known about the effects of climate variables on individual species. Our modeling approach allowed us to quantify re-
lationships between species occurrence and important climate variables, offering a quantitative basis for assessing the
consequences of climate and land-use change. This informationmay be particularly important as changes in climate and land-
use are projected to increase in the future and will likely have considerable impacts on species distributions and overall
species richness (Chapin et al., 2000; Díaz et al., 2019; Rustad et al., 2012).

Through expert elicitation and mixed modeling methods, we were able to develop a collection of SDMs and distribution
maps that offer valuable information about wildlife occurrence in New England. These versatile modeling tools provide
regionally applicable and spatially compatible information for multiple wildlife species and provide a means for future
scenario-based assessments. These forecasted assessments can help inform proactive decision-making and benefit long-term
management and conservation planning throughout the New England region.
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