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Abstract

Context Projected increases in human population

size are expected to increase forest loss and fragmen-

tation in the next century at the expense of forest-

dwelling species.

Objectives We estimated landscape carrying capac-

ity (Nk) for Ovenbirds in urban, suburban, exurban,

and rural areas for the years 2000 and 2050, and

compared changes in Nk with changes in occupancy

probability.

Methods Maximum clique analysis, a branch of

mathematical graph theory, was used to estimate

landscape carrying capacity, the maximum potential

number of territories a given landscape is capable of

supporting (Nk). We used occupancy probability maps

as inputs for calculating Ovenbird Nk in the north-

eastern USA and a spatially explicit growth model to

forecast future development patterns in 2050. We

compared occupancy probability with estimates of Nk

for urban, suburban, exurban, and rural areas for the

years 2000 and 2050.

Results In response to human population growth and

development, Ovenbird Nk was predicted to decrease
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23% in urban landscapes, 28% in suburban land-

scapes, 43% in exurban landscapes, and 20% in rural

landscapes. These decreases far exceeded decreases in

mean occupancy probabilities that ranged between 2

and 5% across the same development categories.

Thus, small decreases in occupancy probability

between 2000 and 2050 translated to much larger

decreases in Nk.

Conclusions For the first time, our study compares

occupancy probability with a species population

metric, Nk, to assess the impact of future development.

Maximum clique analysis is a tool that can be used to

estimate Nk and inform landscape management and

communication with stakeholders.

Keywords Landscape carrying capacity �
Occupancy modeling � Human population growth �
Maximum clique � Graph theory � Forest
fragmentation � Ovenbird � Northeastern USA

Introduction

For the first time in over a century, forest cover has

peaked and is declining in every northeastern state in

the United States (Foster et al. 2010). Several drivers

have contributed to this trend, notably human popu-

lation growth and development (Alig et al. 2004;

Tyrrell 2004; Brown et al. 2005; Drummond and

Loveland 2010; Lepczyk et al. 2013). According to the

U.S. Census Bureau, four million new people are

predicted to be added to the northeastern landscape

between the years 2000 and 2030 (U.S. Census Bureau

2005), which is expected to continue and intensify

forest loss and development (Nowak and Walton

2005; Stein 2005; DeNormandie et al. 2009; Foster

et al. 2010; Lepczyk et al. 2013).

The amount of human population growth is one

factor that can affect forest loss. The distribution of

people and houses on a landscape is a second factor

that affects both forest loss and forest fragmentation

(Theobald 2003; Radeloff et al. 2005a, b; Theobald

2005; Pidgeon et al. 2007; Bierwagen et al. 2010;

Sushinsky et al. 2012). This can translate into dispro-

portionately large effects of development on biodi-

versity, particularly in low-density residential areas

(Hansen et al. 2005; Radeloff et al. 2005b; Theobald

2005). These low-density areas have been described as

exurban (Brown et al. 2005; Theobald 2005) or the

wildland-urban interface (WUI) (Radeloff et al.

2005b). Exurban areas often contain viable forest

habitat for species occupancy, but can be under threat

of conversion due to proximity to environmental

amenities such as forests, lakes, and protected lands

(Rasker and Hansen 2000; Brown et al. 2005; Bier-

wagen et al. 2010).

In the face of future development and subsequent

forest loss and fragmentation, wildlife biologists are

pressed to estimate the risk of increased development

to wildlife populations—how will species respond?

The abundance, distribution, and viability of wildlife

populations can be intricately tied to the condition of

the landscape mosaic (Forman 1995; Turner et al.

2001; Scott et al. 2002; Haslem and Bennett 2008;

Brady et al. 2009; Dover and Settele 2009; Bissonette

2012). However, wildlife managers often cannot

manipulate the landscape mosaic on behalf of wildlife.

Given these challenges, spatially explicit tools are

needed to quantify how individual species’ distribu-

tions are expected to change in response to increased

development. Additionally, metrics are needed that

can be easily communicated to wildlife practitioners

and decision-makers alike (Burdett 2010; Brown et al.

2014).

One common method used to estimate the distri-

bution of animals is to calculate the probability that a

species will occur in the landscape based on spatial

covariates. Occupancy models use empirical detection

and non-detection data and species’ sensitivities to

variables such as forest amount, forest arrangement,

and percent development to estimate the probability

that a species will occur (w) (MacKenzie et al. 2006).

In a recent paper, Schwenk and Donovan (2011)

modeled w for over 60 bird species using a single-

species occupancy modeling framework and several

landscape covariates including forest cover, road

density, and distance to the nearest edge of a different

land cover class. In a second paper, this methodology

was expanded to predict w in future decades (to the

year 2050) for five forest-dependent birds species in

the northeastern USA based on projected changes in

human housing density, developed lands, forest cover,

and distance to the nearest edge of a different land

cover class (Brown et al. 2014). The probability of

occupancy for each species decreased by as much as

38% at specific locations within the study area and

nearly all towns (97%) had projected declines between
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the years 2000 and 2050. However, average declines

in occupancy across the study area were minimal,

ranging from 0% (Hairy Woodpecker) to 2% (Black-

throated Green Warbler, Ovenbird, and Hermit

Thrush). These results suggested that distribution

patterns of these species might not change consider-

ably in response to future land use change.

An alternative measure that is readily understood

by decision makers in assessing responses to future

land use change is wildlife population size (Rosenberg

and Blancher 2005). Traditional methods for estimat-

ing species’ populations, including mark-recapture,

total counts, and indirect counts, can be effective, but

are often too costly or impractical for many species.

Maximum clique analysis (MCA), a branch of math-

ematical graph theory, provides a novel way to

estimate the maximum potential population size of a

territorial species (Nk) a landscape is capable of

supporting, given its current composition and config-

uration (Donovan et al. 2012). For example, in the case

of territorial songbirds, Nk represents the maximum

number of breeding territories a defined landscape can

support. Although the actual population size may be

less than Nk, species’ responses to future land use

change can be evaluated using Nk.

To estimate Nk using maximum clique analysis,

consider a mathematical graph that consists of a set of

points (called objects) and edges that link the points.

Each edge indicates a relationship between its asso-

ciated pair of points. For example, if a graph

represented a social network, points may indicate

people, and edges may indicate friendships. Some

points have no connections (a loner), some have few

connections, and some (connectors, sensu Gladwell

2000) may have many connections. A clique in a graph

is a subset of the points in which every pair of points is

linked with an edge. Relative to a social network, a

clique would correspond to a group of mutual friends.

A clique is said to be maximum in a graph if a clique

with more points does not exist (e.g., the largest group

of mutual friends). In terms of wildlife, points

represent potential breeding territories in a landscape,

edges are drawn between two points if the two

territories can co-exist on the landscape without

overlap, and the maximum clique is the maximum

number of territories that the landscape can support

(Nk).

In this paper, we use occupancy models as inputs

for maximum clique analysis to predict changes in the

landscape carrying capacity (Nk) for a forest-nesting

bird as a result of predicted future landscape devel-

opment. Figure 1 illustrates how to transform an

occupancy map into an estimate of Nk with maximum

clique analysis under the assumption that probability

of occupancy is directly related to habitat suitability

(Martin et al. 2010; Donovan et al. 2012). First, an

occupancy map has pixel values that range between 0

and 1 (Fig. 1a). In this example, a focal pixel in row 3,

column 3 has an occupancy probability of 0.6

(Fig. 1a). The circle represents a buffered polygon

that simulates a territory that encompasses multiple

pixels. Second, a moving window analysis is con-

ducted in which the average w of the pixels within the

territory window is computed. This results in a raster

(the ‘‘territory capacity raster’’) in which each pixel

provides the average occupancy probability of a

hypothetical breeding territory (Fig. 1b). A numeric

threshold (‘‘cutoff’’) is set based on what is considered

a suitable territory score for the target species. In

Fig. 1b, all pixels that are greater to or equal than a

hypothetical cutoff of 0.8 are shaded, indicating that

they have sufficient resources in the surrounding cells

to support a breeding territory. The two locations that

meet the habitat threshold are retained, numbered 1

and 2, and buffered to simulate the placement of

pseudo territories on the landscape (Fig. 1c). The

pseudo territory locations are converted from spatial

locations to points (nodes) in a mathematical graph,

and edges are drawn between points that can co-exist

without overlapping territorial boundaries (Fig. 1d).

In this example, a maximum clique analysis of this

graph yields Nk = 2 because two territories can co-

exist on the landscape without overlapping territorial

boundaries. Figure 1e–h provides a second example,

resulting in six potential territories. However, the

maximum clique is Nk = 3 because the landscape is

capable of supporting only three territories that do not

overlap territorial boundaries. Logically, Nk may be

sensitive to both the territory size and to the cutoff

selected (Donovan et al. 2012).

The goal of this study was to compare occupancy

probability andNk as quantitative metrics and examine

their use in informing conservation and management

with respect to projected land use change. We selected

a forest-dependent songbird that is sensitive to devel-

opment and forest fragmentation, the Ovenbird (Seiu-

rus aurocapillus), as a model organism. The objectives

of our study were to: (1) Estimate landscape carrying
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capacity (Nk) for the Ovenbird in four residential

housing development classes: urban, suburban, exur-

ban, and rural, for the years 2000 and 2050, and (2)

Compare changes in occupancy probability with

changes in Nk.

Methods

Study area

The study area was the three-state region of Vermont,

New Hampshire, and mainland Massachusetts, USA

(* 76,100 square kilometers; Fig. 2). It was approx-

imately 68% forest, 11% developed, 9% agriculture,

6% wetlands, 4% open water, 1% shrubland, and less

than 1% bare rock and grassland according to the 2001

National Land Cover Dataset (NLCD) (Multi-

Resolution Land Characteristics Consortium 2001).

We defined the residential housing development

categories (hereafter, ‘‘development categories’’)

based on housing unit density thresholds from

Theobald (2005): (1) ‘‘urban’’ housing densities

are\ 0.1 ha per unit; (2) ‘‘suburban’’ housing densi-

ties are between 0.1 and 0.68 ha per unit; (3)

‘‘exurban’’ densities are between 0.68 and 16.18 ha

per unit; and (4) ‘‘rural’’ housing densities

are[ 16.18 ha per unit (Fig. 2). Approximately 50%

of the landscape was categorized as exurban, 36% as

rural, and 12% suburban and 3% urban development

categories in the year 2000. Between the years 2000

and 2050, Brown et al. (2014) predicted that roughly

half a million new housing units will be added to the

landscape in VT, NH, and MA using a spatially

explicit growth model (SERGoM) that operates on

100 m2 pixels (Bierwagen et al. 2010). Developed
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Fig. 1 From Donovan et al. 2012. a Hypothetical occupancy

map showing pixel values that range between 0 and 1. A focal

pixel in row 3, column 3 has an occupancy score of 0.6. The

circle represents a buffered polygon that simulates a territory;

bHypothetical territory capacity map based on Fig. 1a, in which

the pixel score is the average of the focal pixel plus the 8

surrounding cells. All pixels that are C to a hypothetical pseudo

territory threshold of 0.8 are shaded; c The two locations that

meet the threshold are retained, numbered 1 and 2, and buffered

to simulate the placement of pseudo territories on the landscape.

In this example, we used circular buffers to simulate pseudo

territories of the same size, resulting in a maximum of 2

territories that can co-exist on the landscape without overlap,

and Nk = 2; d The pseudo territory locations are de-spaced and

converted to points on a graph, and edges are drawn between

points that can co-exist without overlapping boundaries. A

maximum clique analysis of this graph yields Nk = 2; e The

same occupancy map as (a) is duplicated for a new analysis; f A
new hypothetical territory capacity map is created with a

hypothetical pseudo territory threshold of 0.7; g The six

locations that meet the 0.7 threshold are numbered retained

and numbered 1–6; h The pseudo territory locations are de-

spaced and converted to points on a graph as in (d). The

maximum clique of this graph (Nk) is 3. The maximum clique

(Nk) can be achieved in 6 ways: Examples include points 1, 2,

and 4 and points 1, 3, and 5
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areas (urban, suburban, and exurban) were expected to

rise in roughly the same proportion as rural areas were

predicted to decline, and the forecasted configuration

of development followed similar predicted

development patterns in other parts of the United

States (Theobald 2005). We chose a 50 year time

horizon for forecasting future development patterns

because it is reasonable for long-term planning

Fig. 2 Study area of

Vermont, New Hampshire,

and Massachusetts, USA,

illustrating four developed

land classes in 2000

(urban = pentagon,

suburban = triangle,

exurban = circle, and

rural = square) and two

study designs

(white = ‘‘Ovenbird’’ study

design and

black = ‘‘Random’’ study

design). Sites in the

‘‘Ovenbird’’ study design

contained at least 1

Ovenbird pseudo territory in

2000; sites in the ‘‘Random’’

study design were selected

at random. Developed land

classes are defined based on

the number of housing units

per hectare; where urban

housing densities

are\ 0.1 ha per unit;

suburban housing densities

are between 0.1 and 0.68 ha

per unit; exurban densities

are between 0.68 and

16.18 ha per unit; and rural

housing densities

are[ 16.18 ha per unit
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(Agarwal 2002; Lepczyk et al. 2013; Thompson et al.

2014).

Target species

The Ovenbird was selected for analysis based on its

habitat preferences and sensitivities to forest loss and

fragmentation. This neotropical migrant songbird

breeds throughout eastern North American forests.

Ovenbirds nest in mature deciduous and mixed forests

and are known to prefer large blocks of continuous

forests with structural diversity and high canopy

closure (60–90%) (McGowan and Corwin 2008).

Ovenbirds are negatively impacted by fragmentation,

where nesting success declines as the percentage of

forest in the landscape decreases (Robinson et al.

1995) and as the distance to edge decreases (Ortega

and Capen 1999). Ovenbirds respond negatively to

forest roads, power lines, and chronic noise (Ortega

and Capen 1999; Porneluzi 2011). As territorial

breeders, Ovenbirds are a good target species for

calculating Nk through time.

We used Ovenbird occupancy probability maps

developed by Brown et al. (2014) as inputs for the

MCA analyses. The maps were derived from single-

season occupancy models (MacKenzie et al. 2006)

(described fully in Schwenk and Donovan (2011)) for

singing male Ovenbirds across the study area for the

years 2000 and 2050. Supplementary Table 1 shows

the model-averaged coefficients obtained through the

occupancy model analysis (Schwenk and Donovan

2011); goodness-of-fit confirmed the model described

the observed field data (MacKenzie and Bailey 2004).

The strongest predictor of Ovenbird occupancy was

forest cover (percent forest cover within 1 km), a

variable that often declines in response to increases in

human population growth.

Study design

Maximum clique analysis (MCA) is a computing-

intensive endeavor; as such, we estimated changes in

Nk for 160 study sites that were roughly 40 ha in size

and at least 2000 m apart to ensure spatial indepen-

dence. The 160 sites were selected via two alternative

experimental designs. In the ‘‘Random’’ design, 80

sites were selected with stratified random sampling

(n = 20 sites in each development category: urban,

suburban, exurban, or rural). In the ‘‘Ovenbird’’

design, sites were similarly selected at random, but

under the condition that at least 1 Ovenbird pseudo-

territory was present in the year 2000. The second

design was necessary because many randomly

selected sites in urban and suburban development

categories did not contain viable Ovenbird habitat

(Nk = 0), and thus would not be expected to change

over time.

To select study sites, we assigned each 100 m2

pixel in the study area to one of four development

categories (urban, suburban, exurban, or rural) based

on housing density in the year 2000 (Theobald 2005).

Open water and protected lands were not classified

with a development category (Bierwagen et al. 2010)

because no future development will occur on those

pixels. Next, we conducted a moving window analysis

to identify the overall development category associ-

ated with the majority of pixels contained within a

357 m radius of the focal pixel (* 40 ha), now

referred to as a potential study site. Eighty sites were

randomly selected from the potential study sites for

both the ‘‘Random’’ design and the ‘‘Ovenbird’’

design, where at least 1 pseudo territory was present

in the year 2000. By restricting our analyses to sample

sites, our sampling design did not permit us to estimate

Nk across the entire study area, but was sufficient to

understand how changes in the future will likely result

in each of the development categories.

Estimating Ovenbird Nk using maximum clique

analysis

We estimated Nk for each study site in the year 2000

and 2050 with maximum clique analysis, and evalu-

ated the sensitivity of Nk to three alternative Ovenbird

territory sizes and three alternative territory cutoff

values, described below. The general approach for

each site is described fully in Donovan et al. (2012)

and follows the steps outlined in Fig. 1. Briefly, a

30 m resolution occupancy map (year 2000 or 2050

from Brown et al. 2014) was the starting input

(Fig. 1a), clipped to the 40 ha study sites. Given the

pixel size of an occupancy map was smaller than the

territory size of an Ovenbird, the first step was to

convert the occupancy map so that pixel scores

depicted the territory capacity (Compton et al.

2006), achieved by assuming each pixel in the

occupancy raster was the center of a pseudo territory,

and computing a score so that the pixel value reflected

Landscape Ecol

123



the average suitability of the pixel itself plus the

surrounding area within territorial boundaries (e.g.,

Fig. 1b). We created three such ‘‘territory capacity’’

rasters based on alternative Ovenbird territory sizes:

small (909 90 m territories = 0.81 ha), medium (150

9 150 m = 2.25 ha), and large (270 9

270 m = 7.29 ha), covering the extent of Ovenbird

territory sizes across the Northeast U.S. (Porneluzi

2011). Second, for a given territory capacity raster,

pixel locations not meeting a minimum territory cutoff

were eliminated (e.g., Fig. 1c). For each territory

capacity raster, we considered three cutoff values:

0.71, 0.77, and 0.83. For any given cutoff value, we

assumed those locations below the cutoff value did not

contain sufficient resources to constitute an Ovenbird

pseudo territory. The cutoff 0.77 was determined by

calculating the median territory capacity scores from

the occupancy maps in locations where Ovenbirds

were known to occur with certainty in Vermont based

on singing male surveys and an average home range

size of 1.89 hectares (Schwenk and Donovan 2011).

Third, for each territory capacity map and cutoff

combination, each cell that met the cutoff criteria for a

pseudo territory was assigned a unique number within

each sample site. These represented points in a

mathematical graph and potential Ovenbird territories

(e.g., Fig. 1c, d). Two points were linked by an edge

(i.e., made adjacent) if the corresponding locations

could support both pseudo territories without over-

lapping or violating territory boundaries (e.g.,

Fig. 1d). Finally, we used the program Cliquer

(Niskanen 2003) to find the size of a maximum clique.

In total, 960 maximum clique analyses were run (2

experimental study designs 9 80 sites 9 3 territory

sizes 9 3 cutoffs 9 2 time periods). For each study

design, territory size, and cutoff combination (n = 18

analyses), a linear mixed model was used to model

maximum clique size as a function of two fixed

factors, development category (urban, suburban, exur-

ban, rural) and year (2000, 2050) and their interaction,

and one random factor (site). All computations were

done in (R Core Team 2017) with the lme function in

the package, nlme (Pinheiro 2017). Residual plots

were used to evaluate if the assumptions of the lme

model were met.

Comparing changes in occupancy probability

with changes in Nk

We calculated the average occupancy probability for

three territory sizes for each sample site for the years

2000 and 2050. For each study design and territory

size (n = 6 analyses), a linear mixed model was used

to model the average territory occupancy score as a

function of two fixed factors, development category

(urban, suburban, exurban, rural) and year (2000,

2050) and their interaction, along with one random

factor (site). All computations were done in (R Core

Team 2017) with the lme function in the package,

nlme (Pinheiro 2017). Residual plots were used to

evaluate if the assumptions of the lmemodel were met.

Results

Estimating Ovenbird Nk using maximum clique

analysis

Given a 40 hectare study site, Nk was greatest in rural

development categories, where the largest Nk

observed was 33, 19, and 12 Ovenbird territories for

small, medium, and large sized territories, respec-

tively, providing a benchmark for comparison. For all

18 assessments (study design9 territory size9 cutoff

combinations), mean Nk estimates varied with devel-

opment category and year (Table 1), with effect sizes

depicted in Fig. 3. Residual plots suggested that the

assumptions of the lme model were essentially met. In

general, mean Nk decreased overall as both territory

cutoff and territory size increased (Fig. 3). These

patterns can be explained through graph theory; the

cutoff selected for clique analysis alters the number of

points (potential pseudo territories) in a graph, and the

territory size alters the number of edges in a graph.

In the ‘‘Random’’ study design in which sites were

randomly selected within each development category,

the mean value ofNk over the study sites was 0 or close

to 0 in suburban and urban categories regardless of the

cutoff or territory size (Fig. 3, row 2). This is because

these development categories often do not contain

sufficient Ovenbird habitat due to highly fragmented

and low levels of forest cover (Porneluzi 2011). For

exurban and rural development categories in the

‘‘Random’’ study design, Nk decreased from the year

2000 to the year 2050, with larger declines in smaller
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territory sizes. The number of territories in exurban

habitat declined the steepest in the lowest territory

cutoff (0.71), whereas the number of territories in rural

habitat declined the steepest in the highest territory

cutoff (0.83). For example, for medium sized territo-

ries with a territory cutoff of 0.71 (Fig. 3, row 2,

column 1), exurban development categories Nk

decreased from 8.45 to 7.25 (absolute

change = - 1.2; relative change = - 14.2%), while

in rural development categories Nk decreased from

13.3 to 13.15 (absolute change = - 0.15; relative

change = - 1.1%).

These same general patterns held for the ‘‘Oven-

bird’’ study design, in which study sites were

randomly selected from each development category

under the condition that at least 1 Ovenbird pseudo

territory was present on the site in the year 2000

(Fig. 3, row 1). This bias in site selection produced

estimates of mean Nk that were higher than the

‘‘Random’’ design and resulted in Nk estimates for

urban and suburban sites that were on par with exurban

areas. For example, for medium sized territories and a

territory cutoff of 0.71 (Fig. 3, row 1, column 1), mean

Nk decreased from 16.15 to 16.05 (absolute

change = - 0.1, relative change = - 0.6%),

11.55 to 8.55 (absolute change = - 3; relative

change = - 26.0%), 9.65 to 7.4 (absolute

change = - 2.25; relative change = - 23.3%), and

11.45 to 9.65 (absolute change = - 1.8; relative

change = - 15.7%) in rural, exurban, suburban, and

urban categories, respectively. The Nk results for the

highest territory cutoff were similar in the ‘‘Ovenbird’’

and ‘‘Random’’ study designs across all development

categories (Fig. 3, rows 1 and 2, column 3).

Comparing changes in occupancy probability

with changes in Nk

For all 6 assessments (study design 9 territory size

combinations), mean territorial occupancy scores

varied with development category and year (Table 2),

with effect sizes depicted in Fig. 4. Residual plots

suggested that the assumptions of the lme model were

essentially met. Average territory occupancy score

Table 1 Results of linear mixed model analysis by experiment design, territory size, and cutoff, modeling the effects of development

category and year on Nk

Study design Territory size Parameter

Cutoff Intercept Development Year Dev 9 year

Ovenbird Small 0.71 588.63 (\ 0.001) 9.01 (\ 0.001) 43 (\ 0.001) 5.24 (\ 0.01)

0.77 200.64 (\ 0.001) 11.57 (\ 0.001) 48.44 (\ 0.001) 1.61 (ns)

0.83 27.57 (\ 0.001) 7.93 (\ 0.001) 11.2 (\ 0.01) 2.61 (ns)

Medium 0.71 554.39 (\ 0.001) 11.88 (\ 0.001) 37.59 (\ 0.001) 4.44 (\ 0.01)

0.77 195.35 (\ 0.001) 11.87 (\ 0.001) 44.8 (\ 0.001) 1.37 (ns)

0.83 28.71 (\ 0.001) 8.46 (\ 0.001) 11.23 (\ 0.01) 3.24 (ns)

Large 0.71 512.45 (\ 0.001) 11.01 (\ 0.001) 39.38 (\ 0.001) 4.39 (\ 0.01)

0.77 192.54 (\ 0.001) 13.02 (\ 0.001) 41.33 (\ 0.001) 1.31 (ns)

0.83 26.76 (\ 0.001) 7.36 (\ 0.001) 12.01 (\ 0.001) 3.35 (ns)

Random Small 0.71 126.39 (\ 0.001) 44.55 (\ 0.001) 12.03 (\ 0.001) 2.97 (ns)

0.77 44.23 (\ 0.001) 16.99 (\ 0.001) 14.93 (\ 0.001) 4.54 (\ 0.01)

0.83 10.46 (\ 0.01) 8.37 (\ 0.001) 6.08 (ns) 3.26 (ns)

Medium 0.71 120.6 (\ 0.001) 42.7 (\ 0.001) 8.07 (\ 0.01) 2.31 (ns)

0.77 45.13 (\ 0.001) 17.6 (\ 0.001) 14.85 (\ 0.001) 4.59 (\ 0.01)

0.83 10.24 (\ 0.01) 8.51 (\ 0.001) 6.46 (ns) 3.5 (ns)

Large 0.71 108.4 (\ 0.001) 38.81 (\ 0.001) 9.32 (\ 0.01) 2.63 (ns)

0.77 43.83 (\ 0.001) 16.98 (\ 0.001) 10.85 (\ 0.01) 3.2 (ns)

0.83 9.98 (\ 0.01) 8.59 (\ 0.001) 5.64 (ns) 3.35 (ns)

F statistics are provided for four effects, with p value in parentheses
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Fig. 3 Changes in mean landscape carrying capacity (Nk) ± 1

SE between the years 2000 (circles) and 2050 (triangles) in four

developed land classes: urban, suburban, exurban, and rural in

Vermont, New Hampshire, and Massachusetts, USA. The top

row provides results for the ‘‘Ovenbird’’ study design, in which

all study sites contained at least 1 Ovenbird pseudo territory in

2000; the bottom row provides results for the ‘‘Random’’ study

design in which sites were selected at random. Columns depict

results for three cutoff values (0.71, 0.77, and 0.83). Results are

depicted for small (0.81 ha; light gray), medium (2.25 ha; gray),

and large (7.29 ha; black) Ovenbird territory sizes

Table 2 Results of linear mixed model analysis by experiment design and territory size, modeling the effects of development

category and year on Nk

Study design Territory size Parameter

Intercept Development Year Dev 9 year

Ovenbird Small 3048.46 (\ 0.001) 7.05 (\ 0.001) 62.39 (\ 0.001) 1.16 (ns)

Medium 2881.55 (\ 0.001) 7.61 (\ 0.001) 62.41 (\ 0.001) 1.13 (ns)

Large 2818.77 (\ 0.001) 7.92 (\ 0.001) 62.46 (\ 0.001) 1.13 (ns)

Random Small 370.25 (\ 0.001) 66.96 (\ 0.001) 40.63 (\ 0.001) 3.29 (\ 0.05)

Medium 362.76 (\ 0.001) 67.14 (\ 0.001) 40.55 (\ 0.001) 3.27 (\ 0.05)

Large 360.38 (\ 0.001) 67.39 (\ 0.001) 40.78 (\ 0.001) 3.26 (\ 0.05)

F statistics are provided for four effects, with p value in parentheses
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declined slightly from the year 2000 to the year 2050,

but territory size had little impact on this pattern

(Fig. 4). In the ‘‘Random’’ design, mean territorial

occupancy varied predictably with development cat-

egory, with rural categories having the greatest

territorial occupancy scores and urban having the

lowest (Fig. 4, right panel). In the ‘‘Ovenbird’’ study

design, average territory occupancy scores were

similar for exurban, suburban, and urban development

categories, but were lower than the rural category

(Fig. 4, left panel). Declines in average occupancy

territory scores were * 0.025, with slightly greater

declines in non-rural development categories. For

example, in the ‘‘Ovenbird’’ design with medium

territory sizes, the absolute decline in average territo-

rial occupancy was - 0.018, - 0.031, - 0.029, and

- 0.020, for rural, exurban, suburban, and urban

development categories, respectively.

We compared the absolute and relative changes

between years for the two different metrics (Fig. 5),

where relative change was the absolute change divided

by the year 2000 metric. In these analyses, we

compared declines in occupancy with declines in Nk

where the territory cutoff was 0.77. As previously

stated and as would be expected due to their different

scales, declines in occupancy were much lower than

declines in Nk. For example, when territory size was

assumed to be small in exurban sites within the

‘‘Ovenbird’’ study design, average territorial occu-

pancy scores declined * 0.03, which resulted in a

decline in Nk by * 6. This 18% decline in Nk is

biologically relevant for a 40 ha site that was observed

to contain, at most, 33 territories.

Absolute declines in territory occupancy aver-

aged\- 0.03 for the ‘‘Ovenbird’’ design

and\- 0.02 for the ‘‘Random’’ design, with highest

declines observed in the exurban category within the

‘‘Ovenbird’’ study design (* - 0.03), and lowest

absolute declines observed the urban category within

the ‘‘Random’’ study design (* - 0.004). Absolute

declines in both Nk and territorial occupancy in the

‘‘Random’’ design were close to 0 for suburban and

urban categories for the simple reason that starting

conditions were very low to begin with (Fig. 5, top

Fig. 4 Changes in mean territory occupancy (w) ± 1 SE

between the years 2000 (circles) and 2050 (triangles) in four

developed land classes: urban, suburban, exurban, and rural in

Vermont, New Hampshire, and Massachusetts, USA. The left

panel provides results for the ‘‘Ovenbird’’ study design, in which

all study sites contained at least 1 Ovenbird pseudo territory in

2000; the right panel provides results for the ‘‘Random’’ study

design in which sites were selected at random. Results are

depicted for small (0.81 ha; light gray), medium (2.25 ha; gray),

and large (7.29 ha; black) Ovenbird territory sizes
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right panel). In this design, absolute declines in Nk

were approximately equal in exurban and rural

categories, with greater declines (* 2 territories)

observed with small territory sizes. In rural sites

assumed to be small, a decline of 2 territories

represents a 6% decline in landscape carrying

Fig. 5 Absolute change (top) and relative change (bottom) in

average Nk and average territory occupancy across the four

development categories and three territory sizes for a territory

cutoff value of 0.77. Absolute change is the absolute difference

in a metric from 2000 to 2050. Relative change is the absolute

change divided by the starting 2000 condition. Relative change

is presented as percentages. Results are depicted for small

(0.81 ha; light gray), medium (2.25 ha; gray), and large

(7.29 ha; black) territory sizes

Landscape Ecol

123



capacity, in contrast to an average territorial occu-

pancy decline of\ 2%. In the ‘‘Ovenbird’’ design,

absolute declines in Nk were greater than in the

‘‘Random’’ design and varied predictably with terri-

tory size (Fig. 5, top panel). In this study design, Nk

declined by * 5 in rural sites assumed to be small, a

15% reduction in landscape carrying capacity, as

compared to an average territorial occupancy decline

of\ 2%.

Patterns of relative declines provided alternative

views of decline by development category by com-

paring how each category changed relative to its year

2000 condition (Fig. 5, bottom panel). In terms of

relative declines, occupancy declines in the ‘‘Ran-

dom’’ design were largest in urban and smallest in the

rural development categories. In contrast, suburban

sites in the ‘‘Random’’ design exhibited the greatest

relative decline in Nk (Fig. 5, bottom right panel),

followed by urban, exurban, and rural categories,

respectively.

Discussion

Making decisions based on quantitative metrics is

challenging, but essential, for managers, town plan-

ners, and politicians. Metrics need to be biologically

meaningful, easy to understand, and straightforward to

communicate (Schiller 2001). Maximum clique anal-

ysis is a methodology that can translate occupancy

probabilities and other habitat suitability maps to yield

species population parameters, particularly for terri-

torial species. Population metrics are of primary

interest in conservation and natural resource manage-

ment to assess progress toward achieving conservation

goals and to learn about system responses to manage-

ment actions. For example, U.S. Fish and Wildlife

Joint Venture programs use abundance metrics to

quantify habitat objectives and deliver conservation

goals (Petrie 2011). Similarly, several state govern-

ments have identified research and monitoring needs

or goals for improving species abundance data (New

York State Department of Environmental Conserva-

tion 2015, Vermont Wildlife Action Plan Team 2015).

MCA can help with these needs.

In this paper, we demonstrated that small declines

in occupancy can result in significant declines in

maximum carrying capacity, Nk. Why is there such a

divergence in occupancy probability and Nk? For

Ovenbirds, small changes in forest cover can reduce

occupancy probability (Schwenk and Donovan 2011;

Supplementary Table 1). Between the years 2000 and

2050, some places in the landscape were predicted to

lose as much as 32% forest cover within a 1 km

window (Brown et al. 2014), but the decline in

occupancy probability was only predicted to be 2% on

average for the entire study area. The spatial config-

uration of where occupancy is being reduced is key to

interpreting these patterns—the highest declines occur

in exurban areas, regardless of territory size. The

minor overall change in occupancy probability likely

reflects the fact that occupancy probability in intact

habitat cells did not change significantly, while some

cells in edge habitat declined more precipitously. In

contrast, the decline inNk likely reflects territories that

were lost in edge habitats where occupancy probabil-

ity was near the habitat threshold. As depicted in this

study, occupancy modeling results are driven by

changes in intact, core habitat suitability, whereas

the carrying capacity results are driven by changes in

edge habitat suitability.

In maximum clique analysis, when pseudo territo-

ries are placed in the landscape, the average occu-

pancy within the pseudo territory is computed. Only

those pseudo territories that meet the habitat threshold

are retained as points for the clique analysis, and this

depends on the amount and configuration of forest

cover within the pseudo territory. Occupancy rates

often take on a non-linear function of such covariates,

in which small changes in forest cover will not

significantly change occupancy rates for sites that are

on either end of the covariate’s scale (e.g., heavily

forested and non-forested sites). However, for sites

with intermediate covariate values in the year 2000

small changes in forest cover can change the occu-

pancy rate more significantly. In our study, this is

exhibited by the steepest absolute declines in occu-

pancy occurring in the intermediate development

categories of suburban and exurban areas, as opposed

to rural and urban sites. Suburban and exurban

development categories are closer to their tipping

point (Gladwell 2000).

The spatial pattern of where Nk will decrease in the

landscape has consequences for managers and deci-

sion-makers as well as wildlife. In the United States,

exurban areas have been growing disproportionately

in comparison to the other three development classes

in recent years both in terms of absolute amount of
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hectares and rates of development (Vermont Forum on

Sprawl 1999; Theobald 2001; Brown et al. 2005;

Hansen et al. 2005; Radeloff et al. 2005a; Theobald

2005). In our study area, exurban development

occupied a large portion of the landscape (50% in

the year 2000); such areas have lower Nk than rural

areas, but significantly higher Nk compared to subur-

ban and urban areas (see Fig. 3 ‘‘Random’’ design), in

part because sizable forest patches can exist within

exurban development. This category had the greatest

absolute decline in occupancy probability as well as

the greatest decline inNk across analyses. The land use

change model used in this analysis focused on

increasing number of housing units, causing the

further fragmentation of wildlife habitat. This is

important because this development category, along

with suburban, are projected to increase by 1% while

rural categories are projected to decline by 2%. Even

though these changes are small, a 1% increase in

exurban development equates to roughly 694 square

kilometers across our entire study area.

Ovenbird territories were also predicted to decline

in the suburban and urban land classes, but two study

designs were needed to highlight the nature of the

change. When sites were randomly selected, Nk was

close to 0 (Fig. 3). Mean territorial occupancy scores

were low in both categories (Fig. 4). Suburban areas

experienced a greater decline in absolute occupancy,

perhaps because urban areas have reached their build-

out capacity and habitat potential. The ‘‘Ovenbird’’

study design was developed to elucidate changes in Nk

and occupancy for these two categories, conditional on

the fact that Ovenbird habitat could change in the

future. As a result of requiring at least 1 viable pseudo

territory per sample site, selected study sites in both

suburban and urban areas contained relatively high

quality habitat, likely biased toward conserved lands

surrounded by development. However, a substantial

body of research has shown that Ovenbird populations

that do occur within these development categories are

likely population sinks, characterized by low densi-

ties, low pairing success (Gibbs and Faaborg 1990;

Bayne and Hobson 2001), and high nest failure and

incidence of brood parasitism by the Brown-headed

Cowbird (Molothrus ater) (Donovan et al. 1995;

Morimoto et al. 2012); see also (Chalfoun et al. 2002).

In addition, Ovenbird territory sizes can vary as a

result of habitat quality (Smith and Shugart 1987).

Consequently, comparing results with large territory

sizes in suburban and urban areas with results from

medium or small territory sizes from exurban or rural

areas may be justified. If so, the differences in Nk

between the housing land cover classifications will be

even more exaggerated than our results currently

show.

It is often difficult to demonstrate the negative

effect of incremental land use change, even though

cumulative impacts can be detrimental to natural

resources and wildlife (Theobald et al. 1997; Conway

and Lathrop 2005; Johnson et al. 2005). Therefore, our

results suggest three important considerations for

decision makers. First, occupancy probability model-

ing and other habitat suitability approaches are

becoming more widespread. While these are rigorous

assessments of the likelihood of species occurrences,

our results suggest that small incremental changes in

these metrics cumulatively result in big changes in Nk.

Second, Nk provides a bridge between commonly used

occupancy or habitat suitability maps with population

parameters that are often defined in management

objectives. Third, Nk estimates can be applied at

multiple scales. At a landscape scale, Nk can poten-

tially strengthen our understanding of metapopulation

or source-sink dynamics that are hypothesized to

characterize songbird populations (Tittler et al. 2006;

With et al. 2006). Local land use decisions, however,

often drive landscape changes on the ground. At a

local scale, the Nk metric can be used to assess

alternative land use change scenarios that might affect

species population size. In turn, these local scale

decisions affect broader regional population

dynamics.

While our clique analysis can provide an estimated

maximum abundance of viable territories, it is not a

mechanistic approach. We simply develop our esti-

mates based on the habitat quality of the landscape and

don’t include the mechanisms by which an individual

territory may succeed or fail. Alternative approaches

have combined nonspatial population growth models

with individual-based spatially explicit models, mak-

ing it possible to incorporate different population

drivers (e.g., parasitism) to abundance estimates

(Wilsey et al. 2014). Both methods convert habitat

suitability into population estimates, but our results are

limited to the relative changes of the estimated

maximum number of territories a landscape can

support.
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We have demonstrated an approach useful for

understanding the potential consequences of land use

change on territorial species. This method can be

easily adapted for other species, and can be used to

provide a more holistic ecosystem approach. Common

understanding of the trade-offs between human devel-

opment and species viability is needed to make

informed decisions about the future of wildlife

populations.
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