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Landscape complexity provides opportunities for local adaptation and creates population genetic structure at 
limited geographic scales. We determined if fine-scale genetic structure was evident in a population of ringtails 
(Bassariscus astutus) inhabiting the Guadalupe Mountains, a small, isolated, and ecologically diverse mountain 
range in the southwest United States. We hypothesized that ringtails would exhibit either a genetic pattern of 
isolation by distance (IBD), because their small body size would most likely limit dispersal distances, or a pattern 
of isolation by resistance (IBR), because the topographical complexity of the mountain range would result in 
complex dispersal patterns. To investigate for the presence of fine-scale genetic structure in this population, we 
genotyped 153 ringtails at 15 microsatellite loci and described genetic structure using 2 Bayesian clustering 
techniques. Six genetic clusters were identified revealing complex spatial genetic structure within a localized 
geographic area. We used partial Mantel tests to test for a correlation between genetic distance and geographic 
distance or resistance distance but found no evidence for a genetic pattern related to IBD or IBR. We subsequently 
tested for an association between genetic structure and isolation by environment (IBE) using a discriminant 
function analysis and classified a high proportion of individuals (> 91%) to their observed genetic cluster based 
exclusively on landscape features. We also used a nonparametric, multivariate analysis of variance to further 
explore the role of land-cover type and found that plant association explained 26% of the genetic variation. These 
results suggest that IBE influences the genetic structure of ringtails at local geographic scales, a finding that 
deserves consideration in conservation planning.
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Genetic diversity provides an indication of population health 
and long-term viability and has been recognized as a key level 
of biodiversity deserving increased conservation consider-
ation (Lande 1988; Allendorf and Luikart 2007). Low levels 
of genetic diversity can limit adaptive potential and restrict 
responses to environmental change (Allendorf and Luikart 
2007). Consequently, conserving the ecological processes that 
produce and maintain genetic diversity in wild populations may 
be an effective strategy for managing and conserving biodiver-
sity at the population scale (Manel et al. 2003).

Mesocarnivores are small- to medium-sized mammalian 
carnivores that play essential roles in ecological communities. 
Mesocarnivores can be apex predators in some systems, disease 
reservoirs in others, and may cause effects that cascade through 
food webs, especially in human-disturbed landscapes (Crooks 

and Soulé 1999; Roemer et al. 2009). Mesocarnivores occur 
in relatively high abundance compared to larger carnivores 
but are typically less conspicuous, so they have often received 
less attention (Buskirk and Zielinski 2003). Yet, many once 
common mesocarnivores are now rare (Gompper and Hackett 
2005), others are critically endangered (Biggins et al. 2011), 
and some may ultimately suffer from reduced genetic variation 
(Aguilar et al. 2004; Roemer 2013).

Studies of imperiled species have revealed that severe popu-
lation bottlenecks and a lack of genetic connectivity will most 
likely lead to reduced genetic variation, which can dimin-
ish population viability (Hedrick 1995; Janečka et al. 2011). 
Physical barriers can impede movements of individuals, and 
other landscape features can act as filters to movement (Dickson 
et al. 2013). For example, genetic structure in both wolverines 
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(Gulo gulo) in Montana and bobcats (Lynx rufus) in California 
was influenced by anthropogenic habitat alterations and high-
ways, which acted as barriers to movement (Cegelski et al. 
2003; Riley et al. 2006). Genetic connectivity of Tasmanian 
devil (Sarcophilus harrisii) populations was reduced by the 
poor quality of corridors that linked them (Jones et al. 2004). 
At a large geographic scale, the genetic structure of American 
marten (Martes americana) populations was consistent with 
a pattern of isolation by distance (IBD), whereas fine-scale 
genetic structure appeared to be influenced by habitat qual-
ity (i.e., logged versus unlogged areas—Broquet et al. 2006). 
Differences in behavior may also influence genetic structure. 
Arctic fox (Vulpes lagopus) populations are commonly divided 
into 2 ecotypes that specialize on different food sources with 
higher levels of gene flow occurring between populations of the 
same ecotype and lower levels of gene flow occurring between 
populations of different ecotypes (Dalén et al. 2005).

Ringtails (Bassariscus astutus) are small (~1 kg), nocturnal 
carnivores distributed from southern Mexico to southern Oregon 
and on 3 islands in the Sea of Cortez (Poglayen-Neuwall and 
Toweill 1988). Ringtails are capable of exploiting virtually all 
land-cover types within their range, from desert to temperate 
rainforest, where they are generalist foragers, consuming fruits, 
small vertebrates, and invertebrates (Trapp 1978; Poglayen-
Neuwall and Toweill 1988). Estimates of ringtail densities 
ranged from 20.5 individuals/km2 in California (Poglayen-
Neuwall and Toweill 1988) to only 0.17–4.2 individuals/km2 in 
the southwestern United States (Trapp 1978; Poglayen-Neuwall 
and Toweill 1988; Harrison 2013). Estimates of home range size 
varied from 5 to 572 ha (Trapp 1978; Poglayen-Neuwall and 
Toweill 1988; Ackerson and Harveson 2006; Harrison 2012). 
Nightly movements are relatively short, usually < 1 km (Callas 
1987; Harrison 2012). Little is known about the mating system 
and social organization of the ringtail, but they are presumed 
to be polygynous with both sexes living solitary lives (Trapp 
1978; Poglayen-Neuwall and Toweill 1988). Genetic phylog-
enies of the family Procyonidae have revealed the evolutionary 
relationships of the ringtail (Koepfli et al. 2007), but there have 
been no genetic assessments of their phylogeographic structure. 
Recently, a suite of microsatellite loci have been characterized 
that could be used for such a purpose (Schweizer et al. 2009).

Here, we evaluate whether fine-scale genetic structure occurs 
in a ringtail population inhabiting a relatively small and iso-
lated, but topographically and ecologically diverse, mountain 
range: the Guadalupe Mountains of New Mexico and Texas. 
We were interested in the genetic structure of this popula-
tion for 2 reasons. First, the National Park Service wanted to 
assess the level of connectivity between 2 of their national 
parks: Carlsbad Caverns and Guadalupe Mountains, and we 
decided that examining connectivity for a small-bodied car-
nivore could provide important insights about that process. 
Second, an increasing number of studies (Sexton et al. 2014) 
have suggested that environment influences gene flow within 
and between populations (isolation by environment, IBE), and 
we were interested whether such a pattern could arise within a 
population of small-bodied carnivores. We hypothesized that 

ringtails would exhibit either a genetic pattern of IBD, because 
their small body size would most likely limit dispersal dis-
tances, or one of isolation by resistance (IBR—McRae 2006), 
because the orographic complexity and land-cover diversity of 
the mountain range would create a complex array of linkages 
and filters that would influence their movements. We used 2 
Bayesian clustering techniques (Pritchard et al. 2000; Guillot 
et al. 2005) to investigate fine-scale genetic structure and then 
used partial Mantel tests, a discriminant function analysis 
(DFA), and a nonparametric, multivariate analysis of variance 
(ANOVA) based on dissimilarities to determine whether envi-
ronment, geographic distance, or resistance distance influenced 
the genetic structure of this ringtail population (McArdle and 
Anderson 2001; McRae et al. 2008; Legendre and Fortin 2010).

Materials and Methods
Study area.—We livetrapped ringtails within Carlsbad Caverns 
(CAVE) and Guadalupe Mountains (GUMO) National Parks 
and in the Lincoln National Forest Guadalupe Ranger District 
(GRDL; Fig. 1). The Guadalupe Mountains are approximately 
110 km long by 25 km wide and range in elevation from 1,095 
m in CAVE to 2,667 m in GUMO. The Guadalupe Mountains 
are among the many isolated mountain ranges in the southwest-
ern United States known as the “Sky Islands.” Here, mountain 
ranges are imbedded within a matrix of desert that most likely 
acts as a barrier or filter to animal movement between moun-
tain ranges. These mountains offer a unique environment to 
study fine-scale genetic structure because they are isolated and 
because the convoluted topography and diverse edaphic inter-
faces create a complex array of land-cover types within a small 
geographic area. Part of an ancient fossilized reef formed during 

Fig. 1.—Trap locations (white circles) and locations where 153 ring-
tails (Bassariscus astutus) were captured (colored circles) in Guadalupe 
Mountains (GUMO) and Carlsbad Caverns (CAVE) National Parks 
and the Lincoln National Forest Guadalupe Ranger District (GRDL), 
New Mexico and Texas, 2006–2009. Colors represent the 6 genetic 
clusters that individuals were assigned to using program Geneland 
(see “Results”).
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the Permian period, the Guadalupe Mountains rise abruptly 
from the floor of the Delaware Basin. The lower elevations are 
located where the Chihuahuan Desert transitions to grasslands, 
incorporating elements of both communities, whereas higher 
elevations support oak woodlands, piñon-juniper woodlands, 
and coniferous forests. Transitional slopes incorporate char-
acteristics of many different vegetation associations and are 
often incised by steep canyons, which can contain permanent 
or ephemeral streams (Powell 1998).

Genetic sampling of ringtails.—We captured ringtails from 
25 May 2006 to 6 April 2009 on 19 different transects incorpo-
rating 314 trap locations. Six to 29 live traps (76 × 28 × 30 cm, 
Safeguard, New Holland, Pennsylvania) were used on each 
transect with traps set approximately 250 m apart adjacent to 
roads, trails, or washes for a mean of 4.54 nights ± 1.69 SD 
(range = 2–10). Traps were baited with dry cat food and either 
loganberry paste or sardines.

Captured ringtails were anesthetized using a mixture of 
medetomidine hydrochloride (50 µg/kg) and ketamine hydro-
chloride (5 mg/kg) injected intramuscularly (Orion Corporation, 
Espoo, Finland). After processing, an antagonist, antisedan 
hydrochloride, was administered (~200–250 µg/kg, Orion 
Corporation). We collected a snip of ear tissue, ≤ 10 ml of blood, 
and hair and took standard physical measurements. Individuals 
were marked with either a passive integrated transponder tag 
(Biomark, Inc., Boise, Idaho) or an ear tag (National Band and 
Tag Company, Newport, Kentucky), allowed to recover from 
anesthesia, and released. All capture and handling procedures 
were in accordance with guidelines endorsed by the American 
Society of Mammalogists (Sikes et al. 2011) and sanctioned by 
the New Mexico State University Institutional Animal Care and 
Use Committee (Permit 2006-006).

Landscape and land-cover sampling.—At each trap loca-
tion, we measured slope, aspect, and elevation with a clinom-
eter, compass, and GPS, respectively. We measured land-cover 
features along 3 transects (each 50 m in length) arranged in 
a spoke design and centered on each trap location with equal 
angles (120°) between transects; the first angle was selected 
randomly. At 5-m intervals, the plant species and vegetative 
form (i.e., tree, shrub, subshrub, forb, or grass) or microhabitat 
feature (e.g., bare soil, rock outcrop) intersecting the transect 
line were recorded.

Land cover was determined from vegetation maps cre-
ated by the New Mexico SWReGAP and Texas GAP projects 
using ArcGIS (ESRI 2009). Land-cover classifications dif-
fered between states, so the 2 layers were aggregated into a 
single layer by matching their descriptions. The resulting layer 
included 5 major (grassland, shrubland, riparian, woodland, 
and forest) and 5 minor (bare soil, sand flats, dunes, consoli-
dated rock, and cropland) cover types.

Genotyping and standard genetic measures.—Utilizing tissue 
samples, we genotyped 153 ringtails at 15 tetranucleotide mic-
rosatellite loci; see Schweizer et al. (2009) for details regarding 
microsatellite structure and variability, sample extraction, and 
amplification. We determined the number of alleles and calcu-
lated allelic richness across loci with Fstat 2.9.3 (Goudet 1995). 

Allelic diversity was unusually high in our sample; to verify this 
high allelic diversity, all electropherograms were reviewed and 
allele sizes called by 2 of the authors independently (RMS and 
JPP). A subset of the 153 individuals was then regenotyped for 
specific loci to verify and correct any inconsistent calls before 
the data set was finalized and subsequently analyzed for Hardy–
Weinberg equilibrium (HWE) and linkage disequilibrium. We 
also reviewed whether other procyonids exhibited similar levels 
of allelic diversity. Cullingham et al. (2006) characterized 12 tet-
ranucleotide microsatellites for the raccoon (Procyon lotor), the 
closely related sister taxon to the ringtail (Koepfli et al. 2007), 
using a set of 80 individuals and observed a similar number of 
alleles (X =14 1. , range 6–25) and levels of heterozygosity, 
indicating that the relatively high level of allelic diversity in our 
sample of ringtails is consistent with that observed in sister taxa. 
Observed and expected heterozygosity were calculated with the 
program SPaGeDi 1.3 (Hardy and Vekemans 2002). We esti-
mated F

ST
 and F

IS
 values (Weir and Cockerham 1984), tested 

for departure from HWE using a Markov Chain Monte Carlo 
(MCMC) method, and tested for linkage disequilibrium with 
Genepop 4.0.10 (Raymond and Rousset 1995) with Bonferroni 
corrections (Rice 1989).

With highly variable markers like microsatellites, F
ST

 can 
never reach unity because it is constrained by reduced levels 
of homozygosity; this can bias estimates of among-population 
variation and population differentiation downward (Hedrick 
1999). To account for the potential effects of high levels of 
genetic variation, we also calculated G′

ST
, an analog of F

ST
, 

which has been recommended for use with highly variable 
genetic markers (Hedrick 1999), and assessed its significance 
with permutation tests in Genalex 6.41 (Peakall and Smouse 
2006). We also estimated pairwise relatedness among all indi-
viduals using the program ML-Relate, which uses a maxi-
mum likelihood estimation procedure specifically designed 
for microsatellite loci (Kalinowski et al. 2006), and calculated 
pairwise genetic distances using the codominant genotypic dis-
tance implemented in Genalex (Smouse and Peakall 1999).

Genetic analyses.—We used 2 genetic clustering algorithms 
to detect spatial genetic structure: Geneland 3.1.5 (Guillot 
et al. 2005) and Structure 2.3.4 (Pritchard et al. 2000). 
Geneland uses multilocus genotypes to classify individuals 
into distinct clusters by constraining them to both HWE and 
linkage equilibrium (Guillot et al. 2005). Geneland can incor-
porate geographic locations into the model as priors and can 
be used to detect low levels of genetic differentiation that may 
go undetected with the use of nonspatial models (Coulon et al. 
2006; Latch et al. 2006; Guillot 2008; François and Durand 
2010). The Geneland model still allows for highly intricate 
spatial domains, however, and can cluster individuals together 
that are not in close proximity (Guillot et al. 2005).

We performed 10 independent runs of Geneland, each time 
inferring the number of genetically distinct clusters (K) from a 
range of possible clusters (K = 1–15), and used the correlated 
allele and spatial models (Guillot et al. 2005; Guillot 2008). 
The number of iterations and thinning was set to 1,000,000 and 
100, respectively, and the first 1,000 iterations were discarded 
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to minimize the effects of the random starting configuration. 
We assigned an uncertainty of 5 m to the spatial coordinates 
of each individual, allowing individuals captured at the same 
location to be assigned to different clusters. We selected the 
run with the highest average posterior probability for subse-
quent analyses. For each cluster identified, we assessed levels 
of genetic diversity, calculated F

IS
 values (Weir and Cockerham 

1984), and tested for departures from HWE with a Bonferroni 
correction.

As an alternative to these spatial models, we used program 
Structure to infer the number of genetically distinct clusters. 
Structure also uses multilocus genotypes to classify individu-
als into their most likely cluster based on maintaining HWE 
and linkage equilibrium (Pritchard et al. 2000). We conducted 
preliminary analyses to identify the length of runs required 
by evaluating the stationarity of summary statistics (Pritchard 
et al. 2000; Lonsinger 2010). Each subsequent run consisted of 
100,000 burn-in and 250,000 MCMC iterations and employed 
the admixture and correlated alleles formulations (Falush et al. 
2003). We performed 20 independent runs for the same range 
of K used in Geneland (i.e., K = 1–15) with the original, non-
spatial Structure model. We used the highest mean log like-
lihood, L(K), to select K (Pritchard et al. 2000). Since L(K) 
may not always provide an accurate estimate of K, we also used 
an alternative statistic, ΔK (Evanno et al. 2005). Additionally, 
we assessed the proportion of individual ancestries (i.e., Q val-
ues) attributable to each cluster when more than 1 estimate of 
K received substantial support. If individuals had ancestries 
divided approximately equally among clusters, this suggested 
that the program had a difficult time assigning them to a par-
ticular cluster.

Structure does not perform well when clusters are not dis-
crete (Pritchard et al. 2000) or when population differentiation 
is weak (Latch et al. 2006; Hubisz et al. 2009). Incorporating 
information on sampling location as priors may therefore 
improve inferences. Consequently, we employed a formula-
tion of Structure that uses spatial priors and has been shown 
to improve inference under low levels of divergence, be unbi-
ased (i.e., it does not tend to detect population genetic structure 
when it is not there), and can ignore location information if it is 
not informative (Hubisz et al. 2009). Structure does not allow 
explicit incorporation of geographic location. Instead, locations 
are coded with a dummy variable that represents the individual’s 
inferred population affiliation. We assigned each individual to a 
spatial group corresponding to the genetic clusters identified by 
Geneland (6 clusters) for comparison. We reasoned that if the 
Structure model does not tend to detect genetic structure when 
it is not present, and can ignore uninformative location priors 
(Hubisz et al. 2009), then we would not expect Structure to 
find support for the clusters identified by Geneland unless the 
spatial information was indeed informative. Using the location-
prior model, we performed 10 independent runs for K = 1–10.

Partial Mantel tests of genetic distance, geographic dis-
tance, and resistance distance.—There has been much debate 
regarding the efficacy of Mantel tests for addressing questions 
in community ecology and landscape genetics (Legendre and 

Anderson 1999; McArdle and Anderson 2001; Legendre and 
Fortin 2010). Although Mantel tests have less power than other 
approaches (e.g., distance-based redundancy analysis) when 
comparing raw data, and are therefore less likely to detect a 
relationship in the data when one exists, they provide a suit-
able approach for analyzing matrices when hypotheses are 
based solely on distance metrics (Legendre and Fortin 2010). 
We conducted 2 partial Mantel tests to assess the correlation 
between genetic distance and geographic distance or resistance 
distance. We used the codominant genetic distance for micro-
satellites computed with Genalex as the estimate of pairwise 
genetic distance and compared these with either geographic 
or resistance distance. All partial Mantel tests were conducted 
using the vegan package (ver. 2.0-3) in R (Oksanen 2011).

Geographic distances were the distances between individual 
capture locations. Resistance distances were determined using 
the program Circuitscape 3.5.4, which utilizes a spatial layer 
to represent landscape permeability to movements, and then 
estimates resistance distances between individuals (McRae 
et al. 2008). Permeability scores were assigned via expert opin-
ion whereby 10 vegetative communities, 4 slope classes, and 6 
topographic position indices (TPI; e.g., valley, ridge top) were 
combined into a single permeability layer via a weighted-sum 
approach (Spear et al. 2010). Four experts with knowledge of 
ringtail natural history and ecology (including 2 authors: RCL 
and GWR and 2 outside reviewers: A. Bueno-Cabrera, Instituto 
de Ecologia, A. C., and D. E. Toweill, Idaho Department of 
Fish and Game) independently assessed the permeability of the 
landscape, assigning each feature a value from 0 (absolute bar-
rier) to 100 (no barrier effect). If the scores varied by ≤ 20, the 
average was used and otherwise, discussions led to a consensus 
score (Beier et al. 2007). Similarly, weights for the overall influ-
ence of each of the 3 primary landscape features were indepen-
dently assessed and scored so that the weighted sum equaled 
100. The resulting layer was used to calculate resistance dis-
tances between nodes using the pairwise model and 8-neighbor 
connection scheme (McRae et al. 2008). Finally, to assess the 
sensitivity of the partial Mantel results to the parameterization 
of the resistance surface, we created 7 additional resistance sur-
faces whereby the contribution, or weight, of each landscape 
feature (i.e., land cover, slope, and TPI) varied. Three resis-
tance surfaces had a different landscape feature receiving all of 
the weight, 3 surfaces had a combination of 2 landscape fea-
tures receiving equal weight while the 3rd received no weight, 
and 1 surface split the weight equally among all 3 landscape 
features. We then conducted partial Mantel tests using each of 
these weighting schemes.

An assessment of habitat-dependent genetic structure.—
Clusters delineated with Geneland were used as groups in a 
DFA to see if we could discriminate among genetic clusters 
based exclusively on landscape features (Table 1). We origi-
nally used linear discriminant analysis (LDA) and quadratic 
discriminant analysis, but because results were similar, we 
report only used results of the LDA. Among 6 genetic clus-
ters identified (see “Results”), clusters 1 and 6 had the small-
est sample sizes and were excluded from further analyses since 
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sample size of the smallest group must exceed the number of 
predictor variables (Tabachnick and Fidell 1996). Although 
LDA assumes nonmulticollinearity among predictor variables 
(Tabachnick and Fidell 1996), correlations below 0.5 do not 
have a significant impact on model performance (Pohar et al. 
2004). Among 55 pairwise comparisons of predictor variables, 
9 had significant correlations ranging from 0.24 to 0.35. LDAs 
are robust to departures in multivariate normality as long as 
the departure is not related to outliers (Tabachnick and Fidell 
1996). Outliers were identified using robust Mahalanobis dis-
tance methods and removed (Nordhausen et al. 2008). We tested 
the assumption of homogeneity among covariance matrices 
using the Box chi-square test (Box 1949) with Bonferroni cor-
rections. Results suggested that the covariance matrix of cluster 
2 was not equal to that of cluster 3 (χ2

55 > 117.2, P < 0.001) or 
cluster 4 (χ2

55 > 168.9, P < 0.001). Because cluster 2 (n2 = 54) 
was disproportionally larger than the other 3 clusters (n3 = 26, 
n4 = 24, n5 = 13), we suspected that this disparity might be the 
cause of the unequal covariance matrices (Finch and Schneider 
2007). To address this potential effect, we randomly selected a 
sample of individuals from cluster 2, equal in size to the mean 
of the other 3 clusters (n2s = 21) after which the assumption 
of homogeneity among covariance matrices was met between 
cluster 2 and the other clusters. Heterogeneity between the 
covariance matrices of clusters 3 and 4 also existed (χ2

55 > 
113.9, P < 0.001), but because this test may be too strict and 
acceptance of the null hypothesis (i.e., equality of covariance 
matrices) difficult to meet (Lei and Koehly 2003), we elected 
to retain both of these clusters in the DFA.

The LDA was performed using 11 land-cover and landscape 
variables (Table 1) to define the remaining 4 clusters (2, 3, 
4, and 5). Model performance was assessed by the estimated 
actual error rate (hereafter, misclassification rate) or the per-
centage of individuals classified in a cluster different from their 
genetic cluster. The misclassification rate was calculated using 
the leave-1-out method, a method with less bias and reduced 
variance when compared to resubstitution and cross-validation 
approaches, respectively (Lance et al. 2000). Finally, we con-
ducted 100,000 randomizations where individuals were ran-
domly assigned to 4 groups with sample sizes equal to the sizes 
of the original genetic clusters. Misclassification rate of our 

original observed data was then compared to the distribution of 
misclassification rates generated via randomization. Analyses 
were conducted in R (R Core Team 2010).

If individuals captured along particular transects are closely 
related, and if landscape features within these transects are 
more similar than those represented in our study area, it is pos-
sible that a spurious genetic-landscape correlation could arise. 
We reasoned that if this was true, then correct classification 
rates for trap sites within transects would be higher than classi-
fications based on the genetic clusters generated by Geneland. 
Using the same approach, we conducted a LDA using tran-
sect as the grouping variable, calculated misclassification 
rate, and compared it to that for genetic clusters. All transects 
were treated separately, except for 3 transects near McKittrick 
Canyon, GUMO, that were combined for sample-size reasons 
and 2 transects in Slaughter Canyon, CAVE, that overlapped, 
yielding 16 transects with a mean of 19.44 traps ± 7.51 SD.

To further explore the potential influence of landscape fea-
tures on genetic structure, we performed a permutational mul-
tivariate ANOVA with the vegan package in R (sensu Anderson 
2001; McArdle and Anderson 2001). For this analysis, we 
attempted to explain the variation in the pairwise genetic dis-
tance matrix generated among all 153 individuals with Genalex 
using 11 landscape variables including 10 numeric variables 
collected at trap locations (Table 1) and 1 land-cover classifica-
tion (Supporting Information S1). The land-cover classification 
variable was determined from an independent fine-scale veg-
etation analysis that was conducted at both CAVE (Muldavin 
et al. 2003) and GUMO. Initially, land-cover classifications 
were assigned to each trap based on its coordinate location, 
vegetation data collected at each trap, and photographs of each 
site, resulting in 12 land-cover classes (Supporting Information 
S1). As an extension of this approach, we refined the 12 land-
cover classes into 38 fine-scale plant associations (Supporting 
Information S2) and reran the analysis.

Results
Genetic sampling and standard genetic measures.—We cap-
tured 157 individual ringtails in 1,425 trap nights and obtained 
genetic samples from 153 individuals. The mean number of 

Table 1.—Unstandardized numeric predictor variables used in a linear discriminant analysis to test for an association between land-cover type 
and population genetic structure of ringtails (Bassariscus astutus) captured in the Guadalupe Mountains, New Mexico and Texas, 2006–2009.

Cluster 2 Cluster 3 Cluster 4 Cluster 5

X SD X SD X SD X SD

Elevation 1,450.43 242.00 1,803.88 175.16 1,774.75 242.09 2,110.31 213.62
% Trees 5.42 9.37 10.13 14.59 22.78 15.59 16.41 11.66
% Shrubs 49.92 13.79 37.95 16.33 40.14 18.58 28.72 19.74
% Subshrubs 4.92 5.54 3.97 4.52 2.36 2.86 1.02 1.60
% Grass 13.37 7.18 12.05 7.49 14.17 9.69 26.92 18.18
% Forbs 4.78 4.71 0.51 1.23 3.19 5.15 4.36 7.75
Simpsons SDIa 0.92 0.04 0.91 0.04 0.92 0.03 0.89 0.06
% Rock 2.10 11.88 34.04 16.06 27.17 14.05 21.08 14.12
Aspect 137.71 96.33 182.00 99.68 136.54 73.28 251.85 112.63
Slope 21.24 20.28 35.35 26.78 22.63 15.00 29.23 22.22

aSDI = species diversity index.

http://jmamma.oxfordjournals.org/lookup/suppl/doi:10.1093/jmamma/gyv050/-/DC1
http://jmamma.oxfordjournals.org/lookup/suppl/doi:10.1093/jmamma/gyv050/-/DC1
http://jmamma.oxfordjournals.org/lookup/suppl/doi:10.1093/jmamma/gyv050/-/DC1
http://jmamma.oxfordjournals.org/lookup/suppl/doi:10.1093/jmamma/gyv050/-/DC1
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alleles was 16.67 ± 7.58 SD (range 7–34; Table 2). Complete 
multilocus genotypes were obtained for all individuals sam-
pled except for 5 that were missing data at a single locus. The 
number of alleles, allelic richness, and HO indicated high lev-
els of genetic diversity (Table 2). Global tests for heterozygote 
deficiency indicated departure from HWE for 3 loci (Table 2). 
These loci were retained in subsequent analyses, as genetic 
assignment tests are typically robust to potential causes of het-
erozygote deficiency (Pilot et al. 2006). There were no signifi-
cant departures from linkage equilibrium.

Geneland analysis.—Geneland consistently displayed a 
clear mode at K = 6 (Fig. 1). We observed similar levels of allelic 
richness and heterozygosity among the 6 clusters, but there were 
large differences in the mean number of alleles per locus (range 
4.53–14.47; Table 3). Clusters 1 and 6 had the smallest sample 
sizes and lowest allelic diversity (Table 3). Clusters 2 and 3 
had significant deficiencies in heterozygosity (Table 3), which 
could be the result of the presence of null alleles, additional 
cryptic subdivision, or the inclusion of closely related individu-
als in the sample. However, the average relatedness among the 
11,628 comparisons was low (0.033, range 0–0.61) with only 
10 pairings having values > 0.5 and only 89 pairings > 0.25 and 
< 0.5. Thus, only 0.85% of all pairwise relatedness estimates 
represented 2nd-order relatives or higher. Pairwise F

ST
 values 

(range 0.01–0.07) indicated weak to moderate genetic differ-
entiation among clusters; similarly, estimates of G′

ST
 indicated 

that there was detectable genetic differentiation among the 6 
clusters identified with Geneland (Table 4). Both F

ST
 and G′

ST
 

were highest for comparisons involving cluster 1 or 6, which 
may be, in part, a result of the small sample sizes characterizing 
these clusters.

Structure analysis.—The original, nonspatial Structure 
model indicated maximal values of L(K) and ΔK at K = 2; > 
94% (144) of the ringtails sampled were assigned to a single 

cluster. Under the location-prior model, whereby individuals 
were assigned a location index corresponding to the clusters 
identified by Geneland, the maximum L(K) occurred at K = 2 
or K = 3, but L(K) increased substantially at K = 6 and was 
within 1 SD of the maximum L(K), lending some support for 
more fine-scale genetic structure (Fig. 2). Similarly, ΔK dis-
played the greatest changes at K = 3 and 6 (Fig. 2). The pro-
portion of ancestry for individuals attributable to each cluster 
suggested that at K = 3, the ancestry of nearly one-third of all 
individuals was “over-split”; i.e., their ancestry was nearly 
equally divided among 2 or more clusters. The proportion of 
ancestry when K = 6 suggested high levels of admixture, but 
only a small number of individuals had ancestry values split 
evenly among clusters. Additionally, Structure provides a 
parameter estimate, r, summarizing how informative location 
data are to the model. Results for the most supported location-
prior model with K = 6 had a mean r = 0.32; values of r < 1 
indicate that locations are informative (Hubisz et al. 2009).

Partial Mantel tests of genetic variation, geographic dis-
tance, and resistance distance.—The correlations between the 
individual pairwise genetic distance matrix and both the geo-
graphic and resistance distance matrices were not significantly 
different from correlations derived from randomly permuted 
matrices. Neither geographic distance (rm = −0.003, P = 0.53, 
n = 10,000) nor resistance distance (rm = 0.03, P = 0.29, 

Table 2.—The number of alleles (N
A
), allelic richness (AR), observed 

(HO) and expected heterozygosity (HE), fixation index (F
IS
), its standard 

error (SE), and P-value for the test of Hardy–Weinberg equilibrium for 
15 microsatellite loci amplified for 153 ringtails (Bassariscus astutus) 
captured in the Guadalupe Mountains, New Mexico and Texas. Bold 
values indicate a locus not in Hardy–Weinberg equilibrium following 
Bonferroni correction.

Locus N
A

AR HO HE F
IS

SE P-value

GATA5 9 2.98 0.3355 0.6236 0.4627 <0.0001 <0.0001
GATA47 10 4.50 0.7974 0.8017 0.0053 0.0041 0.534
GATA105 7 3.20 0.5098 0.6318 0.1936 <0.0001 <0.0001
AAAG2 34 6.76 0.8627 0.9495 0.0916 0.0015 0.006
AAAG3 21 6.12 0.8562 0.9180 0.0675 0.0060 0.172
AAAG20 17 5.18 0.8889 0.8623 −0.0310 0.0069 0.230
AAAG22 10 4.82 0.8105 0.8383 0.0333 0.0024 0.145
AAAG28-2 15 3.62 0.5752 0.5839 0.0150 0.0134 0.473
AAAG30 26 6.07 0.7778 0.9164 0.1517 0.0007 0.0016
AAAG36 11 5.05 0.8487 0.8535 0.0057 0.0040 0.409
AAAG45 16 5.37 0.7867 0.8587 0.0841 0.0058 0.204
GATA73 14 5.38 0.8431 0.8732 0.0345 0.0052 0.397
AAAG81 26 6.04 0.9150 0.9097 −0.0059 0.0077 0.844
AAAG84 12 4.44 0.7190 0.7940 0.0947 0.0020 0.044
AAAG89 21 6.05 0.9020 0.9142 0.0135 0.0084 0.585

Table 3.—Mean number of alleles per locus (N
A
), allelic richness 

(AR), observed (HO) and expected heterozygosity (HE), fixation index 
(F

IS
), its standard error (SE), and the P-value for tests of heterozygote 

deficiency for each of 6 genetic clusters of ringtails (Bassariscus astu-
tus) identified with the program Geneland. The number of individu-
als assigned to each cluster is indicated in parentheses. Bold values 
indicate a significant deficit in heterozygotes following Bonferroni 
correction.

Cluster N
A

AR HO HE F
IS

SE P-value

1 (6) 4.87 3.45 0.7191 0.7211 0.0015 0.0056 0.34
2 (69) 14.47 4.77 0.7396 0.8082 0.0877 <0.0001 <0.0001
3 (26) 10.87 4.72 0.7846 0.8324 0.0469 0.0007 0.0033
4 (35) 12.00 4.82 0.7848 0.8177 0.0386 0.0033 0.03
5 (13) 8.67 4.51 0.7846 0.7961 0.0196 0.0102 0.63
6 (4) 4.53 3.60 0.7500 0.8048 0.0897 0.0034 0.24

Table 4.—Pairwise F
ST

 (above the diagonal) and G′
ST

 (below the 
diagonal) for each of 6 genetic clusters of ringtails (Bassariscus astu-
tus) identified by the program Geneland. Significance of F

ST
 and G′

ST
 

was evaluated with Fisher’s exact test (implemented in Genepop) and 
permutation tests (implemented in Genalex), respectively. All com-
parisons were significant at P < 0.05 (* indicates P < 0.01; bold with 
* indicates P < 0.001).

Cluster 1 2 3 4 5 6

1 0.033* 0.039* 0.041* 0.049* 0.070*
2 0.145* 0.017* 0.008* 0.014* 0.035*
3 0.182* 0.088* 0.018* 0.024* 0.026
4 0.178* 0.041* 0.092* 0.023* 0.040*
5 0.194* 0.065* 0.124* 0.110* 0.055*
6 0.254* 0.169* 0.141* 0.207* 0.244*
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n = 10,000) explained the observed spatial pattern of variation 
in genetic distance when controlling for the other variable. The 
sensitivity analysis, whereby the weights of the 3 landscape 
features were varied, produced similar results except that when 
TPI received all of the weight, the matrix correlation for geo-
graphic distance while controlling for resistance distance was 
significant (rm = 0.056, P = 0.04, n = 10,000). Despite this single 
significant result, all matrix correlations were less than 0.056, 
indicating very little relationship between genetic distance and 
either geographic distance or resistance distance (Table 5).

Discriminant function analyses of habitat-dependent group 
membership.—The LDA model correctly classified 91.7% 
(misclassification rate = 8.3%) of all individuals into their 
genetically identified cluster based on landscape variables 
(Wilks’ Λ = 0.11, F33,207 = 6.63, P < 0.001). Over 59% of the 
variation was explained by the 1st linear discriminant (LD1). 
The 2nd (LD2) and 3rd (LD3) linear discriminants explained 
an additional 30% and 11% of the variation, respectively. The 
misclassification rate and Wilks’ Λ values of the observed data 
for the LDA were less than the distribution generated by ran-
domization in which the mean misclassification and Wilks’ Λ 
were 51.5% (range 32.1–71.4%) and 0.65 (range 0.32–0.88), 
respectively. The misclassification of trap sites within tran-
sects was nearly 3 times higher (misclassification rate = 24.4%, 
Wilks’ Λ = 0.003, F165,2568 = 13.96, P < 0.001) than that based 
on the genetic clusters, suggesting that the low misclassifica-
tion rate associated with the genetic clusters is unlikely to be 
the result of a spurious genetic-landscape correlation caused by 
our sampling design.

Standardized linear discriminant scaling coefficients and 
structure coefficients were used to elucidate the relative 

importance of the predictor variables. Elevation and percent 
trees were the most influential variables in LD1 and LD2, 
respectively, each having the highest standardized scaling coef-
ficient and a high level of correlation (Table 6). Aspect had 
moderate scaling and structure coefficients, indicating that it 
too may be contributing to LD1. LD1 contributed to the dis-
crimination of individuals from all 4 clusters, whereas LD2 
separated clusters 3 and 4 from each other (Fig. 3). Although 
the amount of variation explained by LD3 was low, this 3rd 
dimension further contributed to differentiating clusters and 
appears to be influenced by contributions from the proportion 
of cover attributable to forbs, shrubs, and grasses.

The LDA model discriminated genetic clusters based exclu-
sively on landscape variables. These differences were evident 
visually (Fig. 4). Cluster 2 was characterized by lower eleva-
tions and low to moderate cover of trees and was dominated 
by shrubs and subshrubs including lechuguilla (Agave lechu-
guilla), sotol (Dasylirion leiophyllum), prickly pear (Opuntia 
spp.), and yucca (Yucca spp.). Cluster 3 occurred at moderate 
elevations with low tree cover that included oaks (Quercus 
spp.), mountain mahogany (Cercocarpus montanus), and grama 
grasses (Bouteloua spp.). Cluster 4 was also found at moder-
ate elevations along the escarpment of the mountain range but 
had a higher proportion of tree cover than cluster 3. Cluster 5 
occurred at the highest elevations and had moderate to high 
tree cover dominated by oaks, bigtooth maple (Acer grandiden-
tatum), two-needle piñon (Pinus edulis), and ponderosa pine 
(P. ponderosa). Junipers (Juniperus spp.), a frequent food item 
of ringtails, were common across all clusters.

Nonparametric multivariate ANOVA using the pairwise genetic 
distance matrix.—The 11 numeric landscape variables together 
explained approximately 15% of the variation in pairwise genetic 
distance. Land-cover class explained the most variation (8.2%) 
and was marginally significant (pseudo F11,131 = 1.15, P = 0.07), 

Fig. 2.—The most likely number of genetically distinct clusters of 
ringtails in the Guadalupe Mountains, New Mexico and Texas, deter-
mined using the program Structure with the location-prior model 
formulation. The mean maximum likelihood value [L(K)] and the 2nd-
order rate of change (ΔK) suggest that 2, 3, or 6 clusters exist. The 
horizontal line (dashed) represents the highest mean L(K) observed. 
Vertical bars on L(K) are ± 1 SD.

Table 5.—Layer contributions for each landscape feature and par-
tial Mantel correlation coefficients (rm) for tests of the correlation 
between genetic distance (G) and geographic (Geo) and resistance 
(Res) distances while controlling (|) for the other. P-values are based 
on 10,000 permutations.

Mantel test Land cover Slope Topographic  
position index

rm P-value

G ~ Geo | Res 0.41 0.34 0.25 −0.003 0.53
G ~ Res | Geo 0.41 0.34 0.25 0.028 0.29
G ~ Geo | Res 1 0 0 0.008 0.38
G ~ Res | Geo 1 0 0 0.054 0.14
G ~ Geo | Res 0 1 0 −0.007 0.61
G ~ Res | Geo 0 1 0 0.039 0.06
G ~ Geo | Res 0 0 1 0.056 0.04
G ~ Res | Geo 0 0 1 −0.035 0.84
G ~ Geo | Res 0.5 0.5 0 −0.003 0.54
G ~ Res | Geo 0.5 0.5 0 0.053 0.13
G ~ Geo | Res 0.5 0 0.5 0.011 0.37
G ~ Res | Geo 0.5 0 0.5 0.028 0.26
G ~ Geo | Res 0 0.5 0.5 0.035 0.10
G ~ Res | Geo 0 0.5 0.5 −0.010 0.62
G ~ Geo | Res 0.33 0.33 0.33 0.006 0.43
G ~ Res | Geo 0.33 0.33 0.33 0.031 0.23



264 JOURNAL OF MAMMALOGY 

whereas elevation (pseudo F1,131 = 1.63, P = 0.036) and slope 
(pseudo F1,131 = 1.68, P = 0.028) each explained ~1% of the varia-
tion in the response matrix. None of the other variables explained 
a significant amount of variation. When finer scale plant associa-
tions were substituted for land-cover class, 33% of the variation in 
individual genetic distance was explained with plant association 
explaining 26% of the variation (pseudo F37,105 = 1.11, P = 0.031), 
slope was still significant (pseudo F1,105 = 1.93, P = 0.01), but ele-
vation was not (pseudo F1,105 = 1.12, P = 0.30), perhaps reflecting 
a correlation between plant association and elevation.

Discussion
Using spatially explicit Bayesian clustering methods, we 
described fine-scale genetic structure in a population of ring-
tails that was apparently influenced by environmental fea-
tures, including elevation, slope, and vegetation type, rather 
than either IBD or IBR. This represents the first description 
of ringtail population genetic structure and contributes to our 
understanding of ringtail ecology. At the relatively small scale 
of our study, and in the absence of absolute physical barriers 
to dispersal, even modest amounts of gene flow are expected 
to maintain panmixia (Knutsen et al. 2011). Thus, even weak 
levels of highly significant genetic differentiation, as observed 
here, may be biologically meaningful and important (Broquet 
et al. 2006; Coulon et al. 2006).

In a recent review of 70 studies where IBE (i.e., where rates 
of gene flow were greater among similar environments), IBD, or 
both were detected, 74.3% of all studies showed a pattern related 
to IBE, whereas IBD was only detected in 20% of these studies 
(Sexton et al. 2014). In vertebrates, 29 out of 34 studies (85.3%) 
showed evidence of IBE. The average F

ST
 (mean = 0.079, 

SE = 0.025) for those studies displaying a genetic pattern related 
to IBE was larger, but similar in magnitude to the average F

ST
 

between all genetic clusters in our study (F
ST

 = 0.032, SE = 0.017). 
Our estimate decreased, however, when we removed the 2 smallest 
clusters (1 and 6) from the comparison (F

ST
 = 0.017, SE = 0.006). 

Nevertheless, all F
ST

 and G′
ST

 values were significant, suggest-
ing that there was detectable genetic structure within the ringtail 
population inhabiting the Guadalupe Mountains (Table 4).

IBE is a landscape genetic pattern that can be generated by 
different ecological processes, including habitat-induced natural 
or sexual selection that reduces the fitness of immigrants, or hab-
itat-biased dispersal (Wang and Bradburd 2014). None of these 
potential mechanisms are mutually exclusive. However, the exis-
tence of an IBE pattern can illuminate the role environment may 
play in creating spatial genetic structure relative to the influence 
attributable to either IBD or IBR. Further, IBR conflates both 
distance and the environment into a measure that assesses the 
resistance of the landscape to gene flow, which can obscure their 
relative roles (Wang and Bradburd 2014). For ringtails in the 
Guadalupe Mountains, several lines of evidence supported the 
role of IBE, whereas neither IBD nor IBR were well supported.

Fig. 3.—Three-dimensional scatter plot of 4 genetic clusters against 
3 linear discriminants (LD1, LD2, and LD3) resulting from the test 
for an association between land-cover type and population genetic 
structure of ringtails (Bassariscus astutus) captured in the Guadalupe 
Mountains, New Mexico and Texas, 2006–2009. Cluster numbers cor-
respond to genetic clusters identified with the program Geneland.

Table 6.—Standardized scaling coefficients and structure coefficients for 3 linear discriminant axes (LD1, LD2, and LD3) resulting from the 
test for an association between land-cover type and population genetic structure in ringtails (Bassariscus astutus).

Standardized scaling coefficients Structure coefficients (correlations)

LD1 LD2 LD3 LD1 LD2 LD3

Elevation 1.4224 0.0776 0.3752 0.8277 0.0110 0.3320
% Trees 0.2789 −2.1418 −0.0521 0.2809 −0.5258 0.2677
% Shrubs 0.2228 −1.1564 −0.7139 −0.4431 −0.0426 −0.1913
% Subshrubs −0.5042 −0.0828 0.2150 −0.3504 0.2061 −0.0005
% Grass 0.6476 −0.6954 −0.7028 0.4650 −0.0106 −0.4509
% Forbs 0.1154 −0.4391 −0.7838 −0.0162 −0.1879 −0.6194
Simpsons SDIa 0.2359 −0.1585 0.5596 −0.2890 −0.1859 0.1541
% Rock −0.0316 −0.4211 −0.1014 −0.1937 0.1841 0.4095
Aspect 0.7811 0.3440 −0.1877 0.4290 0.2786 −0.0850
Habitat −0.2310 −0.7683 0.3766 −0.0162 −0.2519 0.1027
Slope −0.0697 0.0763 0.1510 0.1283 0.2687 0.3190

aSDI = species diversity index.
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Individual differences in behavior and a preference for par-
ticular vegetation types or prey items may be phenotypic traits 
favored by selection that could drive the genetic divergence of 
subpopulations and appear to be underappreciated factors con-
tributing to nonrandom gene flow (Bolnick et al. 2007; Edelaar 
and Bolnick 2012). Coyote (Canis latrans) populations in 
California and gray wolf (C. lupus) populations in North 
America exhibited genetic structures related to habitat-specific 
differences (Geffen et al. 2004; Sacks et al. 2004; Musiani 
et al. 2007). Brush mice (Peromyscus boylii) born in each of 2 
juxtaposed habitats were more likely to settle within their natal 
habitat (Mabry and Stamps 2008) and European wood mice 
(Apodemus sylvaticus), which are known for their ability to 
disperse relatively great distances, exhibited fine-scale genetic 
structure due to a propensity to select for their natal habitat 
(Booth et al. 2009). Dispersing red squirrels (Tamiasciurus 
hudsonicus) exposed to heterogeneous stages of coniferous 
forest settled more often in habitat similar to their natal habi-
tat, even when that habitat was of poorer quality (Haughland 
and Larsen 2004). Experience with a particular habitat may 
offset its poorer quality by providing a degree of familiarity, 
resulting in a competitive advantage. Mesocarnivores should 
likewise select habitats dominated by specific prey species 
that they have experienced as juveniles. The differentiation 
of arctic fox populations into 2 genetically distinct ecotypes 
was related to foraging strategies for rodents versus coastal 
resources (Dalén et al. 2005). At smaller geographic scales, 
such natal conditioning and habitat selection should also occur 

if there is appropriate variation in landscape features, as we 
demonstrate here.

We expected the extreme topography of the Guadalupe 
Mountains to influence the movement of ringtails, but this pre-
diction was not supported by the individual pairwise analyses. 
Collectively, there seems to be little support for geographic dis-
tance or orographic features influencing genetic subdivision by 
acting as filters or barriers to movement. Ringtails are excel-
lent climbers and readily exploit vertical features. They are also 
unusual in that they can rotate their hind limbs 180° and climb 
headfirst down trees, possessing climbing abilities similar to that 
of squirrels (Trapp 1972). Indeed, after release, we observed 
ringtails climbing vertical walls and trees with astounding ease. 
Extreme topography is therefore unlikely to impede ringtail 
movements over the relatively short distances that we sampled.

Generalist species may be heterogeneous collections of 
more-specialized individuals (Bolnick et al. 2007), and eco-
logical divergence of conspecifics resulting from individual 
specialization to local environmental conditions could contrib-
ute to overall diversity (Svanbäck and Bolnick 2007). Local or 
even regional processes may not affect large mobile carnivores 
or birds of prey that move large distances, but smaller species 
distributed along environmental gradients may exhibit adapta-
tions to local conditions that could facilitate divergence despite 
the existence of gene flow (e.g., Smith et al. 1997; Niemiller 
et al. 2008; Mila et al. 2009).

The Guadalupe Mountains are remote, rugged, and feder-
ally protected lands, and the extreme topography, diversity 

Fig. 4.—Photographs of land cover typical of the 4 genetic clusters of ringtails (Bassariscus astutus) identified with the program Geneland. 
Cluster 2 (top left) was characterized by low elevation, low to moderate cover of trees, and high representation of shrubs and subshrubs. Cluster 
3 (top right) was primarily at moderate elevations with low tree cover. Cluster 4 (bottom left) was characterized by moderate elevations with high 
tree cover. Cluster 5 (bottom right) was at the highest elevations and had moderate to high tree cover.
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in elevation, and complexity in soil type results in high land-
cover diversity within a small geographic area. Such com-
plexity could have generated the diversity we observed in 
the population of ringtails inhabiting this mountain range. 
Our study, along with others that have revealed genetic and 
morphological divergence within populations associated with 
environmental gradients (Sexton et al. 2014), suggests that 
conservation practitioners need to be more cognizant of the 
potential biodiversity that may exist below the species level. 
If local and regional populations are treated as a homogeneous 
collection of individuals, permitted impacts to a given area 
could result in the loss of local adaptations, limiting the rep-
ertoire of responses to future environmental changes. The rec-
ognition of inherent genetic variation at the population level 
might also be important for selecting reintroduction stock for 
use in recovery programs. If individuals are adapted to condi-
tions different from where they are being reintroduced, rein-
troduction success could be compromised (Facka et al. 2010). 
Hence, it may be prudent to consider genetic variation at local 
and regional scales when developing conservation strategies. 
Studying how individuals vary geographically in response to 
fine-scale patterns of environmental variation may lead to a 
better understanding of the factors that generate and maintain 
biological diversity.
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