
Ecological Informatics 77 (2023) 102257

Available online 10 August 2023
1574-9541/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-
nc/4.0/).

Evaluating a tandem human-machine approach to labelling of wildlife in 
remote camera monitoring 

Laurence A. Clarfeld a,*, Alexej P.K. Sirén a, Brendan M. Mulhall b, Tammy L. Wilson c, 
Elena Bernier d, John Farrell d, Gus Lunde d, Nicole Hardy d, Katherina D. Gieder e, 
Robert Abrams f, Sue Staats g, Scott McLellan h, Therese M. Donovan i 

a Vermont Cooperative Fish and Wildlife Research Unit, University of Vermont, Burlington, VT, USA 
b Texas State University, San Marcos, TX, USA 
c U.S. Geological Survey, Massachusetts Cooperative Fish and Wildlife Research Unit, Department of Environmental Conservation, University of Massachusetts, Amherst, 
MA, USA 
d University of Vermont, Burlington, VT, USA 
e Vermont Department of Fish and Wildlife, Rutland, VT, USA 
f U.S. Forest Service, Green Mountain National Forest, Manchester Center, VT, USA 
g U.S. Forest Service, Green Mountain National Forest, Rochester, VT, USA 
h Maine Dept of Inland Fisheries and Wildlife, Greenville, ME, USA 
i U.S. Geological Survey, Vermont Cooperative Fish and Wildlife Research Unit, Rubenstein School of Environment and Natural Resources, University of Vermont, 
Burlington, VT, USA   

A R T I C L E  I N F O   

Keywords: 
Artificial intelligence 
Camera trap 
Data labeling 
Machine learning 
Trail camera 
Wildlife monitoring 
Bounding box 

A B S T R A C T   

Remote cameras (“trail cameras”) are a popular tool for non-invasive, continuous wildlife monitoring, and as 
they become more prevalent in wildlife research, machine learning (ML) is increasingly used to automate or 
accelerate the labor-intensive process of labelling (i.e., tagging) photos. Human-machine hybrid tagging ap-
proaches have been shown to greatly increase tagging efficiency (i.e., time to tag a single image). However, those 
potential increases hinge on the extent to which an ML model makes correct vs. incorrect predictions. We per-
formed an experiment using a ML model that produces bounding boxes around animals, people, and vehicles in 
remote camera imagery (MegaDetector) to consider the impact of a ML model’s performance on its ability to 
accelerate human labeling. Six participants tagged trail camera images collected from 12 sites in Vermont and 
Maine, USA (January–September 2022) using three tagging methods (one with ML bounding box assistance and 
two without assistance). We used a generalized linear mixed model to examine the influence of ML model 
performance and tagging method on tagging efficiency. We found that ML bounding boxes offer significant 
improvement in tagging efficiency when labelling data compared to unassisted tagging. Additionally, the time 
taken to label with bounding boxes was not statistically different from an unassisted tagging approach. However, 
we found that gains in efficiency are contingent on the ML algorithm’s performance and that incorrect ML 
predictions, particularly the 4.2% false positive and 3.6% false negative predictions, can slow the tagging process 
compared to a non-hybrid approach. These findings indicate that although practitioners usually forgo the pro-
duction of bounding boxes when selecting a data labelling process due to the increased effort, ML bounding box- 
assisted tagging can offer an efficient method for labeling. More broadly, ML-assisted data labelling offers an 
opportunity to accelerate the analysis of trail camera imagery, but an assessment of the ML model’s performance 
can illuminate whether the hybrid-tagging approach is ultimately a help or hinderance.   

1. Introduction 

Remote cameras (aka trail cameras or camera traps) are a primary 

tool for studying many wildlife species (Burton et al., 2015; O’Connell 
et al., 2011) and have been used to observe animal behavior, monitor 
rare and endangered species, surveille invasive species, and build 
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occupancy models to understand the distribution of populations across 
the landscape through time (Cove et al., 2021; Gilbert et al., 2020; Kays 
et al., 2020; Steenweg et al., 2017). Monitoring via remote cameras has 
grown in popularity due to a confluence of favorable circumstances. 
First, camera quality and reductions in cost have increased the effec-
tiveness of monitoring with remote cameras compared to other methods 
(Wearn and Glover-Kapfer, 2019). Second, there have been rapid im-
provements in the technology for reading, writing, and storing the large 
volumes of digital data that are generated from remote monitoring 
(Mack, 2011). Third, some newer remote camera models allow for 
photos to be received wirelessly via cellular networks, reducing the 
number of costly site visits required to maintain cameras after deploy-
ment (Herrera et al., 2022). Consequently, the number of publications 
referencing “remote cameras” or “camera traps” have more than 
doubled in the past decade on Web of Science (accessed February 2023). 

However, there are significant challenges to overcome in managing 
and interpreting the terabytes of images that can be produced by camera 
trapping. False triggers may occur when a camera’s infrared sensor is 
triggered unintentionally by vegetation, sunlight, or patchy shade 
(Glover-Kapfer et al., 2019). The process of sorting through “empty” 
images can be time-consuming, potentially requiring hundreds of hours 
for large scale projects, and can take away from the already limited time 
needed to analyze noteworthy photos. After false triggers are removed, 
labelling images is a monumental task and manual labelling can quickly 
become a bottleneck that impedes timely dissemination of results. Data 
labelling typically involves a person reviewing images from the camera 
card in the order in which they were taken and annotating the species 
present in each image. Attributes such as the number of individuals 
present of each species, age class, sex, behavior, etc. may also be 
documented. Without labelled data, there is no way to translate moni-
toring images into meaningful information about wildlife. 

Modern machine-learning (ML) methods can perform a variety of 
tasks to help meet these challenges. Determining whether an animal is 
present in an image is a binary classification task that can be performed 
via machine learning to filter out false detections from a dataset. Several 
methods have been used to predict whether an image is empty, including 

measurement of differences between consecutive images (Price Tack 
et al., 2016; Ren et al., 2013; Wei et al., 2020), convolutional neural 
networks (Tabak et al., 2019; Tabak et al., 2020), and ensemble learning 
(Yang et al., 2021). Alternatively, object detection models that localize 
target objects (animals) within an image can be used to filter empty 
images (Beery et al., 2019). In contrast to other techniques, this 
approach not only identifies empty images through the absence of target 
objects, but also indicates the location of each target object within an 
image (Fig. 1). 

In addition to their utility in removing false detections, bounding 
boxes around target objects serve multiple functions in wildlife research. 
They can be used for counting animals in images (Torney et al., 2019) 
and aiding in distance estimation of animals from the camera (Hof-
meester et al., 2017). These metrics allow researchers to go beyond 
simple presence/absence studies and begin to estimate abundance 
(Haucke et al., 2022; Johanns et al., 2022; Rowcliffe et al., 2008). 
Bounding boxes can also be used to infer animal movement, which can 
have important implications for interpreting behavior (Lopez-Marcano 
et al., 2021). 

By localizing target animals, object detection can allow downstream 
models to ignore the image background, reducing noise and potential 
bias (Beery et al., 2019; Norman et al., 2023). This is a common pre- 
processing step for ML models that attempt to identify individuals, 
which require an image to be cropped to a region of interest (Buehler 
et al., 2019; Crall et al., 2013; De Lorm et al., 2023). Image crops are also 
frequently used in species classification models (Li et al., 2022). 

Machine learning models that produce bounding boxes can also be 
used in tandem with human tagging efforts. For example, the bounding 
boxes may help the human “tagger” improve the efficiency of data la-
beling. However, when used in tandem with human tagging efforts, the 
ML bounding boxes may help or hinder the efficiency of data labeling. 
Improved tagging efficiency with the assistance of ML bounding boxes 
may depend on whether the bounding box correctly identifies a target 
animal within an image (true positive) or not (false positive). In the case 
of true positives (Fig. 1 upper-left), previous assessments of other ML 
models have shown that ML can reduce the number of human observers 

Fig. 1. Example model outputs from a machine learning model showing the bounding box around the target object (in red) for true positive (upper-left), false 
positive (upper-right), false negative (lower-left), and true negative (lower-right) predictions. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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required to reach a consensus identification (Willi et al., 2019). How-
ever, the effect of false bounding boxes on human tagging efficiency has 
not been explored (Fig. 1 upper-right). In contrast to true and false 
positives, the lack of a ML bounding box results in a true negative 
classification when the ML model is correct (Fig. 1 lower-right) or a false 
negative classification the ML model fails to create a bounding box 
around a target object (Fig. 1 lower-left). Together, these four classifi-
cation outcomes (true/false positives and negatives) are a proxy for the 
ML model’s performance. 

Without considering how classification outcome can increase effi-
ciency for tandem human-machine tagging, practitioners of ML methods 
are left to guess whether a ML model is “good enough” to be of practical 
use. The need for understanding the interplay between ML system ac-
curacy and realized time savings in hybrid computer-human labeling 
systems has been identified as an important direction for future work in 
the use of ML in camera trapping studies (Norouzzadeh et al., 2018). 
Ultimately, these types of evaluations help researchers use ML to shorten 
the gap between when data are collected and when the fully labelled 
dataset is available to inform management and conservation objectives. 

We explored the effects of classification outcome on the ability of ML 
bounding boxes to speed up the labelling of remote camera images with 
bounding boxes and species-level identifications. This exploration 
accounted for the number of animals in the image and whether the 
image was part of a temporal sequence of images or not. The objectives 
of our study were to: (1) Perform an experiment to directly compare 
tagging efficiency of a human-ML hybrid tagging approach using a ML 
bounding box model (MegaDetector) vs. human tagging unassisted by 
ML; (2) Assess the ML model’s performance via the observed 

classification outcomes from our experiment; and (3) Evaluate the ef-
fects of ML model performance on tagging efficiency, including an 
assessment of the overall utility of the ML bounding box model for 
accelerating the data labelling process. 

2. Materials and methods 

2.1. Objective 1: perform tagging efficiency experiment 

The remote camera imagery was collected from 12 locations: seven 
in northern Maine (Maine Department of Inland Fisheries and Wildlife) 
and five from the Green Mountain National Forest in Vermont, USA 
between January and September 2022 (Fig. 2). The sites selected varied 
in the degree of canopy closure, from open sites with herbaceous 
vegetation to heavily forested sites with abundant coarse woody debris. 
All sites used a standardized monitoring protocol developed by Sirén 
et al. (2018) that included the placement of a turkey feather attached to 
a wooden stake in the camera’s field-of-view to act as an attractant. All 
sites used cameras (Browning Recon Force Elite HP4) that were pro-
grammed to capture images when triggered by wildlife. Cameras were 
placed 1-2 m off the ground and programmed to record 1 image (no 
multi-shot/burst mode), with a 1 s resting time between triggers. Motion 
sensitivity was set to “normal” (60 ft), the triggering speed was set to 
“fast” (0.1 s), and the Infrared LED flash was set to “economy”. 

A subset of 100 consecutively captured photos were selected from 
each site (average range in days = 47), ensuring a balance between the 
number of images with animals vs. the number without (e.g., photo sets 
were checked to ensure they weren’t all empty or all taken of a single, 

Fig. 2. A map showing twelve study sites, seven of which were in northern Maine (ME), two in the northern Green Mountain National Forest in Vermont (VT), and 
three in the southern Green Mountain National Forest (also in VT). (NH = New Hampshire). 
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stationary animal). The resultant data consisted of images that con-
tained a variety of animal species and false triggers (empty images), with 
an approximate 50:50 split across all locations. 

Images were manually labelled by six “taggers” with and without the 
aid of ML bounding boxes, as described next. We used the ML model, 
MegaDetector, a free object detection model created by Microsoft, to 
place bounding boxes in camera trap data (Beery et al., 2019). Mega-
Detector is an object detection model developed for identifying people, 
animals, and vehicles from remote camera imagery (Beery et al., 2019). 
The model outputs include a bounding box around each target object 
detected, the predicted classification, and a confidence score for the 
prediction (Fig. 1). Trained on several hundred thousand images from a 
wide range of locations and contexts, it performs well and consequently 
has been adopted into multiple analytical tools (Ahumada et al., 2020; 
Cove et al., 2021; Hendry and Mann, 2017) and workflows by dozens of 
conservation organizations around the world (Beery et al., 2019). 
Because MegaDetector does not provide species-level classifications, it is 
frequently used to remove false triggers by placing bounding boxes 
around potential targets; if no targets are found, the image is likely a 
false trigger. Removal of blank images via MegaDetector can increase 
tagging efficiency 8 times that of a fully manual workflow (Fennell et al., 
2022). 

Tagging was performed using a customized version of the image 
tagging application from the R package AMMonitor, which provides a 
streamlined interface for tagging remote camera imagery (Balantic and 
Donovan, 2020). The tagging application allowed users to put a 
bounding box around each animal (or human) and indicate its taxon. 
The images were tagged by 6 coauthors on this paper (BM, EB, GL, NH, 
JF, APKS) familiar with wildlife species identification. The level of 
tagging experience varied between taggers, but all had been trained in 
use of the AMMonitor image tagging application on separate images 
prior to this study. 

The tagging experiment included three treatment groups represent-
ing different tagging protocols; each image was subjected to all three 
treatments by different taggers:  

(1) Bounding Boxes, Assisted: In this treatment, taggers identified 
animals/humans from monitoring photos, adding bounding 
boxes around each individual, with the ML model’s predicted 
bounding boxes pre-populated into the tagging application. For 
this treatment, we ran the ML model (MegaDetector model 
version MDv5a) on all images prior to the experiment on a 
computer (Dell Latitude 7420 with an Intel i7-1165G7 CPU at a 
speed of 2.80 GHz with 16 GB of RAM). Any ML model detections 
with a confidence score of 0.1 or higher were included in this 
treatment group.  

(2) Bounding Boxes, Unassisted: Like the previous treatment, taggers 
identified animals/humans from monitoring photos, adding 
bounding boxes around each individual, but without the assis-
tance of ML bounding boxes. 

(3) No Bounding Boxes, Unassisted: In this treatment, taggers iden-
tified animals/humans from monitoring photos, but did not add 
bounding boxes around each individual (and without ML 
bounding box assistance). This treatment represents the standard 
approach used by studies to tag camera data. 

Taggers were randomly assigned to one of the three treatment groups 
for each location so that all images from a given location received each 
treatment twice. Taggers were instructed to open the tagging applica-
tion, select a location, and label all images from each location in a single, 
uninterrupted sitting. The image tagging application’s state varied ac-
cording to treatment. For treatment 1 (Bounding Boxes, Assisted) only, 
the tagging application prepopulated the ML bounding boxes that the 
tagger could either use or delete/replace by drawing a new bounding 
box. In cases where a human or vehicle was detected, the “Human” 
species label was also applied to the image. Otherwise, taggers could add 

a species label. Images with no animals present were tagged as “empty” 
without the need to apply a bounding box. For treatments 2 (Bounding 
Boxes, Unassisted) and 3 (No Bounding Boxes, Unassisted), the image 
tagging application presented the image without ML bounding boxes. 

The tagging application was configured to store the exact time at 
which the user toggled between images, allowing the duration spent 
looking at each image to be directly calculated. Upon completion of 
tagged images from a given location, taggers were instructed to save all 
results to a csv file and pause briefly before continuing to the next 
location. 

2.2. Objective 2: evaluate the ML bounding box model’s performance 

To evaluate the performance of the ML bounding box model, we 
considered classification outcome (true/false positives and negatives) as 
our key predictor variable. Together, these values form a confusion 
matrix, which is a standard tool in evaluating classification models. The 
classification outcome for each image was determined relative to the 
labels provided by each tagger in treatment 1 (the only treatment in 
which the ML model’s bounding boxes were displayed). The treatment 1 
labels were assumed to be the “ground-truth” because a tagger who 
believes an animal is absent (or present) in an image will behave the 
same way whether or not an animal is truly absent; thus the time per 
tagging event is dependent on the tagger’s actions rather than the true 
classification of the image. 

2.3. Objective 3: evaluate the effects of ML bounding boxes on tagging 
efficiency 

We fit a generalized linear mixed model (GLMM), including fixed 
and random effects, to evaluate the impacts of ML bounding boxes on 
tagging efficiency. Tagger efficiency was the outcome variable in our 
model and is represented by the total time required to tag a single image 
under a specific treatment. As these times are left-bounded by zero, a 
Gamma family and log link function were used. The model was (Eq. 1). 

t diff ∼ treatment* class outcome+ num animals+ in seq+(1 | site* tagger)
(1) 

Fixed effects included the interaction between the ML model per-
formance and tagging treatment. The ML model performance was 
measured by the classification outcomes (class_outcome) described in 
the introduction, namely, whether the image was a true positive 
bounding box, a true negative with no bounding box, a false positive 
bounding box, and false negative (lack of bounding box around an 
identified animal or person). The tagging treatment included (1) 
Bounding Boxes, Assisted; (2) Bounding Boxes, Unassisted; and (3) No 
Bounding Boxes, Unassisted. Because the effect of treatment on tagging 
efficiency may depend on the class outcome, the model specification 
included an interaction effect between classification outcome and 
treatment group. 

Additional fixed effects included (a) the number of animals in an 
image (e.g., creating bounding boxes for 2 animals is expected to take 
longer than for 1 animal) and (b) whether an image was “in sequence” or 
not (0/1). We defined an image to be “in sequence” if it had the same 
species (or absence of species) and had visually similar background 
conditions to the image that immediately preceded it. We defined 
consecutive images to have visually similar background when they have 
the same environmental conditions. For example, a moose (Alces alces) 
that lingers in the camera’s field-of-view for many consecutive frames or 
a long series of empty frames with the same lighting would be consid-
ered in-sequence. Examples of images that are not “in sequence” are 
when one frame has an animal and the next does not, or when one frame 
is in daytime conditions and the next was taken after dark. While this 
definition is somewhat subjective, in practice the determination was 
typically obvious. Whether an image is in sequence is important because 
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these images can be tagged more quickly based on the context of the 
prior image and occur frequently in real-world datasets. 

Random effects were included to account for dependencies among 
the twelve sites and six taggers. Sites varied from each other in a variety 
of ways that could increase or decrease tagging efficiency. For example, 
sites with an abundance of coarse woody debris present more chal-
lenging conditions for spotting animals compared to open sites. The 
species composition between sites also varied, with some having more 
challenging species to spot or identify than others. Likewise, taggers 
varied in their level of tagging expertise, each having their own 
strengths and weaknesses. Given the potential interplay between tagger 
ability and site characteristics, a cross-factor random effect between 
tagger and site was used in the final model (Eq. 1). 

We used the R package glmmTMB (Magnusson et al., 2017) to fit the 
model, and the R package DHARMa (Hartig, 2022) to evaluate the fit of 
the GLMM. The DHARMa package uses simulation-based dispersion and 
outlier tests to assess goodness-of-fit. Beta coefficients and standard 
errors from the fitted GLMM were then used to create confidence in-
tervals for each permutation of classification outcome and treatment, as 
discussed in the following section. 

3. Results 

3.1. Objective 1: perform tagging efficiency experiment 

Of the 7200 instances of taggers labelling an image (6 taggers × 1200 
images), 3.6% were excluded from analyses for a variety of reasons: (1) 
The first and last (N = 24) images tagged by a single tagger in a single 
sitting were excluded to avoid edge effects associated with starting and 
stopping the experiment; (2) Tagging events that required over 30 s 
(N = 104) were also dropped, as these were considered longer than 
expected without some extraneous explanatory factors; (3) Some 
tagging events were omitted due to human error (N = 95) (e.g., 
forgetting to include a bounding box but identifying present species for 
treatment 1); and, (4) Cases where the ML model produced a bounding 
box in the wrong location in images where animals were present 
(N = 48) could be considered to have classification outcome of both a 
false positive and a false negative and were excluded since this case was 
not well-enough represented in our dataset to draw any meaningful 
conclusions. The final dataset consisted of 6936 tagging events under the 
3 treatments. 

The images in the final dataset spanned 564 trap days between 
January 7 and September 14, 2022. About half of the 1200 images 
collected did not contain any animals. Those with animals represented 
20 different species of mammals and birds. The majority (72%) of im-
ages were “in sequence” and, of the images with animals, 96.0% con-
tained one individual, 3.9% contained two individuals, and 0.1% 
contained three. 

3.2. Objective 2: evaluate the ML bounding box model performance 

Overall, the ML bounding box model was 92.2% accurate on the 
given data, with 45.2% true positive classifications, 47.0% true nega-
tive, 4.2% false positive and 3.6% false negative. These outcomes are 
shown in the confusion matrix (Fig. 3). Several additional performance 
metrics can be derived from the observed classification outcomes, 
including precision (the number of true positives relative to true and 
false positives) and recall (the number of true positives relative to true 
positives and false negatives). The performance was well-balanced be-
tween precision and recall, with 92.6% and 91.5%, respectively. The 
classes in the dataset were also well-balanced, with 49.6% of images 
containing at least one animal and 51.4% with no animals (empty). 

3.3. Objective 3: evaluate the effects of ML model performance on tagging 
efficiency 

The GLMM model was fitted on 6936 observations using the 
glmmTMB R package. The standard deviations of the random effects in 
our model were 0.13 for site (N = 12), 0.21 for tagger (N = 6), and 0.34 
for site:tagger (N = 72). Goodness-of-fit was measured using several 
tests from the DHARMa R package. The outlier test considers the like-
lihood of an observation being outside the simulation envelope and 
indicated that outliers occur at expected frequencies (p = 0.499). The 
dispersion test performs a simulation-based assessment for under- and 
over-dispersion and found no significant deviations from expected 
values (p = 0.152). 

The GLMM model estimated a significant difference in the time 
required to tag an image based on all combinations of the key covariates, 
treatment group and classification outcome, for all combinations except 
treatment 3 (no bounding boxes, unassisted) with the class outcome 
“false positive” (Table 1). Treatments 2 (bounding boxes, unassisted) 
and 3 (no bounding boxes, unassisted) both had a positive coefficient 
when the class_outcome was true positive and true negative, indicating 
an increased amount of time required to tag an image. The same treat-
ments had a negative coefficient when class_outcome was false negative 
or false positive, indicating a decreased amount of time required to tag 
an image. The opposite pattern was observed for treatment 1 (bounding 
boxes, assisted), which had a positive coefficient for class_outcome of 
false positive and false negative, and a negative coefficient for class_-
outcome of true positive and true negative. The variable “in_seq” (in 
sequence) had a negative coefficient, indicating “in sequence” images 
took less time to tag. The variable “num_animals” (number of animals) 
had a positive coefficient, indicating tagging time increased for images 
with more than 1 animal (Table 1). 

We used the beta coefficients from the fitted GLMM model (Table 1) 
to generate predicted values for the time required to tag each image by 
tagger treatment type and classification outcome while trying to control 
for all other factors (Fig. 4). In generating predicted values, we set all 
random effects to zero and assumed predictions were not in-sequence in 
all cases. The number of animals in each image were assumed to be zero 
for true negative and false positive classification outcomes and one for 
true positive and false negative classification outcomes. A 95% confi-
dence interval for these predictions was derived from the beta coeffi-
cient standard error, allowing us to consider how each combination of 
tagging method × classification outcome affects the time required to tag 

Fig. 3. Confusion matrix showing the percentage of true positive (upper-left 
quadrant), false positive (upper-right quadrant), false negative (lower-left 
quadrant), and true negative (lower-right quadrant) classification outcomes 
observed during the experiment. 
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an image. 
When the ML model classification outcome contained a false nega-

tive prediction, treatments 1 (bounding boxes, assisted) and 2 (bounding 
boxes, unassisted) required significantly more time to tag an image than 
treatment 3 (no bounding boxes, unassisted). False positive model out-
comes for treatment 1 resulted in significantly longer tagging times than 
treatments 2 and 3. For true negative classification outcome, all treat-
ment groups performed similarly, and for true positives treatment 2 
required more tagging time than treatments 1 and 3. A direct compar-
ison, including expected tagging time per image and confidence in-
tervals for each permutation of treatment group and classification 
outcome, is shown in Fig. 4. 

The overall expected tagging time per image was calculated as a 

weighted average for each treatment group, given the observed relative 
frequencies of each classification outcome (Table 1). The point estimates 
for mean tagging time per image for treatments 1, 2, and 3 were 7.3, 
11.5, and 5.1 s, respectively. Confidence intervals show treatment 2 
(bounding boxes, unassisted) to be significantly slower than the other 
two treatments (Fig. 5). There was no statistical evidence that the time 
required per image for treatment 3 (no bounding boxes, unassisted) 
differed from treatment 1 (bounding boxes, assisted). 

4. Discussion 

We investigated how a hybrid human-ML tagging approach, using 
bounding boxes produced by the ML model (MegaDetector), influenced 

Table 1 
Beta coefficients and confidence intervals for GLMM model parameters. The model fixed effects include: Treatments 1 (bounding boxes, assisted), 2 (bounding boxes, 
unassisted), and 3 (no bounding boxes, unassisted); classification outcomes (class_outcome) of true positive (tp), true negative (tn), false positive (fp) and false negative 
(fn); the number of animals in the image (num_animals); and, whether an image is “in-sequence” (in_seq). The model intercept represents treatment 1 and classification 
outcome of false negative (fn). For each fixed effect, the beta estimates, standard error, z-value, probability, and 95% confidence intervals are shown.  

Parameter(s) Estimate Std. Error z value Pr(>|z|) 2.50% 97.50% 

(Intercept) 2.60 0.14 18.74 2.34E-78 2.33 2.87 
treatment: 2 − 0.25 0.12 − 2.04 4.18E-02 − 0.50 − 0.01 
treatment: 3 − 1.12 0.13 − 8.94 4.07E-19 − 1.36 − 0.87 
class_outcome: fp 0.33 0.11 2.88 3.97E-03 0.10 0.55 
class_outcome: tn − 1.06 0.09 − 11.30 1.33E-29 − 1.24 − 0.88 
class_outcome: tp − 1.21 0.08 − 15.37 2.63E-53 − 1.36 − 1.05 
num_animals 0.62 0.05 12.61 1.90E-36 0.53 0.72 
in_seq − 0.85 0.02 − 45.85 0.00E+00 − 0.89 − 0.82 
treatment/class_outcome: 2/fp − 0.95 0.14 − 6.65 2.94E-11 − 1.22 − 0.67 
treatment/class_outcome: 3/fp − 0.28 0.14 − 1.94 5.19E-02 − 0.55 2.24E-03 
treatment/class_outcome: 2/tn 0.30 0.11 2.74 6.05E-03 0.09 0.52 
treatment/class_outcome: 3/tn 1.13 0.11 10.19 2.22E-24 0.91 1.34 
treatment/class_outcome: 2/tp 1.15 0.11 10.63 2.23E-26 0.94 1.36 
treatment/class_outcome: 3/tp 0.79 0.11 7.29 3.08E-13 0.58 1.00  

Fig. 4. Model estimates, with 95% confidence intervals, of tagging time per image based on treatments 1 (bounding boxes, assisted), 2 (bounding boxes, unassisted), 
and 3 (no bounding boxes, unassisted) and classification outcomes true positive (tp), true negative (tn), false positive (fp), and false negative (fn). Random effects 
were set to zero (population-level estimates) and the fixed effect “in sequence” was assumed to be 0 for true negatives and false positives, and the number of animals 
per image (integer) was assumed to be 0 for “empty” images (true negatives and false positives) and 1 otherwise. 
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the efficiency of tagging remote camera data. Overall, we found that 
tagging images with ML bounding boxes is nearly twice as fast as tagging 
with bounding boxes, unassisted. Tagging images with only the species 
label (without bounding boxes) was the fastest tagging method, 
although not significantly different relative to tagging with ML bound-
ing boxes. Our results highlight the value of combining ML-based ap-
proaches with manual tagging to increase the speed at which camera 
data is processed, which can ultimately allow for faster analyses. 

There are multiple benefits to using bounding boxes to enhance 
human tagging. First, this hybrid ML-human tagging approach greatly 
reduced the burden of procuring bounding boxes. Because manually 
adding bounding boxes is labor intensive, this task is often forgone in 
favor of simply indicating the species present without localizing them 
within the image (Norouzzadeh et al., 2021). Further, our results suggest 
that the hybrid ML-human approach is not significantly slower than 
traditional species-only labelling in efficiency. 

The use of bounding boxes in wildlife research is still somewhat 
limited, but has been growing over the past two decades, especially 
when applied towards species classification (Neupane et al., 2022). 
Training classification models based on crops of animals from an image 
have been shown to be effective at allowing models to focus on the target 
object and not overfit on the background (Beery et al., 2019; Norman 
et al., 2023). In some past studies, bounding boxes for training models 
could be procured through manual annotation (Yu et al., 2013). As 
automated bounding box generation was introduced to the species 
classification pipeline, the quality of those boxes was recognized as a 
factor that could impact model training and performance (Chen et al., 
2014). More recently, the ML bounding box model MegaDetector has 
been incorporated into several species-classification models (Bothmann 
et al., 2023; Cunha et al., 2023). Validating bounding boxes through 
manual annotation is needed to ensure the cropped images used to train 
classification models are accurate, and so understanding the trade-offs in 
effort for labelling bounding boxes with a variety of methods is 
increasingly important. 

Additionally, if we consider the use of ML models as a pre-filtering 
method for removing blank images, the effective time required for 
tagging false negatives becomes zero, and ML-assisted tagging with 
bounding boxes could be even faster than tagging without bounding 
boxes. However, the increased efficiency from using a ML model to pre- 
filter empty images would come at a cost (e.g., in our application of 
MegaDetector, throwing away the 3.6% of false negatives predicted to 

be empty image that contained an animal or object). 
Despite these benefits, the favorable outcomes of ML bounding box 

assisted tagging assume that our observed model performance (Fig. 3) is 
representative and may not be applicable in all circumstances. In our 
study, precision and recall rates were 92.6% and 91.5%, respectively. 
Direct comparisons with other studies are difficult due to differences in 
the chosen confidence threshold and the version of the ML bounding box 
model that we used (MegaDetector MDv5a), but one study that exam-
ined MegaDetector V4.1 reported precision as high as 99% for a 
threshold of 0.75 on motion-detected images and as low 35% on time 
lapse images with a threshold of 0.0 (Leorna and Brinkman, 2022). 
Likewise, that study reported recall ranging from 98% for motion- 
detected images with a threshold of 0.0 to 13% for time lapse images 
with a threshold of 0.75. Correct predictions (true positives and nega-
tives) have the potential to greatly accelerate the tagging process. 
However, when ML models make a mistake (false positives and nega-
tives), it can be costly. When an animal is present in an image, a ML 
model’s failure to locate it (false negative) causes the time required for 
tagging to quadruple for the ML-assisted treatment. Conversely, when 
no animal is present in an image, tagging time triples when an ML model 
fails to recognize it (false positive). 

False negative predictions have been shown to be more likely when 
animals encountered are small or far from the camera, such as if often 
the case in timelapse mode compared to triggered images (Leorna and 
Brinkman, 2022). Several factors may also affect a ML model’s false 
positive rate, including elements of the image background that could be 
confused for animals. For example, 12 of 49 (24.5%) false positive 
predictions in our experiment were from bounding boxes placed around 
the turkey feather that is included as an attractant in the camera field-of- 
view. Had the camera protocol differed and the feather not been placed 
in the camera’s field-of-view, the false positive rate would likely have 
been lower. 

One of the most important factors influencing the false positive and 
false negative rates is also the most controllable: the threshold for the 
ML confidence score for determining which predicted bounding boxes to 
consider. When used to automatically cull empty images, the threshold 
might be set quite low, to minimize the number of false negatives and 
avoid loss of images with animals. This increase in recall typically results 
in a loss of precision, and so the false positive rate will be relatively 
higher. Tuning of the confidence threshold to optimize performance in 
ML-classification pipelines has been recommended (Bothmann et al., 
2023), and could likewise be of benefit in a hybrid image labelling 
approach. Given the role of classification outcome in the effectiveness of 
an ML model to accelerate tagging, and the heterogeneity of perfor-
mance in different circumstances, a pre-assessment of the ML model is 
important for informing the appropriate confidence threshold and in 
determining its utility. 

There are some caveats of our statistical analysis that are worth 
noting. Internet speed (for rendering images from the web) and personal 
device performance were not measured and hence could not be included 
as covariates. However, taggers all self-reported that they experienced 
no issues with computing tools and any impacts would be at least 
partially captured by the random effect of “tagger”. Additionally, 
identifying animals may take varying amounts of time based on com-
binations of the species present, image quality, and environmental 
conditions. These factors were not incorporated directly into our sta-
tistical model due to either the small sample sizes of their representative 
classes or our inability to explicitly measure them. Some were at least 
partially captured through correlation with other parameters that we 
did model. One example of this is background complexity (e.g., the 
amount of coarse woody debris). Since the background is more-or-less 
constant at each location, this feature is at least partially accounted 
for by “site”. 

The species present in an image are also partially captured by other 
features. For example, moose (Alces alces) are large and obvious and 
frequently linger in the camera field-of-view, captured in many 

Fig. 5. Model estimates, with 95% confidence intervals, of tagging time per 
image based on treatments 1 (bounding boxes, assisted), 2 (bounding boxes, 
unassisted), and 3 (no bounding boxes, unassisted), under the assumption that 
classification outcomes occur at the frequencies observed in the experiment, of 
45.2% true positive, 47.0% true negative, 4.2% false positive, and 3.6% 
false negative. 
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consecutive frames. Small species like tree squirrels (Sciurus sp.) are 
more likely to move quickly in and out of the frame or become obscured 
by vegetation. In this way, the species present may correlate with the “in 
sequence” feature and be captured in that way by our statistical model. 
Ultimately, we observed significant associations between our key fixed 
effects. 

5. Conclusion 

Ultimately, we show that ML model performance can affect the 
reliability of using ML in camera trapping research. In our study, the 
relative occurrence of each classification outcome can tip the scales in 
favor of or against its use as an aid in producing bounding boxes. While it 
may seem obvious that model performance can impact effectiveness, 
quantifying the relative gains from ML via a pre-assessment can inform 
performance thresholds based on a desired gain in tagging efficiency. 

As ML-techniques become more pervasive in the field of remote 
wildlife monitoring, further study of how ML model performance im-
pacts their utility could become increasingly important. Several open- 
source species-level classification models have recently been released 
(Böhner et al., 2022; Norouzzadeh et al., 2018; Tabak et al., 2019; Tabak 
et al., 2020; Tabak et al., 2022; Vecvanags et al., 2022; Whytock et al., 
2021) which can similarly be used in tandem with human tagging to 
improve tagging efficiency (Willi et al., 2019). Yet, species-level classi-
fication models can also be geographically constrained and underper-
form when applied on “out-of-sample” data from locations or in contexts 
that differ from the original training data (Tabak et al., 2019). Under-
standing the role of model performance on tagging efficiency for species- 
detection could prove useful in determining in what circumstances these 
models are effective. 

Author contributions 

Laurence A. Clarfeld conceived the ideas and designed the method-
ology. Alexej P.K. Sirén and T.L. Wilson designed the camera trapping 
arrays and Robert Abrams, Sue Staats, and Scott McLellan, Alexej P.K. 
Sirén also maintained the cameras and collected the field data. Alexej P. 
K. Sirén, Brendan Mulhall, Elena Bernier, John Farrell, Gus Lunde, and 
Nicole Hardy were taggers for the image tagging experiment. Laurence 
A. Clarfeld and Therese M. Donovan performed the statistical analyses. 
Laurence A. Clarfeld and Therese M. Donovan led the writing of the 
manuscript, with additional contributions by Alexej P.K. Sirén. All au-
thors contributed critically to the drafts and gave final approval for 
publication. 

Funding 

This work was supported by the U.S. Geological Survey: Grant # 
USGS - G21AC10001. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data are available on the USGS ScienceBase repository. https://doi. 
org/10.5066/P9FGUQEZ (Clarfeld et al., 2023). 

Acknowledgements 

We would like to thank Sarah Bassing for her review and two 
anonymous reviewers for their feedback on drafts of this manuscript. 
Funding was provided by the U.S. Geological Survey. Any use of trade, 

firm, or product names is for descriptive purposes only and does not 
imply endorsement by the U.S. Government. The Vermont Cooperative 
Fish and Wildlife Research Unit is jointly supported by the U.S. 
Geological Survey, University of Vermont, Vermont Department of Fish 
and Wildlife, US Fish and Wildlife Service, and Wildlife Management 
Institute. 

References 

Ahumada, J.A., Fegraus, E., Birch, T., Flores, N., Kays, R., O’Brien, T.G., Palmer, J., 
Schuttler, S., Zhao, J.Y., Jetz, W., et al., 2020. Wildlife insights: a platform to 
maximize the potential of camera trap and other passive sensor wildlife data for the 
planet. Environ. Conserv. 47, 1–6. 

Balantic, C., Donovan, T., 2020. AMMonitor: remote monitoring of biodiversity in an 
adaptive framework with r. Methods Ecol. Evol. 11, 869–877. https://doi.org/ 
10.1111/2041-210X.13397. 

Beery, S., Morris, D., Yang, S., 2019. Efficient Pipeline for Camera Trap Image Review 
arXiv preprint arXiv:1907.06772.  
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