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Abstract. Automated acoustic monitoring of wildlife has been used to characterize popu-
lations of sound-producing species across large spatial scales. However, false negatives and
false positives produced by automated detection systems can compromise the utility of these
data for researchers and land managers, particularly for research programs endeavoring to
describe colonization and extinction dynamics that inform land use decision-making. To inves-
tigate the suitability of automated acoustic monitoring for dynamic occurrence models, we
simulated underlying occurrence dynamics, calling patterns, and the automated acoustic detec-
tion process for a hypothetical species under a range of scenarios. We investigated an auto-
mated species detection aggregation method that considered a suite of options for creating
encounter histories. From these encounter histories, we generated parameter estimates and
computed bias for occurrence, colonization, and extinction rates using a dynamic occupancy
modeling framework that accounts for false positives via small amounts of manual confirma-
tion. We were able to achieve relatively unbiased estimates for all three state parameters under
all scenarios, even when the automated detection system was simulated to be poor, given par-
ticular encounter history aggregation choices. However, some encounter history aggregation
choices resulted in unreliable estimates; we provide caveats for avoiding these scenarios. Given
specific choices during the detection aggregation process, automated acoustic monitoring data
may provide an effective means for tracking species occurrence, colonization, and extinction
patterns through time, with the potential to inform adaptive management at multiple spatial

scales.
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INTRODUCTION

Remote automated acoustic monitoring of sound-
producing wildlife provides a means for characterizing
status and trends in species occurrence across landscapes
(Cerqueira and Aide 2016). In a typical remote acoustic
monitoring program, autonomous recording units
(ARUs) are installed at study locations to capture
recordings of the environment over time, based on a
schedule input to the device by the research team. Vast
quantities of audio data may be collected in a short
amount of time, from which sounds produced by target
monitoring species may be detected. Remote acoustic
monitoring offers the potential to efficiently gather
occurrence data for sound-producing wildlife species
across regional spatial scales (Furnas and Callas 2015).
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Long-term, large-scale acoustic monitoring programs
may be positioned to engage in systematic adaptive man-
agement research, wherein continued monitoring
reduces uncertainty over time to improve management
decisions amid climate change and rapidly changing
land uses (Williams et al. 2009).

Characterization of occurrence, or occupancy,
requires only species presence—absence data or, more
precisely, detection—nondetection data, since the proba-
bility of detecting a truly present species (p) is often <1,
and false negatives transpire when a species is present
but not detected (MacKenzie et al. 2002). To character-
ize false negatives, a site must be surveyed more than
once. The fundamental building block of an occupancy
model is thus the encounter history, a binary string indi-
cating whether a species was detected or not detected on
each survey occasion. Any combination of zeroes and
ones is possible; an encounter history of 001, for exam-
ple, indicates that a site was surveyed three times, and
the species was only detected on the third occasion. The
original single-season occupancy model has been
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expanded upon in several crucial ways, including
dynamic (multiple season) models (MacKenzie et al.
2003), models that account for both false negatives and
false positives (Royle and Link 2006, Miller et al. 2011,
2013, Chambert et al. 2015), and numerous other
advances (Bailey et al. 2014). The dynamic occupancy
model is particularly suitable for research seeking to
understand trends over time. In addition to initial occu-
pancy status (), this model characterizes local extinc-
tion (g), and colonization (y) patterns between survey
seasons, as well as covariates that influence the initial
state and state changes.

Although acoustic monitoring is well suited to captur-
ing dynamic occupancy data for sound-producing species,
the ease and efficiency of acoustic data acquisition can
quickly overwhelm research programs with massive audio
data streams. To accommodate the ensuing “big data”
dilemma, audio recordings may be rapidly processed
using computer algorithms for automatically detecting
species by their calls. For example, we have used the R
package AMMonitor to create customized call templates
for target species combined with statistical learning classi-
fiers for this purpose (Katz et al. 2016, Hafner and Katz
2018; C. M. Balantic, T. M. Donovan, unpublished manu-
script). Numerous other software solutions exist for auto-
mated detection, such as Wildlife Acoustics Kaleidoscope
(Wildlife Acoustics 2018), Raven Pro (Bioacoustics
Research Program 2015), the Arbimon platform (Aide
et al. 2013), MatlabHTK (Ranjard et al. 2017), Tadarida
(Bas et al. 2017), and Animal Sound Identifier (ASI;
Ovaskainen et al. 2018), though none of these provide a
streamlined means for aggregating species detection data
into occurrence models.

Regardless of the software or detection method used,
computer algorithms for automated detection may not
detect a species when it is present (“false negative”) or
may incorrectly detect an absent species (“false posi-
tive”). We take care to distinguish between detection
mistakes occurring at the “event level” and those occur-
ring at the “survey level.” Event-level mistakes are perpe-
trated by the automated detection method; these occur
when the algorithm flags a detection not actually from
the target species (“event-level false positive”; Fig. 1a-i),
or when the algorithm fails to detect an existing signal
from the target species (“event-level false negative”
(Fig. la-iii). Event-level detection mistakes represent a
ubiquitous and well-documented challenge in automated
acoustic monitoring research problems (Acevedo et al.
2009, Kalan et al. 2015, Brauer et al. 2016, Katz et al.
2016, Stowell et al. 2016, Shonfield and Bayne 2017).
Survey-level mistakes, on the other hand, originate as a
consequence of aggregating event-level mistakes into an
encounter history for occupancy analysis. Ambiguity
around how to combine event-level detections to create
survey-level encounter histories is an area of emergent
interest in automated acoustic monitoring and is made
especially vexing by acoustic monitoring capacity to gen-
erate high numbers of surveys compared with traditional
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field methods. Robust detection aggregation methodol-
ogy is paramount for dynamic models, where the conse-
quences of survey-level detection mistakes are amplified:
when false positive detection errors are ignored, esti-
mated extinction and colonization rates can become so
biased and imprecise as to render results useless
(McClintock et al. 2010, Miller et al. 2015, Ruiz-Gutier-
rez et al. 2016).

To address concerns about survey-level false negatives
and false positives, Miller et al. (2013) introduced the
“multiple detection states” dynamic occupancy model
(hereafter, the Miller model). Survey-level detection
states in the Miller model are categorized as “certain” or
“uncertain,” making this framework amenable to cases
where humans can later verify a subset of automated
detections. In this work, within automated acoustic
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FiG. 1. Construction of an encounter history for the Miller
model is illustrated with three “surveys” in (a), (b), and (c), rep-
resented by audio recording spectrograms. Event-level detec-
tions by a hypothetical automated method for a target species
(red boxes) can be event-level false positives (a-i) or event-level
true positives (a-ii). Event-level false negatives occur where the
automated method misses a target signal (a-iii). Event-level
detections from all recordings within a survey period are col-
lected to produce a single value that describes survey-level
detection status according to the Miller model (0, 1, or 2). (a)
Survey ‘a’, which used the automated method only, aggregation
produces a ‘1’ in the encounter history to indicate an uncertain
detection. (b) Survey ‘b’ underwent a posteriori manual verifi-
cation; all event-level detections within this survey are checked
by hand. We assign this survey a 2’ to denote a certain detec-
tion at the survey level. (c) Survey ‘¢’ yielded zero event-level
detections and is assigned a ‘0’ at the survey level. Together,
surveys a, b, and ¢ produce an encounter history of 120 for the
season.
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monitoring contexts, we presume that a// audio record-
ings are scanned for the target species using an auto-
mated acoustic detection system. Event-level detections
are then aggregated into survey outcomes, which com-
pose the encounter history (Fig. 1). Any survey-level
detections that result via automation only (state 1) are
denoted by a 1 to indicate an uncertain detection
(Fig. 1a). A subset of surveys, however, is allocated for a
posteriori verification, wherein we assume no false posi-
tives exist. Surveys with automated event-level detec-
tions corroborated by manual verification (state 2) are
given a 2 to represent a certain detection at the survey
level (Fig. 1b). A survey containing no event-level detec-
tions is assigned a 0, indicating uncertain absence
(Fig. 1c).

To illustrate, the history 120,000 suggests two primary
demographic seasons, each surveyed three times. In the
first season, assumed closed to demographic change
across surveys, the species was detected in the first sur-
vey via automation only (producing an uncertain detec-
tion), detected with certainty in the second survey via
automation with manual verification, and undetected in
the third survey. In the second season, also assumed
closed to demographic change, the species was not
detected in any of the three surveys, all of which connote
uncertain absences. The parameters estimated by the
Miller model are the initial probability of occupancy (\),
the state transition probabilities for colonization (y) and
extinction (g), and a family of detection probability
parameters. For uncertain detections, which are acquired
via the automated acoustic detection system, p;, repre-
sents the probability of incorrectly detecting the species
at an unoccupied site (survey-level false positive), while
P11 18 the probability of correctly detecting a present spe-
cies at an occupied site (survey-level true positive). Cer-
tain detections are denoted by the parameter b, the
probability of detecting a species via automated detec-
tion paired with manual verification, given presence. The
probability of each observed encounter history can be
computed for each site given the model parameters, and
the product of those probabilities across all sites can be
used to estimate parameters with maximum likelihood
analysis (Miller et al. 2013).

Although the Miller model may have high utility for
acoustic monitoring programs endeavoring to describe
local extinction and colonization dynamics, two chief
challenges remain. First, minimal guidance exists for
aggregating large quantities of event-level automated
acoustic detections into survey-level encounter histories
(though see Chambert et al. 2017, Newson et al. 2017),
and we are unaware of any previous efforts to explicitly
exploit existing properties of automated detection algo-
rithms for this purpose. Second, it is unclear how
encounter history aggregation decisions affect the relia-
bility of the Miller model for producing the unbiased,
precise state parameter estimates (s, y, and €) necessary
to make informed monitoring and management deci-
sions. Without a comprehensive framework for moving
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from audio data collection to mistake-sensitive dynamic
occupancy analysis, acoustic monitoring programs will
be hobbled in their capacity to effectively leverage the
opportunities offered by long-term, large-scale monitor-
ing research, yielding compromised inference about pop-
ulation trends and limited model utility for subsequent
adaptive management decisions.

Objectives

The goal of this paper was to explore methodology for
using acoustic data in dynamic occupancy models where
observed data may include both false positives and false
negatives. Our objectives were to (1) simulate latent
occurrence dynamics and calling production, as well as
the automated acoustic detection process for a hypothet-
ical target species across N sites in a hypothetical moni-
toring area, (2) introduce an event-level detection
aggregation method that leverages properties of auto-
mated acoustic monitoring to create encounter histories
under a suite of detection aggregation time frames,
detection thresholds, and confirmation capacities, and
(3) generate parameter estimates and compute the bias
for occurrence, colonization, and extinction rates using
the Miller model.

MATERIALS AND METHODS

Simulation of occurrence dynamics, species calling
production, and detection process

We simulated two 30-d seasons of underlying occu-
pancy dynamics and species sound production for a
hypothetical target species across 100 sites. We assumed
that the 30-d monitoring period occurred when the spe-
cies was anticipated to be active and available in the
region, whether migratory or not. We also assumed that
monitoring sites were selected under a statistical sam-
pling design ecologically meaningful for the hypothetical
species with regard to life history characteristics such as
territory size and local migratory behavior (i.e., tempo-
ral and spatial assumptions of the Miller model were
met). For simplicity, we did not use site or survey-level
covariates to model any processes. To create dynamic
occupancy scenarios, we used the four simulation cases
outlined by Miller et al. 2015 (Fig. 2a): high initial
occurrence with high turnover (HH; = 0.60,
vy = & = 0.25), high initial occurrence with low turnover
(HL; ¥ = 0.60, y = & = 0.05), low initial occurrence with
high turnover (LH; { = 0.20, y = € = 0.25), and low ini-
tial occurrence with low turnover (LL; = 0.20,
vy = ¢ =0.05).

For each dynamic occupancy scenario, we simulated
the underlying sound production process wherever the
species was present (Fig. 2b). Individual calling rates
vary widely based on species, breeding stage, and envi-
ronmental conditions (Catchpole and Slater 2008), with
overall abundance driving the total number of target
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a) Simulate dynamics

Four cases:

HH: high occurrence, high turnover
HL: high occurrence, low turnover
LH: low occurrence, high turnover
LL: low occurrence, low turnover

(W=10.60,7,6 = 0.25)
(W=0.60,7,€ =0.05)
(W=10.20,7,£ =0.25)
(W=0.20,7,£=0.05)

f) Calculate bias by computing
parameter estimates to simulated dynamics
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b) Simulate calling production

Two calling rate cases:

Low production ( A. = 20 calls/h)
High production (A= 100 calls/h)

e) Generate state parameter estimates

Miller et al. (2013): multiple setection states model
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¢) Simulate automated detection

False alarm rate: A= 48 h!
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(a) Simulation and parameter estimation workflow for simulating dynamics (parameters are the initial probability of

occupancy [], the state transition probabilities for colonization [y], and extinction [g]), (b) simulating species calling production (A,
is the average species calling rate per hour), (c) simulating the automated detection process, where the probability distribution
function (PDF) is defined by beta distribution shape parameters o and f, (d) building encounter histories, (¢) generating parameter

estimates, and (f) computing bias.

signals available in the soundscape (Royle and Nichols
2003). We condensed these elements into an average spe-
cies calling rate per hour, A, and investigated two cases:
(1) a low call production scenario that averaged 20 calls/h
(or 0.33 calls/min; A, = 20), and (2) a high call production
scenario that averaged 100 calls/h (or 1.67 calls/min;
Ae = 100). For each sampled minute of the season, we
used a Poisson process to generate the true number of
calls produced by the species.

Next, we simulated the automated acoustic detection
process (Fig. 2c) where we addressed three components:
(1) the timing and frequency of audio recordings, (2) the
existence of “false alarm” sources within the recording
soundscape, and (3) the general aptitude of the

automated detection method. First, we chose a recording
scheme of five minutes of audio sampling per day, pre-
sumed to occur during ideal windows for capturing target
species call production. Second, we used a Poisson pro-
cess to inject false alarms () into each minute of audio
recording. The false alarm rate, A, acts as an analog to
the call production rate (A.), in that it connotes underly-
ing sources of false alarms present in the soundscape,
which fool an automated detector into generating event-
level false positives. We selected a rate of Ap = 48 false
alarms per hour (0.8 false alarms/min), based on the false
alarm rate we computed from a field study using auto-
mated detections across 675 h of real field recordings (C.
M. Balantic, T. M. Donovan, unpublished data).
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Finally, we simulated the production of event-level
detections in each recording within an automated acoustic
monitoring framework. Automated detection algorithms,
also known as classifiers, may be constructed to produce
the probability that an event-level detection is truly a sig-
nal from the target species. For example, in Fig. 3, to each
event-level detection, a trained statistical learning classifier
has assigned a probability that the event is a signal from
the target species. Hereafter, we refer to this attribute as
the “target signal probability” of any event-level detection.
We simulated two alternative classifiers (good and bad),
each defined by a mixture of two beta distributions. The
good classifier was likely to assign high target signal prob-
abilities to true target signals (which are produced by A.)
and low target signal probabilities to false alarms (which
are produced by Ag shape parameter o = 4, shape para-
meter P =1 for target signals; o« =1, B =4 for false
alarms). The bad classifier was represented by a beta dis-
tribution with oo = 3 = 3 for both target signals and false
alarms, yielding average target signal probabilities of 0.5
across all detections (Fig. 2¢). Table 1 provides an exam-
ple of event-level detections with target signal probabilities
assigned by good and bad classifiers.

In summary, the simulated acoustic environment con-
sisted of four underlying species occurrence dynamics
cases, each with two levels of calling production. All
eight of these scenarios had the same underlying false
alarm rate. Finally, we simulated the automated detection
process with two types of classifiers, good and bad, which
output the target signal probability associated with each
event-level detection. The Objective 1 simulations thus
produced 16 scenarios for subsequent evaluation.

Encounter history aggregation

To analyze the 16 scenarios produced by Objective 1
under the Miller model occupancy framework, we

a) Survey 1
Survey-level
detection outcome
Ay i 3
@ W 0
% 0.15 0.04 011
=] A
ERR PA AR IR RS R AU e AR
53
© b) Survey 2
=9
L)
[ ] 1
0.56 0.88 0.71
S0 SR X DT AR A
Time
Fic. 3. Event-level detections (red boxes) and their associated

target signal probabilities can be aggregated into survey-level detec-
tion outcomes for an encounter history by multiplying together 1
minus the event-level probabilities within each survey, and then 1
minus this outcome to yield the probability of at least one target
signal within the survey (bold black text). (a) Survey 1: If the result
does not exceed a user-defined threshold, such as 0.95, a 0 is
assigned at the survey level. (b) Survey 2: If the result does exceed
a user-defined threshold, such as 0.95, the survey is assigned a 1.
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TaBLE 1. Illustration of the detection portion of the
simulation.
Target signal probability
Minute Sound type Good classifier Bad classifier
1 false alarm 0.31 0.72
1 false alarm 0.27 0.67
2 target signal 0.80 0.52
2 false alarm 0.04 0.29
2 target signal 0.75 0.46
3 target signal 0.60 0.71
4 target signal 0.87 0.61
4 false alarm 0.07 0.36
5 target signal 0.88 0.35
5 false alarm 0.27 0.09
Mean false alarm 0.19 0.43
Mean target signal 0.78 0.53

Notes: Event-level detections can be target signals or false
alarms, generated according to A and A respectively. For each
event-level detection, a classifier assigns a probability that the
detection is actually a target signal. The good classifier typically
assigns higher target signal probabilities to actual target signals
and lower probabilities to false alarms. The bad classifier makes
no such distinction. Both classifiers randomly sample probabili-
ties from their respective beta distributions visualized in
Fig. 2c.

collapsed event-level detections into encounter histories
(Fig. 2d). Using a capture-recapture framework (sensu
Otis et al. 1978), target signal probabilities associated
with event-level detections were aggregated to produce
the overall probability that at least one target signal had
been detected within a particular survey period, which
yields the survey-level detection. We take care not to
conflate the occupancy term “survey” with an individual
audio recording: multiple audio recordings might be
amassed to collectively constitute the survey based on a
chosen unit of survey closure, which is informed by
research goals and life history of the target species. To
demonstrate, imagine an occupancy survey closure
period defined as all of the audio recordings taken in a
single day (in our simulation, five minutes of recordings
per day are combined into a single survey). Suppose that
on the first day (survey 1) three events are detected by
the classifier, with target signal probabilities of 0.15,
0.04, and 0.11 (Fig. 3a). In this case, we aggregate the
probabilities as (1 — 0.15) x (I — 0.04) x (1 — 0.11),
which gives the probability that @/l detected events are
false alarms, 0.73. Next, 1 — 0.73 gives 0.27, the proba-
bility that any of these detected events is truly a signal
from the target. Applying a user-selected survey-level
threshold of 0.95, we log a 0 in the encounter history for
this survey and presume that the species was not
detected unless we are 95% sure that we captured at least
one target signal. In the next day’s survey (Fig. 3b),
three events are detected by the automated algorithm,
with target signal probabilities of 0.56, 0.88, and 0.71.
The probability that all detected events are false alarms
is (1 — 0.56) x (1 — 0.88) x (I — 0.71), resulting in a
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probability of ~0.015 that all events are false alarms, and
probability of ~0.98 that at least one true target signal
has been captured by the automated system. Applying
the same 0.95 threshold, we log a 1 for this survey to
reflect that the target species has been detected in the
uncertain state (that is to say, it has been detected auto-
matically and without manual verification). Taken
together, the two surveys in this example return an
encounter history of 01.

To generate encounter histories for each of the 16 sce-
narios from Objective 1, we examined eight alternative
scenarios defined by three factors: (1) the survey-level
detection threshold, (2) the aggregation period, and (3)
the percentage of manually confirmed surveys, which
comprise state 2 of the Miller model (Fig. 2d). First, we
investigated two survey-level detection thresholds: 0.80
and 0.95 (i.e., we were 80% or 95% certain that at least
one target signal was detected during the survey period).
Second, we examined two aggregation options, in which
recordings were lumped into a single survey based on a
desired unit of closure. We used survey aggregation peri-
ods of either one day or three days across each 30-d
monitoring period. Thus, over a 30-d season, a single
season encounter history for the 1-d aggregation period
would yield a string of 30 surveys, represented by a 0, 1,
or 2 (with a total of 60 surveys over two seasons). A sin-
gle season encounter history for the 3-d aggregation per-
iod would produce a string of 30-d season/3-d
aggregation period = 10 surveys (20 surveys total over
two seasons). Last, we examined two scenarios for the
total proportion of surveys that were confirmed a poste-
riori to serve as the “certain” state (state 2) of the Miller
model: 0.025 or 0.05. In other words, we randomly
assigned 2.5% or 5% of surveys to be manually con-
firmed to produce a certain state. For practical purposes,
with 100 sites across two 30-d seasons, at a rate of 5 min
of recording per site per day, this would equate to man-
ual verification of event-level detections from 12.5 h
(2.5%) or 25 h (5%) worth of recordings, regardless of
the N-day survey aggregation period used.

In summary, the 16 acoustic scenarios generated
from Objective 1 were each subjected to 8§ alternative
scenarios for developing encounter histories, resulting
in 16 x 8 = 128 total scenarios to be analyzed with the
Miller model in Objective 3 (Appendix S1). To summa-
rize the outcome of the simulation, we calculated sur-
vey-level true and false positive rates based on the
survey window aggregation length, classifier type, sur-
vey-level detection threshold, and species calling rate.
The survey-level true positive rate indicated the propor-
tion of surveys in the encounter history where the spe-
cies was present and detected (with rates closest to
1 most desirable). The survey-level false positive rate
signified the proportion of sites where the species was
absent but mistakenly detected (with rates closest to 0
most desirable) (note that this survey-level false positive
rate should not be confused with the event-level false
alarm rate).

CATHLEEN BALANTIC AND THERESE DONOVAN

Ecological Applications
Vol. 29, No. 3

State parameter estimates and bias under different
scenarios

The 128 scenarios were simulated 500 times each
(64,000 replicates total). To generate parameter esti-
mates for occupancy, colonization, and extinction, we fit
intercept models for each of the 64,000 replicates using
RPresence V.12.10 (Fig. 2e; Hines 2018). All simulation
models were fit using informed initial parameter values
to aid convergence to a global minimum in the negative
log-likelihood, because preliminary testing showed that
results were sensitive to starting values; we used our
known, simulated parameter values as initial starting
values. We compared these state parameter estimates to
the simulated dynamics values to compute raw bias, as
well as the mean and standard deviation across each sce-
nario’s 500 replicates (Fig. 2f). Although we focused on
the outcomes of the state parameter estimates, we also
computed estimate bias for the detection parameters,
P11, P1o, and b. We recorded model convergence rates for
all scenarios.

REsuULTS

Simulation of occurrence dynamics, species calling
production, and detection process

For the four occurrence-turnover states and two sound
production rates, we summarized daily available sound
production averaged across occupied and unoccupied
sites in Fig. 4. The total number of species target signals
is contingent on occupancy status, given five minutes of
recording daily: low occurrence rates naturally produce
a lower number of target signals available for automated
capture across sites. Meanwhile, the average number of
available false alarms is the same regardless of occu-
pancy status and species sound production rate. The
good classifier assigned an average target signal proba-
bility of 0.80 + 0.002 (mean £ SD) for target signals and
0.20 +0.001 for false alarms. The bad classifier assigned
an average target signal probability of 0.50 4+ 0.003 for
target signals and 0.50 + 0.001 for false alarms.

Encounter history aggregation

To create encounter histories from the signals pro-
duced in Objective 1, recall that we investigated eight
alternative scenarios (factors are aggregation day length
[1 vs. 3], survey-level detection threshold [0.8 vs. 0.95],
and human-verified confirmation level [2.5% vs. 5%]).
Survey-level true and false positive rates produced by
the automated method differed based on aggregation
length, survey-level detection threshold, and classifier
(Fig. 5). Overall, the confirmation levels we chose did
not yield any appreciable difference in true and false pos-
itive rates. However, rates varied substantially depending
on species calling rate, aggregation level, detection
threshold, and classifier performance.
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Fic. 4. The average daily number of target signals captured by the automated system (dark gray), vs. the average daily number
of false alarms captured by the automated system (light gray), across all sites, under both low (20 calls/h) and high (100 calls/h) spe-
cies-calling-production scenarios, and under all four underlying dynamics scenarios (Fig. 2a): high-occurrence-high-turnover
(HH), high-occurrence-low-turnover (HL), low-occurrence—high-turnover (LH), and low-occurrence—low-turnover (LL).

For 1-d aggregation (Fig. 5a), the 0.95 survey-level
detection threshold produced encounter histories with
lower underlying true positive rates than those created
by the 0.80 threshold, particularly when a good classifier
is used against a low call rate (Fig. 5a; upper left panel).
It is logical to expect inferior true positive rates for the
0.95 threshold and the good classifier if there are few
target signals within a survey period: these conditions
foster a higher overall standard that surveys must meet
before meriting a score of 1. As a result of this high stan-
dard, for both species calling rates, false positive rates
for 1-d aggregation approached zero when using the 0.95
threshold and good classifier; the rate rose to 0.17 when
using the 0.80 threshold and good classifier (Fig. Sa;
upper right panel). The differences caused by higher and
lower standard detection systems illustrate the trade-off
inherent in striving for a high site-level true positive rate
while keeping false positives to a minimum. Overall, the
bad classifier generated much higher false positive rates,
ranging from 0.46 (0.95 threshold) to 0.75 (0.80 thresh-
old; Fig. 5a; lower right panel).

The trade-off between a high true positive rate and a
low false positive rate is magnified in the 3-d aggregation
scenarios (Fig. 5b). Both survey-level detection thresh-
olds and both classifiers generated encounter histories
with true positive rates of 1 or nearly so. For false posi-
tive rates, however, the good classifier had false positive
rates as low as 0.44 using the stricter detection threshold
(0.95) and false positive rates as high as 0.85 using the
lenient threshold (0.8; Fig. Sb; upper right panel). For
the bad classifier, false positive rates were near 1 for all

encounter history scenarios (Fig. Sb; lower right panel).
In summary, although 3-d aggregation generated
encounter history scenarios with higher underlying sur-
vey-level true positive rates overall, these encounter his-
tory scenarios also carried higher underlying false
positive rates. Meanwhile, 1-d aggregation produced
encounter history scenarios with lower overall true posi-
tive rates, but also much lower false positive rates.

State parameter estimates and bias under different
scenarios

Summarized across all dynamics and calling scenarios,
encounter histories generated with the 1-d survey aggre-
gation period generally produced the least biased esti-
mates across the three state parameters, with bias values
closest to zero being most desirable. We focus on results
for the 0.95 survey-level detection threshold (Fig. 6),
while results for the 0.80 threshold are contained in
Appendix S2. The superiority of the smaller aggregation
period held true across both survey-level detection
thresholds, both the good and bad classifiers, and both
proportions of a posteriori survey confirmation. Under
1-d aggregation, neither confirmation level nor survey-
level detection threshold made an appreciable difference
in the bias estimates (Fig. 6a, c; Appendix S2: Fig. S1 a,
¢). Under 3-d aggregation, the higher confirmation level
(5%) reduced both the bias and variation in bias (com-
pare Fig. 6b—d; Appendix S2: Fig. S1b-d). Generally,
when a good classifier was used, bias was comparable
across all Fig. 6 scenario panels. Thus, although 1-d
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FiG. 5. Box plots of survey-level true positive and false pos-

itive rates for (a) 1-d aggregation and (b) 3-d aggregation by
classifier type, survey-level detection threshold, and species call-
ing rate (x-axis). Box plots appear as flat, heavy lines with small
error bars due to very small variability in the data.

aggregation outperformed 3-d aggregation overall, 3-d
aggregation is competitive with increasing survey-level
detection thresholds and/or confirmation levels, espe-
cially if the classifier is good, demonstrating that longer
aggregation windows can retain utility if adequately bal-
anced by higher automated detection standards and
higher manual confirmation effort.

Under most scenarios, state parameter estimates tended
to have wide ranges in variation. Zooming in on the most
conservative encounter history aggregation conditions (1-
d aggregation, 0.95 survey-level detection threshold,
Fig. 7), mean estimates fell within 3% of simulated truth,
though with deviation out to 10% in both directions for
some parameters. The lower confirmation level (Fig. 7a)
was generally competitive with the higher confirmation
level (Fig. 7b). The high-occurrence-low-turnover (HL)
scenario had the least biased and most precise estimates
across all three parameters under all scenarios and both
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confirmation levels, and the low-occurrence—low-turnover
(LL) scenario would have approached this level of preci-
sion if not for the tendency to overestimate the extinction
parameter (¢). The higher turnover scenarios (HH, LH)
generally produced more variation in the bias. The influ-
ence of species calling rate was minimal overall. Estimates
for the detection parameters p;y, p1o, and b were generally
much less biased and more precise than the state parame-
ter estimates, with mean biases and standard deviations
all falling well within 3% of simulated truth (Fig. §;
Appendix S2 Fig. S2).

The Miller model convergence rate across all scenarios
was 59%. Only replicates that converged were included in
the Figs. 6 and 7 results. Convergence rates generally mir-
rored the bias results. The number of aggregation days
had the clearest impact on convergence: 1-d aggregation
had an 84% convergence rate, while 3-d aggregation only
converged 34% of the time. Classifier type also affected
convergence, with the good classifier (68% convergence
rate) outperforming the bad classifier (51% convergence
rate). Survey detection level also affected convergence
rates: models that used a 0.95 threshold converged 66%
of the time, whereas models with a 0.80 threshold con-
verged at a rate of 53%. The impact of confirmation level
was minimal (2.5% confirmation: 57% converged, 5%
confirmation: 61% converged). Convergence rates also
differed based on the underlying state dynamics, with the
high turnover scenarios (HH, LH) converging at greater
rates overall (HH: 67%, HL: 57%, LH: 64%, and LL:
50%). The high calling rate (55%) converged substantially
less frequently than the low calling rate (64%).

DiscussioN

The capacity to understand and predict long-term,
large-scale, species occurrence dynamics is critical
against a backdrop of climate change and rapidly shift-
ing land uses (Nichols et al. 2015). Although automated
acoustic monitoring provides a means for cost-effective
and efficient collection of species occurrence data, mini-
mal guidance exists for translating enormous streams of
raw audio data into dynamic occurrence models that
provide actual utility for wildlife researchers and land
managers. We introduced a novel method for aggregat-
ing detected events into encounter histories for use in
dynamic models meant to capture changes in occurrence
patterns over time. When automated detection algo-
rithms are constructed to yield the probability that a
detected event is produced by a target signal, these
event-level probabilities may be aggregated within a cap-
ture-recapture framework to provide the probability
that any detected event within a survey period is a sound
from the target species (Otis et al. 1978). We believe this
work is the first to unify the concepts of automated
acoustic data collection with analysis for mistake-sensi-
tive dynamic occupancy modeling, although single-sea-
son approaches have been implemented (Kalan et al.
2015, Cerqueira and Aide 2016, Chambert et al. 2017).
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Fic. 6. Summary of state parameter estimate bias across occurrence dynamics, species call rates, classifier performance, aggre-
gation frames, and confirmation percentages, at the 0.95 survey-level detection threshold. Circles indicate the mean bias, with dot-
ted vertical bars showing standard deviations. Open circles denote scenarios with a low call rate. Closed circles denote a high call
rate. Gray circles denote the bad classifier, and black circles denote the good classifier. Note that the y-axis ranges from —0.5 to 0.5.
(a) 1-d aggregation, 2.5% confirmation, survey-level detection threshold = 0.95. (b) 3-d aggregation, 2.5% confirmation, survey-
level detection threshold = 0.95. (c) 1-d aggregation, 5% confirmation, survey-level detection threshold = 0.95. (d) 3-d aggregation,

5% confirmation, survey-level detection threshold = 0.95.

Where classifier-assigned target signal probabilities are
not available, Chambert et al. (2017) offer a method
contingent on the total abundance of event-level detec-
tions. Other alternatives include automated target event
detection followed by manual cleaning (Kalan et al.
2015, Cerqueira and Aide 2016), or deploying machine
learning approaches to identify and remove false posi-
tives automatically. In contrast to removing false posi-
tives manually or automatically, the method we describe
here takes full advantage of the information provided by

target signal probabilities associated with each detected
event.

To explore the utility of the Miller model framework
for dynamic occupancy models constructed from auto-
mated acoustic monitoring data, we investigated our
probability aggregation method in 128 scenarios that
spanned a range of occurrence dynamics, species sound
production rates, classifier performances, and encounter
history aggregation. Our results demonstrate that the
Miller model was able to produce state parameter
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Fic. 7. Summary of state parameter estimate bias across different dynamics, call production, classifier performance, and confir-

mation percentages, for the most conservative survey aggregation circumstances (aggregate days = 1, survey-level detection thresh-
old = 0.95). Circles indicate the mean bias, with dotted vertical bars showing standard deviations. Note that the y-axis has
narrowed to range from —0.15 to 0.15. (a) 1-d aggregation, 2.5% confirmation, survey-level detection threshold = 0.95. (b) 1-d

aggregation, 5% confirmation, survey-level detection threshold =

estimates within an average of 3% of simulated truth
estimates for occurrence, colonization, and extinction
for all latent conditions (dynamics and sound produc-
tion) and all observation conditions (good vs. bad classi-
fier), given specific encounter history aggregation
choices. We also applied our probability aggregation
method to the false positive, ignorant dynamic model
(MacKenzie et al. 2003) but found that it was generally
not competitive with the Miller model. In a 100-repeti-
tion test, the model of MacKenzie et al. 2003 tended to
overestimate initial occurrence and underestimate
extinction rates (Appendix S3), suggesting that the

0.95.

Miller model is the stronger choice for automated acous-
tic monitoring.

In our simulation, narrow frames of survey aggrega-
tion produced the least biased parameter estimates.
These shorter survey aggregation periods, in turn, pro-
duce a larger number of surveys. Single-day aggregation
outperformed 3-d aggregation because longer aggrega-
tion periods are more likely to result in “uncertain” sur-
vey-level false positives in the encounter history,
particularly if the survey-level detection threshold is not
high enough. Longer aggregation periods lead to a
greater number of detected events. If a species is absent
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Summary of detection parameter estimate bias across different dynamics, call production, classifier performance, and con-

firmation percentages, at the 0.95 survey-level detection threshold. Circles indicate the mean bias, with dotted vertical bars showing
standard deviations. Note that the y-axis has narrowed to range from —0.05 to 0.05. The parameter p is the probability of detecting a
truly present species, where pjo represents the probability of incorrectly detecting the species at an unoccupied site (survey-level false
positive) and py is the probability of correctly detecting a present species at an occupied site (survey-level true positive). Certain detec-
tions are denoted by the parameter b, the probability of detecting a species via automated detection paired with manual verification,
given presence. (a) 1-d aggregation, 2.5% confirmation, survey-level detection threshold = 0.95. (b) 3-d aggregation, 2.5% confirma-
tion, survey-level detection threshold = 0.95. (¢) 1-d aggregation, 5% confirmation, survey-level detection threshold = 0.95. (d) 3-d
aggregation, 5% confirmation, survey-level detection threshold = 0.95. HH, high initial occurrence with high turnover; HL, high ini-
tial occurrence with low turnover; LH, low initial occurrence with high turnover; LL, low initial occurrence with low turnover.

from a site, even if a good classifier is used, the target
signal probabilities assigned to false alarms may not be
low enough to overcome the effects of many probabili-
ties ultimately being multiplied together. The (multi-
plied) product of too many probabilities may be an
unacceptably high number of survey-level false positives
within the probability aggregation scheme (as in

Fig. 5b). Although the 3-d aggregation period slightly
outperforms 1-d aggregation on the survey-level true
positive rate, the accompanying bloated false positive
rates are too high to overcome without bias when fitting
the dynamic occupancy model. Thus, smaller windows
of probability aggregation may perform better in gen-
eral, though the narrowness of this aggregation window
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must be balanced against practical considerations for
the period of survey closure for a target species.

These general results bode well for an automated
acoustic monitoring program. Automated acoustic mon-
itoring, like camera trapping and other remote auto-
mated methods, boasts a unique position in the
occupancy modeling realm, where many traditional
study methods tend to be “survey poor” (MacKenzie
and Royle 2005). In contrast, automated acoustic moni-
toring provides the opportunity to be “survey rich” if
audio recordings occur regularly over an extended time,
a benefit of the flexibility around gathering audio
recordings into distinct survey periods. Since false posi-
tives can inflate the number of recommended surveys
(Clement 2016), the opportunity to be survey rich is use-
ful for a monitoring methodology where false positives
are prevalent. The opportunity to be survey rich is simi-
larly useful for mitigating survey-level false negatives.
Accounting for detection probability is likely even more
important when underlying species occupancy is low,
though the relative ease of repeated long-term surveying
offered by ARUs may ameliorate false negatives and
improve the precision of occupancy estimates (Kalan
et al. 2015). Additionally, although in this simulation we
used a human survey confirmation method focused
strictly on cleaning out false positives (wherein survey
confirmation was conducted entirely based on manual
verification of automatically detected events), false nega-
tives may be more directly addressed by extending the
idea of “confirmed surveys” to include intensive human
manual annotation of recordings from the entire survey
period (in contrast to the less labor-intensive, false-posi-
tive-focused confirmation method of simply verifying
automatically detected events). In real field applications,
survey-level false negatives in acoustic monitoring may
also be mitigated via temporally adaptive sampling
methodology, which explicitly strives to avoid false nega-
tives by recording when target species are likely to be
acoustically active.

Unsurprisingly, a higher quality classifier will better
serve an acoustic monitoring program than a poor classi-
fier. In our experiment, the good classifier was typically
able to provide minimally biased results even when coping
with a long aggregation period (Fig. 6d), or low survey-
level detection thresholds provided that the aggregation
period was short enough (Appendix S2: Fig. Sla,c), while
the bad classifier was often less robust under these condi-
tions. For the good classifier, as long as the aggregation
period was short, the confirmation levels we examined
made little difference. While we expect that no research
team would intentionally deploy a bad classifier, the per-
formance of an automated detection system during the
testing phase can be markedly different from its perfor-
mance on new audio data, which can introduce emergent
challenges such as seasonal changes to the soundscape,
turnover of individual animals that contributed training
data to the automated detection system, and cultural drift
of vocalization behavior over time (Williams et al. 2013).
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Researchers should take caution in the deployment of
automated detection systems that have not been thor-
oughly field tested (Russo and Voigt 2016). To moderate
the impacts of these potential changes on classifier perfor-
mance over time, a monitoring team may opt for higher
confirmation levels, or might choose to place their auto-
mated detection and classification models in a Bayesian
framework, updating them regularly at intervals appro-
priate for the target species and study landscape. Addi-
tionally, if target species issue multiple types of call or
song signals, multiple detectors and classifiers can be used
to scan audio files; our method can easily incorporate
such cases.

Compared with short-term ecological monitoring
studies, long-term studies have a disproportionately large
impact on scientific knowledge and policy (Hughes et al.
2017), and are more likely to have conservation and land
management utility compared with static, single-season
approaches (Dugger et al. 2015). Automated acoustic
monitoring may support this type of research by trans-
lating audio data streams into dynamic occupancy mod-
els (sensu MacKenzie et al. 2003 or Miller et al. 2013).
We are unaware of any real field examples of dynamic
occupancy models constructed from automated acoustic
monitoring data, although several examples exist for sin-
gle-season models (Furnas and Callas 2015, Kalan et al.
2015, Cerqueira and Aide 2016). If monitoring were to
continue in these cases, the associated research programs
would be well positioned to conduct long-term, land-
scape-scale, ecological monitoring with acoustic data.
Such frameworks may support adaptive management
paradigms across landscapes, amid climate change and
land use change. Adaptive management uses learning
over time to inform future management decisions (Wil-
liams et al. 2009), but it can be challenging to imple-
ment. The U.S. Fish and Wildlife Agency’s adaptive
management program for American waterfowl popula-
tions provides one example of a systematic implementa-
tion. This approach employs a mixture of management
objectives, monitoring, and model prediction under
alternative management scenarios to achieve optimal
management decisions by way of reductions in uncer-
tainty around population responses to land management
over time (Nichols et al. 2007, Johnson et al. 2015).
Though no examples yet exist for adaptive management
using dynamic occupancy models derived from acoustic
monitoring data, emerging tools for codifying models
and tracking research and management objectives
through time (e.g., the R package AMModels; Donovan
and Katz 2018) make this an imminent possibility.

In real field settings, researchers aiming to conduct
dynamic occupancy modeling will likely confront logisti-
cal challenges such as the replacement of equipment,
technological improvements, and refinement of acoustic
sampling techniques through time that could compro-
mise data consistency across multiple seasons if not
adequately addressed (Shonfield and Bayne 2017). Addi-
tionally, dynamic occupancy model frameworks require
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larger site sample sizes to provide reliable estimates of
the additional parameters in dynamic models, a reality
with which acoustic monitoring is compatible given
increasing emergence of highly cost-efficient recording
units (e.g. Solo, ~US$190 per unit [Whytock and Christie
2017]; AudioMoth (Open Acoustic Devices, University
of Southampton, Southampton, UK and Oxford Uni-
versity, Oxford, UK), US$43 per unit [Hill et al. 2018]).
However, the utility of long-term, large-scale, acoustic
monitoring will be undercut without a means for moving
from raw acoustic data to population models from which
inference may be gained. Generation of occupancy
model encounter histories from large data streams is a
salient challenge in automated acoustic monitoring, and
likely to become more so with increasing adoption of
automated acoustic monitoring methods.

In this work, we conducted all simulations using the
acoustic monitoring data management framework
described in the AMMonitor package (C. M. Balantic, J.
E. Katz, T. M. Donovan, unpublished manuscript), which
contains functions to support machine learning assign-
ment of target signal probability values to automatically
detected events, in addition to functions supporting the
aggregation of automated detection data into encounter
histories for use in dynamic occupancy models.
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