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Abstract. Habitat suitability (HS) maps are widely used tools in wildlife science and
establish a link between wildlife populations and landscape pattern. Although HS maps
spatially depict the distribution of optimal resources for a species, they do not reveal the
population size a landscape is capable of supporting—information that is often crucial for
decision makers and managers. We used a new approach, ‘‘maximum clique analysis,’’ to
demonstrate how HS maps for territorial species can be used to estimate the carrying capacity,
Nk, of a given landscape. We estimated the Nk of Ovenbirds (Seiurus aurocapillus) and bobcats
(Lynx rufus) in an 1153-km2 study area in Vermont, USA. These two species were selected to
highlight different approaches in building an HS map as well as computational challenges that
can arise in a maximum clique analysis. We derived 30-m2 HS maps for each species via
occupancy modeling (Ovenbird) and by resource utilization modeling (bobcats). For each
species, we then identified all pixel locations on the map (points) that had sufficient resources
in the surrounding area to maintain a home range (termed a ‘‘pseudo-home range’’). These
locations were converted to a mathematical graph, where any two points were linked if two
pseudo-home ranges could exist on the landscape without violating territory boundaries. We
used the program Cliquer to find the maximum clique of each graph. The resulting estimates
of Nk¼ 236 Ovenbirds and Nk¼ 42 female bobcats were sensitive to different assumptions and
model inputs. Estimates of Nk via alternative, ad hoc methods were 1.4 to .30 times greater
than the maximum clique estimate, suggesting that the alternative results may be upwardly
biased. The maximum clique analysis was computationally intensive but could handle
problems with ,1500 total pseudo-home ranges (points). Given present computational
constraints, it is best suited for species that occur in clustered distributions (where the problem
can be broken into several, smaller problems), or for species with large home ranges relative to
grid scale where resampling the points to a coarser resolution can reduce the problem to
manageable proportions.
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INTRODUCTION

Knowledge of the current and potential future

population size, N, of a target species is of fundamental

importance in developing effective management plans.

Methods such as mark–recapture analyses and distance

sampling have been developed to estimate current

population sizes (reviewed in Borchers et al. 2002), but

are difficult to apply across the large geographical

extents that are increasingly the focus of conservation

planning and management (Millspaugh and Thompson

2009). Given these challenges, decision makers and land

managers require tools that estimate N or proxies of N

across both time and space. These tools are urgently

needed in light of rapid land-use change and climate

change, which are expected to alter animal and plant

distributions globally (Vitousek et al. 1997).

Habitat suitability (HS) maps are widely used tools in

wildlife science and establish a link between wildlife

populations and landscape pattern (Boyce and McDon-

ald 1999, Larson et al. 2004). In general terms, HS maps

are generated from mathematical models that return a

score for each pixel on a landscape map in terms of

resources needed for survival or reproduction. Examples

of resources—and factors that affect them—include

habitat type, habitat amount, distance to water or roads,

and patch size. The HS score at a pixel represents the

collective value of resources for a given location; it is a

continuous variable that often (but not always) ranges

between 0 and 1. For example, the U.S. Fish and

Wildlife Service’s Habitat Suitability Index models

return a score between 0 and 1 based on expert opinion
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(USFWS 1996), while resource selection functions

return a score that is proportional to the probability

of use (Manly et al. 1993). Maps that predict probability

of occupancy for a given species at a given location

(MacKenzie et al. 2006) can also be interpreted as HS

maps under the assumption that probability of occu-

pancy is directly related to habitat suitability (Martin et

al. 2010).

While HS maps do not reveal the current population

size, N, in a landscape, they can be used to estimate Nk,

defined as the maximum potential population size a

given landscape is capable of supporting (i.e., carrying

capacity). Linking HS maps to N or Nk is crucial

because many conservation objectives use population

sizes as indicators (Rosenberg and Blancher 2005).

Boyce and McDonald (1999) outlined two aspatial

approaches for linking HS models (and maps) to N or

Nk for an area of interest. The first approach involves

using a reference area of known N, determining the

habitats and amounts used by the population, and then

applying this information to estimate N in new areas.

The second approach involves obtaining a resource-

selection probability function for each pixel for a given

area, scaling the pixel value relative to density of an

individual, and then summing the scaled pixel values

over the area of interest to estimate Nk. These

approaches have been used to model timber wolf

populations (Canis lupus) in the northeastern United

States (Mladenoff 1997) and bird populations in the

midwestern United States (Larson et al. 2004). For some

species, however, establishing a reference population of

known size can be exceedingly difficult, and the spatial

variation of resources within a home range may be a

critical determinant of whether a location is used by a

species of interest. Downs et al. (2008) recognized the

latter issue and created proximity-based HS maps to

identify potential territories of Sandhill Cranes (Grus

canadensis). They then used ‘‘uncovering algorithms’’

(Moon and Chaudry 1984), a class of integer program-

ming optimization approaches, to estimate Nk under the

constraint that territories must be separated by at least

3000 m (Downs et al. 2008).

Here, we extend the work of Boyce and McDonald

(1999), Mladenoff (1997), Larson et al. (2004), and

Downs et al. (2008) by demonstrating how HS maps for

territorial species can be used to estimate Nk with

maximum clique analysis. A territorial species is defined

as a species that defends a specified area against

conspecifics for at least part of its life cycle (Begon et

al. 2006), which sets the temporal limits of the clique

analysis. Here, the territory is defined as the portion of

the home range that does not overlap with the territories

of conspecifics, recognizing that home ranges are often

much larger than the defended areas (Burt 1943). While

Nk may exceed the actual population size, N, at any

given time, it provides a spatially explicit, straightfor-

ward metric that allows decision makers to compare the

potential influence of various land-planning scenarios on

target species.

BACKGROUND

Given a habitat suitability (HS) map with pixel that

size is smaller than a home range (Fig. 1A), the first step

is to convert the map so that pixel scores depict the

home-range capacity (HRC-HS; Fig. 1B; sensu Comp-

ton et al. 2006). This is achieved by assuming each pixel

is the center of a hypothetical home range (termed a

pseudo-home range), and computing a score so that the

pixel value now reflects the suitability of the pixel itself

plus the surrounding area in terms of supporting a

territory for the target species (Fig. 1B). We use the term

‘‘pseudo-home range’’ broadly to represent either the

portion of the home range that is actively defended or, in

the absence of active defense, the area of the home range

that does not overlap with areas used by conspecifics.

Second, the HRC-HS map is filtered so that only those

locations that contain sufficient resources to constitute a

pseudo-home range are retained; locations not meeting

this threshold are eliminated (Fig. 1C). Third, the

suitable cells are assigned a unique number, and then

buffered to simulate the actual boundaries and locations

of all possible pseudo-home ranges on the landscape

(Fig. 1C). Although Fig. 1C shows circular buffers of

equal size, it is important to note that the polygons can

take on different shapes and sizes, depending on spatial

arrangement of resources in the landscape. For example,

the pseudo-home range polygon may be small if the

encompassed area is very high quality and larger if the

spatial distribution of required resources is more

dispersed. Finally, the carrying capacity of the landscape

is estimated by counting the maximum number of

nonoverlapping pseudo-home ranges. For large geo-

graphic areas that contain hundreds or thousands of

pseudo-home ranges, this is a challenging task. What is

needed is an analytical method that provides this count

with certainty.

In order to count nonoverlapping pseudo-home

ranges, we introduce the mathematical notions of graphs

and cliques. Graphs are mathematical abstractions that

can be used to model relationships between objects, and

are increasingly being used to investigate biological

phenomena (Fortin and Dale 2005). They arise, for

example, in the study of transportation networks and

social relationships (West 2001), and have been used in

landscape connectivity and corridor design analyses

(Fortin and Dale 2005). Formally, a graph consists of a

set of objects called points (also called vertices) along

with a set of edges that link the points (Fig. 2A). Each

edge indicates a relationship between its associated pair

of points. Two points so linked are said to be adjacent.

The drawings in Fig. 2A, B represent the same graph.

We have drawn this graph in two different ways to

emphasize that the positions of the points are immate-

rial; all that matters is that the same pairs of points are

adjacent in each drawing. A clique in a graph is a subset
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FIG. 1. (A) Hypothetical habitat suitability (HS) map showing pixel values that range between 0 and 1. A focal pixel in row 3,
column 3 has an HS score of 0.6. The circle represents a buffered polygon that simulates a home range. (B) Hypothetical home
range capacity (HRC)-HS map based on Fig. 1A, in which the HRC-HS score is the average of the focal pixel plus the eight
surrounding cells. All pixels that are greater than or equal to a hypothetical pseudo-home range threshold of 0.8 are shaded. (C)
The two locations that meet the HRC-HS threshold are retained, numbered 1 and 2, and buffered to simulate the placement of
pseudo-home ranges on the landscape. In this example, we used circular buffers to simulate pseudo-home ranges of the same size,
resulting in a maximum of two territories that can coexist on the landscape without overlap, and Nk¼ 2, where Nk is the maximum
potential population size a given landscape is capable of supporting. (D) The pseudo-home range locations are de-spaced and
converted to points on a graph, and edges are drawn between points that can coexist without overlapping boundaries. A maximum
clique analysis of this graph yields Nk ¼ 2. (E) The same HS map as in panel (A) is duplicated for a new analysis. (F) A new
hypothetical HRC-HS map is created with a hypothetical pseudo-home range threshold of 0.7. (G) The six locations that meet the
0.7 threshold are retained and numbered 1–6. (H) The pseudo-home range locations are de-spaced and converted to points on a
graph as in panel (D). The maximum clique of this graph (Nk) is 3. The maximum clique (Nk) can be achieved in six ways: examples
include points 1, 2, and 4 and points 1, 3, and 5.
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of the points in which every pair of points is adjacent.

For example, in a social network in which points

indicate people and edges indicate friendships, a clique

would correspond to a group of mutual friends. Cliques

of size two and three are highlighted in Fig. 2A. A clique

is said to be ‘‘maximum’’ if a clique with more points

does not exist. A maximum clique of size four is

highlighted in Fig. 2B.

An estimate of a landscape’s carrying capacity, Nk,

can be made with maximum-clique analysis using the set

of all points on the landscape that represent pseudo-

home ranges with respect to the chosen threshold (e.g.,

Fig. 1C). Two points are linked by an edge (i.e., made

adjacent) if the corresponding locations can support

pseudo-home ranges without overlapping or violating

territory boundaries (Fig. 1D). Finally, the maximum

clique size of the resultant graph is ascertained. Thus,

the problem of counting the maximum number of

nonoverlapping pseudo-home ranges translates to the

well-studied problem of finding the size of a maximum

clique in an associated graph. This size provides an

estimate of the landscape’s carrying capacity, Nk.

Our goal is to use maximum-clique analysis to

estimate the landscape carrying capacity of two very

different species, the bobcat (Lynx rufus) and Ovenbird

(Seiurus aurocapillus), in a large geographical area.

Specifically, our objectives are to (1) develop an HS map

for each species across the study area; (2) develop an

HRC-HS map for each species; (3) convert the HRC-HS

map to a mathematical graph, and estimate the

landscape carrying capacity Nk for each species via a

maximum-clique analysis; (4) compare estimates of Nk

obtained with maximum-clique analysis with the results

of alternative methods that do not rely on optimization;

and (5) evaluate the sensitivity of maximum-clique Nk to

changes in the HRC-HS threshold score, and to the

number of pseudo-home range points in the graph.

METHODS

Study area

Our study area was located in the Vermont’s Wildlife

Management Unit F1, a 1153-km2 area in western

Vermont (USA) that borders Lake Champlain (Fig. 3).

F1 includes land within 15 towns, including five Wildlife

Management Areas, four state parks, and several locally

conserved parcels. We chose this area due to both the

availability of the data necessary for developing habitat

suitability (HS) models and its diversity in land cover.

Land cover imagery from 2001 (Homer et al. 2004)

suggests F1 is approximately 6% developed, 50%
agriculture, 20% forest, 18% water and shoreline, and

,2% non-forested wetland and scrub/shrub land cover

types.

Ovenbird

The Ovenbird is a Neotropical migrant warbler that

requires primarily deciduous or mixed forest for nesting;

the home range size varies between 0.5 and 4 ha

(Porneluzi et al. 2011). The study area is located in the

northeastern portion of its range, which extends across

Canada and the eastern United States.

For Objective 1, we derived raw HS maps for singing

males from single-season occupancy models, described

fully in Schwenk and Donovan (2011). Briefly, birds

were surveyed at 693 points across the state of Vermont

in either 2003 or 2004. Six environmental resources

(covariates) were quantified for each point: (1) forest or

not forest; (2) topographic wetness index; (3) distance to

edge of a different land-cover type; (4) percentage

evergreen forest within 300 m; (5) percentage forest

FIG. 2. Two drawings of a single graph with seven points, a–g (also called vertices). Points are joined by an edge if they have a
specified relationship; edges are displayed here with lines (either thin or thick lines). In this study, the points represent the center of
a pseudo-home range on the landscape; an edge is drawn between two points if the two points can co-exist on the landscape, i.e.,
their pseudo-home range polygons do not overlap. Point ‘‘a’’ can coexist with points f, d, and c. Its pseudo-home range boundaries
overlap with points b, e, and g; therefore ‘‘a’’ is not joined with these points. Point ‘‘b’’ can coexist with points e and d only; its
pseudo-home range boundaries overlap with points a, c, f, and g. (A) A clique of size two (points b and e) is highlighted with thick
lines, indicating that points b and e can coexist on the landscape. A clique of size three is also highlighted (points a, c, and d),
indicating that all three points can co-exist on the landscape. (B) The same graph as (A), just re-oriented, highlighting the maximum
clique for this seven-point graph (points a, c, d, and f ).
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within 1 km; and (6) road density within 1 km. Thirty-

two models, consisting of various combinations of the

six covariates, were analyzed in a single-season occu-

pancy framework (MacKenzie et al. 2002). Models were

compared and evaluated in an AIC framework (Burn-

ham and Anderson 2002), which estimated the weight of

support for each model (scaled such that the sum of

weights ¼ 1).

We derived an Ovenbird HS map (Objective 1) by first

calculating a covariate value for each 303 30 m pixel on

the F1 landscape. Then, for the 13 most highly ranked

models (comprising .95% of the AIC weight of

support), we developed probability-of-occupancy maps

for each pixel based on that pixel’s covariate values and

model-specific coefficient estimates. Finally, we weighted

each model-specific map’s probability of occupancy by

its corresponding AIC weight, and then added these

results across all 13 maps to yield the final Ovenbird HS

map (Burnham and Anderson 2002).

Bobcat

The bobcat is a medium-sized carnivore that utilizes a

wide range of habitats in its role as a generalist predator.

The bobcat range extends from southern Canada to

Mexico and includes much of the conterminous United

States. Home range size varies between males and

females, with males having home ranges of up to 100

km2 (Hansen 2006). Females maintain much smaller

home ranges that may overlap with multiple males

(Hansen 2006). Although females may overlap their

home ranges, the degree of overlap is minimal during the

breeding season (Lovallo and Anderson 1996). We focus

our analysis on females in an attempt to estimate the

landscaping carrying capacity of breeding females,

which may be important for managers to estimate the

potential number of offspring a landscape can support.

We derived a bobcat HS map (Objective 1) by

integrating kernel home range analysis with resource-

utilization functions for 14 GPS-collared bobcats in

northwest Vermont, described fully in Donovan et al.

(2011). Briefly, kernel home-range analysis provides an

estimate of both the home-range size and a probability

density function (also known as the ‘‘utilization distri-

bution’’ or UD) that quantifies where the individual is

most likely to occur within the home-range boundary

(Silverman 1986, Worton 1989, Seaman and Powell

1996). Similar to the Ovenbird analysis, 18 environmen-

tal covariates were quantified for each 30-m2 pixel in

each home range. For each bobcat, 24 models,

consisting of various combinations of the environmental

covariates, were evaluated to estimate the association

between the UD percentile and the level of a given

spatially defined resource at the same location in the

home range (Marzluff et al. 2004, Millspaugh et al.

2006). For each bobcat, the 24 models were compared in

an AIC framework (Burnham and Anderson 2002) and

model-averaged coefficient estimates (betas) were re-

tained. Following Marzluff et al. (2004), we averaged

these model-averaged coefficient estimates across bob-

cats on a resource-by-resource basis. This process

revealed that, in Vermont, the shape of the UD surface

was strongly associated with five different land-cover

resources (conifer, deciduous, mixed forest, wetland,

and shrub habitat) within 1 km of each pixel in the home

range, plus two measures of road density at the 1-km

scale (Donovan et al. 2011); other covariates carried

little weight. We then constructed a bobcat HS map for

the study area by measuring the level of each of the

seven resources within 1 km of that location, multiplied

by the corresponding population-level beta coefficient.

Thus, each 30-m2 pixel on the HS map revealed the

cumulative score of bobcat resources based on empirical

home-range data.

HRC-HS maps and maximum-clique analysis

(Objectives 2 and 3)

For the Ovenbird, we converted the HS map from

Objective 1 to an HRC (home range capacity)-HS map

with the focal statistics tool in ArcGIS 10 (ESRI 2010).

FIG. 3. A map of Vermont, USA, divided into its 24
Wildlife Management Units, of which the gray-shaded on is our
study area F1, a 1153-km2 area in western Vermont that
includes 15 towns, including five Wildlife Management Areas,
four state parks, and several locally conserved parcels. Lake
Champlain borders northwestern Vermont, including F1.
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We set the neighborhood shape to ‘‘circle’’ with a

radius of 77.6 m to simulate a circular pseudo-home

range of 1.89 ha (which falls within reported home-

range size estimates, Porneluzi et al. 2011), and

computed the HRC-HS for each pixel as the median

HS score within the 77.6-m radius neighborhood. We

then used the raster calculator tool to dichotomize the

map, where the number 1 indicated cells that contained

sufficient habitat for a pseudo-home range (HRC-HS

. 0.76), and 0 otherwise. The threshold of 0.76 was

determined by calculating such scores in locations

where Ovenbirds were known to occur with certainty in

Vermont based on singing-male surveys (Schwenk and

Donovan 2011). Thus, our Ovenbird analysis focuses

on estimating the carrying capacity, Nk, of territorial

males. Pixel locations for pseudo-home ranges that met

the 0.76 threshold were converted to points in a GIS

shapefile.

At this stage the Ovenbird data (points and their

relationship to other points in terms of polygon overlap)

were ready for maximum-clique analysis. However, in

graph theory, finding the maximum size of a clique falls

into the generally intractable class of NP-hard problems

(Garey and Johnson 1979); i.e., there are algorithms to

compute the maximum clique size, but there are unlikely

to be any efficient algorithms that provide the answer

expeditiously. Consequently, as a practical matter it is

only possible to compute the maximum clique size for

graphs with sufficiently few points (e.g., ,1500 for

typical personal computers). Given the very large

number of Ovenbird pseudo-home range points in F1,

our study area, we handled this challenge in two ways.

First, to reduce the total number of vertices for the

clique analysis, we used the resample tool in ArcGIS to

resample the shapefile to a 60-m grid, retaining only

those points closest to the 60-m grid intersection (see

Discussion: Clique analytical considerations, below, for a

brief discussion on how resampling biases Nk). The final

set of points was linked if the pseudo-home range

polygons did not intersect, where links between any two

points indicated nonoverlapping pseudo-home ranges

boundaries. Second, where there were spatially disjunct

clusters of pseudo-home ranges (i.e., where no edges

existed between points in different clusters, such as the

three clusters shown in Fig. 1G), we divided the

maximum clique problem into several, smaller analyses

to find the maximum clique for each cluster separately;

Nk for the study area was then the sum of the maximum

clique sizes across clusters. We used an ArcGIS

ModelBuilder program written by J. Yu at the

University of Vermont to automate the sequence of

GIS steps described.

A similar process was used to convert the bobcat HS

map to an HRC-HS map. We used a home-range size of

22.9 km2 (2700-m radius) and a threshold HS score of

�0.05 (a logit score) to identify the pixels that contained

sufficient habitat to represent pseudo-home ranges. The

threshold of �0.05 was determined by estimating the

average HS scores with the home ranges of four female

bobcats (Donovan et al. 2011). We used these estimates

because the home-range data were collected in or near

the study area. We assumed the female home-range

overlap was minimal (Lovallo 1993). Lovallo and

Anderson (2003) report mean annual home range sizes

of 28.5 km2 in Wisconsin (USA), and note that home-

range size in summer decreases to ;20 km2. Similar to

the Ovenbird, this process resulted in an excessive

number of points for clique analysis. We reduced the

total number of points by resampling the original points

to a 900 m grid. All of the points within F1 for bobcats

were located in a single cluster. Points were linked if the

pseudo-home range polygons did not intersect. We used

the public domain C software Cliquer to find the

maximum clique size for each Ovenbird cluster and the

bobcat graph (Niskanen and Ostergard 2003).

Comparison of estimates of Nk (Objective 4)

We compared the estimates of Ovenbird Nk from

maximum clique analysis with the ‘‘sum across the grid’’

approach used by Larson et al. (2004), who used

literature to determine the number of individuals that

could exist in 1 pixel of optimal habitat (where HS¼ 1),

and then multiplied that number by the habitat

suitability of the corresponding pixel, which provided

the maximum number of individuals each pixel in the

landscape could hold. This result was then summed

across the map to provide an estimate of Nk. We

followed this same protocol to estimate Nk for

Ovenbirds and compared it to the estimate from clique

analysis.

We also estimated Nk for both species with an ad hoc

approach based on the pseudo-home range polygons

that exceeded the HRC-HS threshold. In this approach,

we estimated Nk for each species by calculating the total

area of F1 that consisted of the union of all pseudo-

home range polygons, divided by the home-range area.

Sensitivity of maximum clique Nk to changes in threshold

and number of points analyzed (Objective 5)

We evaluated the sensitivity of Nk to changes in the

threshold level used to identify points for clique analysis

(Ovenbird only). For Ovenbirds we let the threshold

vary from 0.6 to 0.8 in increments of 0.01 and repeated

the analyses previously described. As the threshold level

decreased, the number of points and edges in the graph

increased to such an extent that even individual clusters

contained too many points for clique analysis. However,

we could obtain upper and lower bounds for Nk by

dividing each cluster into pieces small enough for

maximum clique analyses. We obtained the upper bound

by obtaining the maximum clique size for each piece and

then summing the sizes. This represents an upper bound

because selected pseudo-home ranges along the adjacent

boundaries of cluster pieces may in fact overlap. We

obtained the lower bound by sequentially obtaining the

maximum clique for a piece, removing from consider-
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ation any pseudo-home ranges in the remaining pieces

that overlapped the clique, and then repeating the

process until a maximum clique was obtained for each

piece. The union of these cliques still represents a clique,

but it may not be a maximum clique because a more

efficient way to select pseudo-home ranges for the entire

cluster may exist. Therefore, the sum of the maximum

clique sizes in this approach yields a lower bound.

Additionally, given a single threshold level, we

evaluated the sensitivity of Nk to changes in the number

of points analyzed as a result of sampling (bobcats

only). We resampled original bobcat points with grid

sizes that varied from 900 m2 to 3900 m2 in increments

of 300 m2, where only those points located near grid

intersections were retained for clique analysis.

RESULTS

Ovenbird

Pixel values in the raw (original) probability-of-

occupancy map for Ovenbird ranged from 0 to 0.896

(Objective 1). Probability of occupancy was greatest in

locations that were highly forested, had low road

density, and were far from forest edge (see Schwenk

and Donovan 2011).

Pixel values in the HRC-HS (home range capacity

habitat suitability) map ranged between 0 and 0.839 for

the study area (Objective 2; Fig. 4A). Within that map,

5976 points met the 0.76 threshold for designating a

pseudo-home range. After resampling to a 60 m grid, the

number of points was reduced to 1491. These were

spatially aggregated into 22 disjoint clusters of between

94 and 781 points, which had a total buffered area of

762.8 ha (Fig. 4A, B). The maximum clique sizes for

these clusters ranged from 16 to 111, with a resulting Nk

estimate of 236 (Objective 3). Thus, given our model

assumptions, the carrying capacity of the study area

landscape was 236 male Ovenbird territories.

We found considerable differences in estimates of Nk

between the maximum clique method (Nk ¼ 236

territories), the ‘‘sum across the grid method,’’ and the

ad hoc method (Objective 4). Using the methods

outlined by Larson et al. (2004), we estimated Ovenbird

density to be 0.529 Ovenbirds/ha (based on a 1.89-ha

home range). Given a pixel size of 0.09 ha (30 m2), the

FIG. 4. Ovenbird (Seiurus aurocapillus) home range capacity (HRC) and habitat suitability (HS). (A) Ovenbird HRC-HS
model, with highest quality habitats depicted in black and lowest quality habitats depicted in white. (B) HRC-HS map in which
only those points that met the 0.76 threshold are retained. The points, buffered by a 77.6-m radius to simulate the actual placement
of pseudo-home ranges, were spatially aggregated into 22 clusters. The inset shows an enlargement of one cluster of 20 points
(which points are analyzed in the clique analysis). The goal is to estimate the maximum number of nonoverlapping pseudo-home
ranges within each cluster. The carrying capacity Nk for the study area F1 is the sum of each of the maximum cliques across
clusters.
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maximum number of Ovenbirds per HSC-HS pixel

under optimal conditions was 0.048 birds. Multiplying

the HRC-HS grid by 0.048 and then summing across the

grid yielded an Nk estimate of 8050 Ovenbirds. This

same approach yielded an estimate of 417 territories

when only those pixels that exceeded the 0.76 threshold

were considered. Our ad hoc approach of estimating Nk

as the total area within F1 that consisted of buffered,

pseudo-home ranges (762.8 ha) divided by the home

range area (1.89 ha) yielded an estimate of Nk ¼ 404

territories, which is 1.71 times higher than the maximum

clique estimate.

Nk was sensitive to changes in the threshold level used

to define pseudo-home range locations; as the threshold

increased, Nk decreased (Objective 5). Nk estimates

varied from 26 (the threshold of 0.8) to 2405 (the upper

bound for a threshold of 0.6; Fig. 5). The upper and

lower bounds of Nk diminished as the threshold

increased in a highly predictable way (for the upper

bound, Nk¼�12 729(threshold)þ 9981.6; R2¼ 0.99; for

the lower bound, Nk¼�8910.1(threshold)þ7045.6; R2¼
0.99).

Bobcat

Pixel values in the raw (original) logit map for bobcats

ranged between�1.70 and 1.44 (Objective 1). This map

was transformed into an HRC-HS map, where the HR-

HS score for each pixel ranged between �0.58 and 0.43

(Objective 2; Fig. 6A). Within that map, 1 012 511

locations met the �0.05 pseudo-home range threshold

(Fig. 6B). After resampling to a 900-m grid, the resultant

graph consisted of 1116 points and 580 526 edges.

Analysis of this graph indicated the maximum clique size

was 46; thus the carrying capacity of the study area

landscape was 46 female bobcat home ranges. There

were over 4 billion different, potential maximum cliques

of size 46 (see Fig. 6C for one example).

Our ad hoc approach of estimating Nk as the total

area within F1 that consisted of buffered, pseudo-home

ranges (151 705 km2) divided by the home range area

(22.9 km2) yielded an estimate of Nk¼ 66 home ranges,

which is 1.44 times higher than the maximum clique

estimate.

The maximum clique Nk was sensitive to the grid size

used to reduce the total number of points for clique

analysis. For each 1000-m increase in resample grid-cell

length, Nk decreased by 6.2 individuals (Fig. 7).

DISCUSSION

We demonstrated how a widely used tool in wildlife

science, a habitat suitability (HS) map, can be analyzed

with graph-theoretic methods to estimate the carrying

capacity of a landscape for supporting a territorial

species. Though Nk—the maximum potential population

size a given landscape is capable of supporting (i.e.,

carrying capacity)—is not an estimate of the actual

population size, N (N may be lower than Nk), it provides

the upper limit a landscape can support and directly

links landscape pattern to population metrics; this has

many utilities for management. For example, in terms of

formally evaluating the effect of different land-use

scenarios in a decision-making context, Nk could

become the objective function (e.g., maximize Nk by

changing the landscape pattern, subject to various

constraints). Less formally, Nk is a more straightforward

metric for stakeholders to grasp than pixel values in a

HS map when comparing outcomes of different land-use

scenarios.

FIG. 5. Sensitivity of Nk to changes in pseudo-home range threshold (0.6–0.8) for Ovenbirds in study area F1. As the threshold
decreased (e.g., 0.60), the number of pseudo-home ranges increased, creating very dense mathematical graphs with too many points
to be tractable and requiring the upper and lower bounds of Nk to be estimated (depicted by the vertical bars). See Methods:
Sensitivity of maximum clique Nk to changes in threshold and number of points analyzed (Objective 5) for description.
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FIG. 6. (A) Bobcat (Lynx rufus) HRC-HS map, with highest quality habitats depicted in black and lowest quality habitats
depicted in white. (B) Locations (black dots) of pseudo-home ranges in the F1 study area, which identify positions in F1 that have
sufficient resources in the surrounding radius to constitute the placement of a 22.7-km2 pseudo-home range; the remaining white
spaces have insufficient territory resources. (C) Buffered pseudo-home ranges that simulate the actual locations and boundaries of
pseudo-home ranges, with one example of a maximum clique of size 46 (the 46 pseudo-home ranges are the gray-outlined circles).

FIG. 7. Sensitivity of bobcat Nk to changes in the scale in which pseudo-home range points are resampled to reduce the total
number of points for clique analysis. The x-axis represents one side of a grid cell, where only the point closest to the grid
intersection is retained for clique analysis. The figure shows the final Nk estimate as a function of the size of the grid; e.g., for a grid
cell of 1500 3 1500 m, the Nk estimate is 43 territories.
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Our method builds naturally on methods outlined in

Boyce and McDonald (1999) and Larson et al. (2004) in

that it begins with an HS map that can be formulated by

many different statistical methods and conceptualized at

many different spatial scales and ends with an estimate

of Nk. However, estimates of Nk via these alternative

approaches were 1.4 to .5 times greater than the

maximum clique estimate. Approaches that involve

calculating the number of animals that a pixel can

support (density) and then summing across the map

(sensu Larson et al. 2004) are largely aspatial; the spatial

arrangement of HS scores on a map is assumed to be

unimportant in calculating Nk, such that a pixel

contributes to Nk regardless of whether it is clustered

near other high-quality pixels (to form a territory) or

not. This contributed to the very high estimate of Nk for

Ovenbirds (Nk ¼ 8050) using the Larson et al. (2004)

method compared to the spatially explicit, maximum

clique method (Nk¼ 236 territories). These estimates can

be made to be more concordant by relaxing the

threshold in designating which locations constitute a

pseudo territory in the clique analysis (to a threshold

lower than 0.76), or by establishing a threshold for

inclusion in the Larson et al. analysis (e.g., Nk ¼ 417

when only those pixels .0.76 were summed). Our ad hoc

method of estimating Nk provided estimates that were

up to 1.7 times the maximum clique estimate. Thus,

different approaches lead to different estimates of Nk,

and each approach has unique assumptions.

Our methods are most similar to the methods used by

Downs et al. (2008), who developed HRC-HS maps

similar to ours for Sandhill Cranes. They identified all

locations in the study area that met the home-range

requirements for breeding cranes, and then used an

integer programming method to maximize the number

of possible breeding locations, under the constraint that

the selected territories be at least 3000 m from each

other. The clique analysis has the same goal: find the

maximum number of territories that can coexist without

violating territorial boundaries. Rather than specifying a

strict distance separation, we used GIS to place pseudo-

home range boundaries across the study area (poly-

gons), and then identified whether any two polygons

overlapped or not. The advantage here is that pseudo-

home ranges can take on a number of sizes and shapes,

and overlap (rather than distance) is part of the selection

criteria. Thus, pseudo-home range polygons created

under different assumptions (e.g., territory shape,

territory size, threshold) can become part of a single

analysis. A benefit of using the program Cliquer is that

all possible maximum clique combinations are provided

in the output (this may be possible with many integer

programming packages as well), providing a suite of

alternative solutions that can be vetted by decision

makers to maximize conservation efforts.

Which method should be employed in estimating Nk

depends on the question being asked and the character-

istics of the species and landscapes being analyzed.

Computationally simpler approaches, such as the

methods of Larson et al. (2004), may suffice as an index

of population change over time. For instance, a recent

analysis of Breeding Bird Survey trends with respect to

HS maps across the Midwestern United States suggests

that the Larson et al. (2004) method reasonably tracks

fluctuations in bird abundance over time (Bonnot et al.

2011). However, when the population size that a

landscape can support is of direct interest, particularly

when the spatial arrangement of resources and habitat

quality vary substantially across a landscape, the

approach we present has considerable advantages.

Sources of uncertainty

Although the estimate of Nk via maximum clique

analysis has no sampling error, there are several sources

of uncertainty that should be considered to provide a

reasonable range of Nk. That is, we recommend

conducting assumption and sensitivity analysis with

respect to model inputs to obtain a range of Nk

estimates. In terms of assumption analysis, for illustra-

tion purposes we assumed that territory shape is circular

and fixed in size, an assumption that is not strictly

upheld in nature. Not only are home range sizes difficult

to estimate (Hayne 1949, Odum and Kuenzler 1955),

they also change as a function of resource level in both

space and time (McLoughlin 2000). Moreover, estimat-

ing the nonoverlapping core areas (i.e., defended

territory) between individuals is challenging because it

requires spatial–temporal habitat-use patterns of nearby

individuals; this information is lacking for most species

and assumptions must be made about territory size,

shape, and minimum resource levels. Our approach can

readily test these assumptions, for example, by allowing

territory sizes that vary as a function of local resource

availability.

Other sources of uncertainty enter the analysis in

constructing the HS map, and apply to all methods for

estimating population sizes with HS maps. HS maps

based on expert opinion require methods for limiting

subjective judgment (Ray and Burgman 2006). In

contrast, HS maps derived from empirical data, such

as the Ovenbird and bobcat maps in this study, are

highly dependent on the actual size of the population

when the field data were collected and on sample size, to

name just two influential factors (Elith et al. 2002).

Ecological theory predicts habitat-suitability models

constructed from observations when population size is

low will be very different than models constructed from

observations collected when population size is high

(Fretwell and Lucas 1970). Assuming habitats are

heterogeneous, at low population sizes individuals will

occupy only the best habitats, while at high population

sizes the best habitats are monopolized and excess

individuals are forced to occupy suboptimal habitat

(e.g., Cody 1985, Andren 1990). Moreover, ecological

trap theory suggests that organisms may select subop-

timal habitat over available, optimal habitat for a
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variety of reasons (Robertson and Hutto 2006),

resulting in inaccuracies in an empirically derived HS

map. Using data from multiple years if available may

assist in understanding a realistic range of Nk values.

In addition to these ecological processes, sampling

processes play a large role in the precision of coefficient

estimates thought to influence animal distribution

patterns (Quinn and Keough 2002). As a result of these

uncertainties, several authors have incorporated the

concept of ‘‘bounds’’ as part of the HS construction

process (Burgman et al. 2001) and incorporate them

throughout the analytical process (Larson et al. 2004).

Clique analytical considerations

In addition to these biological and sampling uncer-

tainties, our analyses showed that, for any given

threshold, Nk is sensitive to the total number of points

actually used in the clique analysis, which greatly affects

computational speed. As mentioned, the problem of

finding maximum cliques in a graph is computationally

very difficult. Cliquer uses a branch-and-bound algo-

rithm that relies on a given vertex ordering. The

computation time is very sensitive to this ordering.

Cliquer applied methods that tend to provide good

orderings, but no technique exists for providing an

optimal ordering. The expected computation time also

increases exponentially as the number of points increases

(for fixed edge density). For example, computation time

for small clusters of Ovenbird points was negligible

(,0.05 s), but considerable for large clusters (e.g., 3.5

days for a 781-point cluster on a 3GHz, 64-bit machine).

Similarly, for a fixed number of points, increasing the

edge density will on average increase the computation

time. Thus, any processing of the data that reduces

either of these numbers will speed computation.

We employed several approaches to address limita-

tions in computation time. Breaking the graphs into

clusters, which effectively reduces the number of vertices

of each graph that Cliquer analyzed, substantially

reduced processing time while still yielding the analyt-

ically correct solution. Another approach we used was

to re-scale the grid to a coarser resolution, thereby

reducing the number of vertices in the resulting graph.

We believe this approach is reasonable, particularly

when home-range size is large compared to the original

grid resolution. However, we found evidence of a trade-

off between decreased computation speed (resulting

from imposing a resampling grid) and the certainty of

Nk. Processing speed for fine-resolution grids was much

slower, in some cases prohibitively so, but coarse-

resolution grids tended to ‘‘lose’’ pseudo-home ranges

that were tallied at the finer resolutions. Splitting large

clusters into smaller pieces also substantially reduced

processing time, but resulted in less certain estimates of

Nk. We were able to successfully demonstrate a method

for estimating upper and lower bounds on Nk in this

approach, however. Parallel programs that run on

computer clusters should also be helpful. Another

option would be to implement a hill-climbing algorithm

(or some other approximation algorithm). Such an

algorithm would not give the maximum clique size but

might give useful approximations even for very large

problem instances.

Given these limitations, it appears that estimating Nk

through maximum clique analysis is best suited for

species that occur in clustered distributions (where the

problem can be broken into several, smaller problems),

or for species with large home ranges where resampling

the points to a large grid size can reduce the problem to

manageable proportions. For other species, however, it

may be most feasible to compute upper and lower

bounds only.
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