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Mortality

Leandro E. Miranda and Phillip W. Bettoli

INTRODUCTION

Mortality is a concept that describes the rate at which individuals are lost from a
population. This concept is central to understanding the ecology of popula-
tions, particularly their dynamics, and is essential to managing fish stocks. Each
species has developed mortality patterns, with specific distribution over life stages
and age-groups. High mortality is common at the egg or larval stages, largely
due to abiotic conditions, but the lethal effects of abiotic conditions usually
become minor when the larvae become mobile. In the early stages of external
feeding, limited food may directly influence mortality. If the fish survives, lim-
ited food becomes only an indirect source of mortality by retarding growth and
lengthening the time spent searching for food, which makes the fish more vul-
nerable to predation. Later in life, fishing may be an important source of mor-
tality. Knowledge about the patterns and causes of mortality helps fisheries sci-
entists understand inter- and intraspecific interactions and interactions between
the population and its abiotic environment.

When studying fish populations from a consumptive outlook, mortality has tra-
ditionally been separated into natural and fishing sources. Natural mortality com-
bines death by disease, starvation, predation, inadequate environmental condi-
tions, and old age; most of these causes are interdependent, so the distinctions
are arbitrary. Fishing mortality combines harvest and any effect directly linked to
the fishing process (e.g., bycatch in commercial fishing gear or death after catch
and release). Describing and estimating total, natural, and fishing mortalities is
often a challenge in natural populations given sampling limitations and inability
to meet fully the assumptions of most estimation procedures.

BASIC CONCEPTS

Mortality represents the number of individuals that die during a certain time
interval. If, for instance, N, individuals are present in a population at the start of an
interval of length I, and N,, , survive to the end of the interval, then (N,—= N,, )/,
equals interval absolute mortality. When comparing populations over time or space,
interval absolute mortality can be uninformative because population sizes may
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differ. A more useful expression is obtained by representing (N,— N,, )/ Iasa
fraction of N, and as such, interval absolute mortality becomes interval mortality
rate (A; [{N,— N,, }/I]1/N) and comparable over populations. The interval mor-
tality rate represents the fraction of individuals present at the start of an interval
that actually dies during the interval. Traditionally, A has been taken to represent
a l-year f,, but may be defined to represent any f, time interval.

Theory and empirical observations suggest that the number of fish in a cohort
does not decline linearly through a time interval. Instead, it declines approxi-
mately exponentially at a rate proportional to the number alive at any point in
time (Figure 6.1). This pattern of decrease indicates that A= ([ N— N, ] /1) /N,is
not constant over time because it is affected by a changing N,. An alternative
method for expressing mortality is the instantaneous mortality rate (Z; Table 6.1),
which linearizes the exponential pattern of A through a logarithmic transforma-
tion; thus, (log,N,—log,N,, /L= Zfor any I. We note that as ftapproaches zero, 7
and A converge because Zrepresents the death rate at an instant, whereas A rep-
resents the death rate at the end of an interval; as the interval becomes small and
its width approaches zero, an instant and an interval become indistinguishable.
= 0.80 and, thus, Z .. =
—log,(1-0.80) =1.61, then the instantaneous monthly mortality rate Z ., =1.61/
12 = 0.134 and interval monthly mortality rate A, .., = 1 — ¢+ = 0.125. Similarly,

For example, if by the end of a 1-year interval A
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Catch curves are based on the assumption that a cohort will decline in frequency
tis proportional to the abundance of the cohort at each instant in time. A log,

transformation of frequency (N,) changes an exponential curve into a straight line, which can be

described u

sing least-squares regression.The slope of the regression line, Z, represents the

instantaneous mortality rate; the intercept (N,) represents the estimated density at time zero.
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Table 6.1 Parameters descriptive of mortality rates and relations among parameters. Symbols
are as follows: interval mortality rate (A); instantaneous mortality rate (2); interval fishing
mortality (i); interval natural mortality (v); instantaneous natural mortality (M); instantaneous
fishing mortality (F); conditional natural mortality (n); and conditional fishing mortality (m).

Mortality rates Total Fishing Natural
Interval A=p+v=1-¢* w=FA/Z=vFIM w=MA/Z = uM/F
Instantaneous Z=F+M=-log,(1-A) F=pnzZ/A =pM/v M=vZ/A =vF/w
Conditional interval A=m+n-mn m=1-eF n=1-eM

Zyear = 1.61/52 = 0.0310 and A, = 0.0305; Z,,
0.00442. Note that A and Zbecome alike as interval width decreased from a year
to a day. Also, note that the additive property of instantaneous rates allows flex-
ibility to interpolate or predict mortality for intervals other than the ones esti-
mated and to estimate the number of individuals surviving to any point in time

(Box 6.1).

=1.61/365 = 0.00441 and A, =

day

Box 6.1 Basic Mortality Computations

Take for example a hypothetical fish population consisting of a single age-group. At the start of a
12-month interval, the age-group consists of 1,000 individuals, and at the end it has been reduced
by mortality to 700. For this example,

interval absolute mortality = N, — N;, = 1,000 - 700 = 300;
interval mortality rate = (N, — N;,)/N, = (1,000 — 700)/1,000 = 0.300; and
instantaneous mortality rate = Z;, = -log,(1 — [N, - N;,]/N,) = —log,(1 - [1,000 — 700]/1,000) = 0.357.

Now, suppose we wish to know the fraction of the population remaining, the number of individuals,
and the number of deaths at the end of 4 and 8 months intervals. For this, Z,, must be partitioned
into 4-month (Z,) and 8-month (Z;) estimates as

Z,=4(Z,,/12)=0.119,and

Z,=8(Z,,/12) =0.238.

Interval mortality rates during the 4-month (A,) and 8-month (A4,) intervals are then calculated as
A,=1-e%=1-e%"=0.112,and

Ag=1-e% =1-e038=0212.

Numbers of individuals remaining (survival) after 4 months (N,) and 8 months (N) are represented
by

N, = N, - (N,A,) = 1,000 - (1,000%0.112) = 888, and
Ny = Ny — (N,Ag) = 1,000 - (1,000%0.212) = 788.

The number of deaths during each interval is therefore 112 in the first 4-months, 100 between
month 4 and month 8, and 88 between month 8 and month 12.
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6.3

6.3.1

Interval and instantaneous mortality rates are also defined for fishing and natural
mortalities. The sum of interval natural (v) and fishing () mortalities adds up to
A, whereas the sum of instantaneous natural (M) and fishing (/) mortalities adds
up to Z (Table 6.1). Interval mortality A and instantaneous mortality Z are associ-
ated as A=1—-¢7“ (Table 6.1); however, v=1-¢*and p =1 — ¢ only when natural
and fishing mortalities occur in separate intervals, which is infrequent in freshwa-
ter fisheries. When they occur in the same interval, 1 — e and 1 — ¢ are also
defined as n and m, respectively, and referred to as conditional interval mortality
because they estimate potential deaths during the interval had it been the only
acting mortality. When 7 and m occur simultaneously, they compete for the same
fish and do not add up to A; instead, A = m + n— mn (Table 6.1).

The effect of harvest on the total mortality of a population can be either
additive or compensatory (Nichols et al. 1984). Additive mortality implies that an
incrementin fishing mortality leads to an equal increment in total mortality. Com-
pensatory mortality implies that an increment in fishing mortality leads to a smaller
or no increment in total mortality because natural mortality adjusts downwards to
compensate for reduced density. Populations near carrying capacity are more likely
to be regulated by density-dependent processes and display compensatory mortal-
ity. Hence, a population may exhibit additive mortality at low density and com-
pensatory mortality at high density (section 6.8).

CATCH-CURVE MODELS

Catch curves and their use in estimating mortality rates of fish populations have a
history dating back to C. G. J. Petersen in the late nineteenth century. Most fisher-
ies scientists are familiar with classic catch curves that graphically depict the de-
cline in the number of older fish in a sample; however, the term catch curve
applies to any analysis where the change in number of fish over age-classes is
considered. This section will discuss common and historical approaches to using
catch-at-age data to estimate mortality rates. Catch-curve techniques require sev-
eral assumptions, including constant recruitment and mortality over years and
equal catchability for all ages under consideration. If recruitment is constant, and
the analysis is restricted only to ages fully recruited to the gear, then observed
declines in abundance of successive age-classes would be due solely to mortality.
We will discuss these assumptions and how to deal with situations in which one or
more assumptions are not met.

Relative Abundance of Consecutive Age-Classes

In this approach, a single random sample comprising several age-groups is exam-
ined. The relative abundance of fish in consecutive age-classes is used to estimate
mortality rates. These methods should not be used with catch data from a single
sampling season (i.e., a standing age-frequency distribution) unless annual mor-
tality and recruitment are thought to be reasonably constant and all age-groups
considered are nearly equally vulnerable to the sampling gear.
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6.3.1.1

6.3.1.2

Heincke’s Method

In the early twentieth century, fisheries biologists readily took advantage of new
techniques for aging marine fishes to examine mortality rates of exploited stocks.
If it was assumed that equal numbers of fish were produced each year (i.e., re-
cruitment was constant), then the ratio of the number of fish collected from two
consecutive year-classes served as an estimate of interval mortality rate,

]VHI X
N,

A=1-

(6.1)

Heincke (1913; cited in Ricker 1975) noted that old fish were less common in
arandom sample of a population than were young fish, and therefore more weight
should be placed on the numbers of young fish when estimating mortality rates.
Heincke’s method calculated A and its standard error, SE,, as

A=ny/N, and (6.2)

[A(1 = A)
SE, = | ——> (6.3)
N

where 7, was the number of fish in the youngest age considered and N the sum of
all fish considered (Box 6.2). Note thatitis notimportant to have accurate ages of
fish older than the age-group that serves to start the age series (Ricker 1975).
Although this method is used infrequently, it is appropriate when old fish cannot
be accurately aged, or when the circumstances prevent the sacrifice of large (likely
old) fish to obtain hard bony structures for aging.

Robson and Chapman’s Method

When the age of every fish in a large random sample is known with reasonable
certainty, then a simple approach presented by Robson and Chapman (1961),
and discussed by Ricker (1975) and Van Den Avyle and Hayward (1999), can be
used to estimate survival rate (S) and its standard error (SE) as

T

= _ - ,and
N+T-1 (6.4)

(6.5)

)

S« |s[s._T=L
N+T-2

where Nis the total number of fish fully recruited to the gear and T'is derived
from the distribution of vulnerable ages in the sample as shown in Box 6.3. Robson
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Box 6.2 Heincke's Method of Estimating Annual Mortality

From a reservoir, a large random sample of spotted bass was collected with electrofishing gear, and
fish age was determined by inspecting otoliths. The number of fish in each age-class is given below.

Age (years) 1 2 3 4 5 6 7+
Number 257 407 147 32 17 5 4

There was some disagreement over the ages of the four largest and oldest fish, but they were all at
least 7 years of age, so the data were coded accordingly.The low catch of age-1 fish relative to age-2
fish suggested that age-1 fish were not fully recruited to the electrofishing gear. When the calcula-
tions were limited to age-2 and older fish, annual mortality calculated with equation (6.2) was

407 407
407 +147+32+17+5+4 612

n
A=l = 67%,
N

and its standard error was

A(1-A) 0.67(1-0.67)
SE, = = =1.9%
N 612

Using the same equation, the estimated annual mortality rate for age-3 and older fish was 72%.
Alternatively, mortality rates between consecutive years could have been calculated using equation
(6.1). For instance, annual mortality between age 2 and age 3 is

Ny 17

A _s=1-
2-3 N, 407

and between age 3 and age 4 is

N 32
Ay =1- =%+ =1-22 =78%.
e N, 147 °

Both of these approaches are very sensitive to violations of the assumption of constant recruit-
ment. If recruitment is known to vary widely, other mortality estimation techniques should be
considered.

and Chapman’s method is a discrete-time model (Jensen 1985) that estimates inter-
val survival using maximume-likelihood estimation. The assumptions regarding
constant survival, constant recruitment, and equal vulnerability also apply to this
method. In fact, Robson and Chapman (1961) stated that the age-frequency dis-
tribution from a single sample provides no insight whatsoever into the force of
mortality acting on the population unless it can be stated that recruitment and
mortality do not vary among years and among ages. Robson and Chapman (1961)
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Box 6.3 Robson and Chapman’s Maximum-Likelihood Estimate of Survival

Assume that all the fish in a large sample were aged and the numbers of fish in each age-class were
tallied, as below. Along with constant (or near constant) recruitment and survival rates, the
assumption of equal vulnerability to capture must be met. A cursory examination of the catch-at-
age data suggests that the two youngest age-groups were not fully vulnerable, or recruited, to the
gear (i.e., the curve does not truly begin to descend until age 3); therefore, the analysis will apply to
only age-3 and older fish.The first step is to code each age, starting with zero for the youngest age
considered fully recruited.

Age (years) 1 2 3 4 5 6 7 8 9 10
Catch (N,) 920 164 162 110 55 41 20 14 7 5
Coded age (x) - - 0 1 2 3 4 5 6 7

An unbiased estimator of the annual survival rate (S) is

T

S:—
N+T-1

’

where N is the total number of fish fully recruited to the gear (N=162+ 110 + 55+ 41+ 20+ 14 +
7 +5=414),and T is derived from the distribution of vulnerable ages in the sample, T=3, (xN,) =
0(162) + 1(110) + ... + 7(5) = 570.Therefore,

570

S= ——— =0.580.
414 +570-1

The precision of this survival rate estimate is assessed by calculating its standard error, SE,, as

)
N+T-2

0.580 (0.580 - 270=1 | _oo01s.

414 +570-2

SE;= [ s|s

Note that the precision of this survival estimate is a function of the number of fish examined.
Approximate 95% confidence intervals (Cl) on the survival rate estimate are

Clyes = S+ 1.96() = S + 1.96(0.018) = 0.58 + 0.035.

Annual mortality rate (A) is 1 — S, or 0.42 + 0.035.

provided two useful alternatives to equations (6.4) and (6.5). First, they modified
equations (6.4) and (6.5) to allow for estimation when only some of the youngest
age-groups are aged and the remaining age-groups are pooled; this procedure
sacrifices potential information available from the sample but may enhance accu-
racy and precision of predictions. Second, they provided a modified equation to
apply to catch curves derived using age-length keys: when age-length keys are
applied (i.e., the fish that are aged represent subsamples from fixed length-groups),
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additional variation is introduced into the survival estimate, and equation (6.5)
must be modified to calculate the variance.

6.3.2 Linearized Catch Curves

If fish density declines at a rate proportional to the number of fish presentat each
point in time, density will decline exponentially (Figure 6.1). Most fish popula-
tons exhibit this decline, and this characteristic allows estimation of instanta-
neous and interval mortality rates. If the log, of frequency is plotted in relation to
time, the slope of a line fit to those observations will be the instantaneous mortal-
ity rate (7). The instantaneous mortality rate can assume values ranging from 0 to
slightly over 4, which correspond to interval mortality rates between zero and
nearly 100%.

If all fish in a large random sample are aged, and natural logarithms of the
catch at each age are taken, the slope of a regression line fit to the descending
rightlimb of the catch curve should represent Z (Figure 6.2). Such plots are widely
used by fisheries scientists to estimate mortality rates. Although the mathematics
involved in estimating the slope of the catch curve are clear-cut (Box 6.4), there
are a number of concerns or assumptions that need to be addressed when using
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Figure 6.2 Hypothetical catch curve for a freshwater fish population sampled with
electrofishing gear.The dashed line represents the expected catch of fish at age 1 and age 2.
Catch-curve analysis would be limited to the descending right-hand portion of the curve
between ages 3 and 10.See Box 6.4 for further explanation.
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catch curves. Partial recruitment of the youngest age-classes to the gear is com-
mon, and estimates of mortality must be restricted to those ages considered “fully
recruited” to the gear. In Figure 6.2, the catch curve has an ascending left-limb
corresponding to lower than expected catches of age-1 and age-2 fish. The low
catches of young fish could be due to the bias of electrofishing gear toward larger
fish (i.e., only the largest age-1 and age-2 fish were vulnerable to capture). Per-
haps young fish were less likely to occupy the shoreline habitat sampled with
electrofishing gear. Similar vulnerability issues are also possible when using other
gears, such as gill nets, trap nets, and trawls. Alternatively, the ascending left limb
of the catch curve could have been caused by the production of weak year-classes
in the 2 years preceding the sample. Without repeated sampling in subsequent
years, it is impossible to determine which explanation (gear bias or poor recruit-
ment) is most feasible.

Constant recruitment is the exception rather than the rule in many fish popu-
lations; however, moderate and random variations in recruitment will not change
the general form of a catch curve, and mortality rates can still be estimated (Ricker
1975). In practice, reasonable estimates of annual mortality can usually be de-
rived from catch curves for species such as crappies that often exhibit erratic
recruitment (Allen 1999). A common scenario is that depicted by the catch curve
in Figure 6.3A, which shows recruitment of largemouth bass varying erratically
among years. In these situations, successive years of data can be pooled (Figure
6.3B), and the influence of erratic recruitment can be dampened. Data are com-
bined if it can be assumed that the population is in a state of equilibrium except
for random variations in recruitment (Ricker 1975). Pooling several years of data
may also resolve the problem of small sample size, particularly for the oldest age-
classes. Extreme variation in catch-curve mortality estimates is possible when the
few representatives of the oldest age groups are included (Van Den Avyle and
Hayward 1999), and it is customary to truncate the analysis at the oldest age-
group with at least five representatives. In Figure 6.3A, only 102 fish were col-
lected in the 1992 sample, and the frequency of fish in the oldest age-class (age 7)
was less than 5. Pooling data from two consecutive years (Figure 6.3B) reduced
the scatter of points around the catch curve and allowed estimation of annual
mortality out to age 7. Alternatively, the information provided by each age-group
may be weighted according to their representation in the sample (section 6.3.4).

Modest fluctuations in recruitment are acceptable when constructing catch
curves, if the fluctuations are random in nature and not serially correlated over
time. However, steadily decreasing or increasing recruitment can confound catch-
curve analyses. For instance, the introduction of a forage fish to boost prey abun-
dance for piscivores may have the unintended consequence of reducing recruit-
ment of those same piscivores (Johnson and Goettl 1999). Similarly, the
phenomenon of reservoir aging may cause long-term shifts in community compo-
sition and thereby recruitment (Agostinho et al. 1999). In a population experi-
encing steadily declining recruitment, a catch curve constructed from a single
random sample will underestimate annual mortality. Conversely, steadily increas-
ing recruitment would cause overestimation of annual mortality. Systematic changes
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Box 6.4 Mortality Rates from the Slope of Regression Line

The catch-at-age data shown in Box 6.3 and Figure 6.2 are repeated here, along with the natural
logarithms of the number at each age.

Age (years) 1 2 3 4 5 6 7 8 9 10
Number 90 164 162 110 55 41 20 14 7 5
Log.number 450 510 509 470 4.01 3.71 300 264 195 161

The catch-curve analysis is limited to those ages considered fully recruited to the gear (age 3 and older).
At least five fish in the oldest age-class are present, so the mortality rate will apply to ages

3-10.Using least-squares regression, the slope of the line describing the relation between log, of number
(y-variable) and age (x-variable) can be calculated longhand, by means of a spreadsheet, or with the
following SAS program:

Data A;

Input Age Catch @@;

If Age < 3 then delete;

LogN = Log (catch);

Cards;

190 2 164 3 162 4 110 555 641 7 20 8 14 9 7 10 5;
Proc Reg Data = A; Model LogN = Age;

Run;

The SAS output consists of an analysis of variance (ANOVA) table and estimates of the slope, as follows.

Table Regression procedure (log, unweighted data) for catch-at-age data. Abbreviations are as
follows: mean square error (MSE) and coefficient of variation

MSE

CV=100 ——— | where \/MSE = Root MSE in SAS output.).
X

Analysis of Variance
Source df Sum of squares Mean square F-value P>F
Model 1 10.97660 10.97660 1072.55 <0.0001
Error 6 0.06140 0.01023
Corrected total 7 11.03801
R? 0.9944 Root MSE 0.10116
Adjusted R? 0.9935 Dependent mean 3.33739
cv 3.03123

Parameter Estimates

Parameter

Variable df estimate SE t-value P>|t|
Intercept 1 6.66033 0.10758 61.91 <0.0001
Age 1 -0.51122 0.01561 -32.75 <0.0001

The slope of the line (-0.51122) is listed under the heading “Parameter Estimates” for the variable “age.”
The slope of the line represents the instantaneous annual mortality rate, Z. The antilog () of the
instantaneous mortality rate is the annual survival rate (S) or 60%, and mortality (A) is 1 - S, or 40%.The
standard error of the slope (SE,), obtained from the SAS program or equation (6.6), was 0.01561.Thus, the
95% Cls for Z are

Clogs 0f Z=Z %t (405, »SE, -
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Eight ages were used in the catch curve; therefore, there are 8 - 2 df. Thus,

Clyos of Z=0.511 £ 2.447(0.0156) = 0.473 and 0.549, and
Clygs Of A=1-e043= 0377 and 1 — 05 = 0.422.

These results suggest that one would be 95% confident that the true mortality rate was between 38%
and 42%, and the best estimate would be 40%. Note that the precision of this estimate is a function of
the number of age-groups present. When these data were analyzed using the Chapman-Robson method
(Box 6.3), the estimated annual mortality rate was slightly higher (42%).

The following SAS program performs weighted regression analysis on the above data, deflating the
importance of older, rare fish in the sample. In this example, each observation is weighted by the
predicted number of fish in each age-class as suggested by Maceina and Bettoli (1998).The first regres-
sion procedure calculates predicted values of log.(catch) for each age and outputs them to a second data
set, where they are used as weights in the second regression procedure.

Data A;

Input Age Catch @@;

If Age < 3 then delete;

LogN = Log (catch);

Cards;

190 2 164 3 162 4 110 555 641 7 20 814 97 10 5

Proc Reg Data = A; Model LogN = Age; Output out = B Predicted = W;
Proc Reg Data = B; Model LogN = Age; Weight W;

Run;

The SAS output for the first regression procedure is the same as above; the ANOVA results and slope
estimate for the weighted regression procedure are as follows:

Table Regression procedure (log, weighted data) for catch-at-age data.

Analysis of Variance

Source df Sum of squares Mean square F-value P>F
Model 1 32.14136 32.14136 968.34 <0.0001
Error 6 0.19915 0.03319

Corrected total 7 32.34051

R? 0.9938 Root MSE 0.18219

Adjusted R? 0.9928 Dependent Mean 3.74851

cv 4.86026

Parameter Estimates

Parameter
Variable df estimate SE t-value P> |t|
Intercept 1 6.66128 0.10002 66.60 <0.0001
Age 1 -0.51139 0.01643 -31.12 <0.0001

In this example, the slope of the weighted regression (-0.51139) is almost identical to the slope for the
unweighted regression line (-0.51122), although that is not always the case. It is usually desirable to
estimate mortality rates over the greatest number of age-classes, but the oldest ages are often repre-
sented by fewer than five individuals. Use of weighted regression may allow relaxing the “requirement”
that the oldest age-class should always be represented by at least five individuals because the influence
of the oldest age-classes on the regression line will be reduced.
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Figure 6.3 Catch curves for largemouth bass collected in (A) one year and (B) two consecu-
tive years in Normandy Reservoir, Tennessee. Numbers in parentheses are the catch at each age.
Pooling catch-at-age data over two consecutive years did not appreciably change the estimate
of annual mortality; however, the influence of erratic recruitment was dampened and age-7 fish
could now be included in the analysis, both of which contributed to an increased r%. The esti-
mate of interval mortality rate is given as A.

(or lack thereof) in recruitment could be identified by examining historical trends
in abundance of age-0 fish. For instance, many agencies rely on annual fall trap-
netting to index the abundance of age-0 and age-1 crappies, and long-term data-
bases may be readily available (Chapter 4). If trends in recruitment are detected,
mortality rates could be estimated after adjusting for variable recruitment (Box
6.5) or by analysis of cohort catch curves (section 6.3.5).




Mortality

13

Box 6.5 Adjusting Catch-at-Age Data for Unequal Recruitment

Trap-netting of white crappies in a midwestern reservoir in the spring of 2001 provided informa-
tion on the standing age structure for the 281 fish collected representing six age-classes. Previous
studies indicated that all ages were recruited to the trap nets, so the goal was to calculate instanta-
neous mortality between ages 1 and 6.The catch-at-age data clearly indicated that recruitment
varied widely among years, and therefore one of the assumptions of catch-curve analysis was
violated. It was assumed that the trap-net catches accurately indexed recruitment variability, and
these data were used to create an index of year-class strength (I;) for each i year as I, =r,/r,, where
r;= number of age-0 fish collected with trap nets in year i, and r, = lowest number of age-0 fish
collected during the time series.The index was used to adjust the representation of each year-class
N;in spring 2001 to a constant recruitment as N,/I,.

Table Adjusting for non-constant recruitment.

Year-class

Metric 2000 1999 1998 1997 1996 1995

Unadjusted standing age distribution

estimated by trap-netting in 2001 (N;) 150 28 5 69 12 17
Number of age-0 fish collected annually

with trap nets (r;) between 1995 and 2000 1,665 556 111 2,330 445 1,220
Index of year-class strength (I, =r./r,) 15 5 1 21 4 11
Adjusted catch (N; /1) 10 5.6 5.0 33 3.0 15

Plots of the adjusted and unadjusted data relative to age would show that the adjusted data have
less scatter around the regression line. In this example, the slope of the adjusted catch-curve line
was Z = -0.34, translating into A = 29%.

Many freshwater sport fish populations are maintained or augmented by stock-
ing age-0 fish, which can confound catch-curve analysis. In situations where con-
sistent numbers and sizes of fish are stocked annually, and no natural reproduc-
tion occurs, the assumption of constant recruitment might be easily met. Conversely,
estimating mortality rates using catch curves is confounded when rates, sizes, and
frequency of stockings vary, as depicted in Figure 6.4; in such instances, other
estimation approaches should be investigated (Box 6.5 and section 6.3.5).

Itshould be apparent from the comments above that catch curves require fairly
large samples of at least several hundred individuals, particularly for long-lived
species. Accurate aging in most locales requires the use of otoliths, and if it is
important to limit the number of individuals sacrificed, age-length keys can be
used to estimate the number of fish at each age from subsampled data (Bettoli
and Miranda 2001).

Biases in catch-curve mortality estimates due to unequal recruitment can often
be identified and sometimes rectified (e.g., by pooling several years of data).
However, variation in mortality rates among age-classes may be difficult to detect
and hard to remedy. Ricker (1975) described different shapes, or functional forms,
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Figure 6.4 Frequency-at-age data for a standing age distribution of walleyes in Dale Hollow
Reservoir, Tennessee—Kentucky, December 1999 (Vandergoot and Bettoli 2001). Asterisks
denote years when no walleyes were stocked. In years when walleyes were stocked the number
of fish stocked varied, which confounds the use of catch curves to estimate annual mortality.

of catch curves derived from empirical data and how forces of natural mortality
and fishing mortality may shape the curves. In situations where larger (older) fish
are exploited at higher rates than are small fish, the possibility exists that higher
rates of fishing mortality are compensated by falling rates of natural mortality
(Allen et al. 1998), resulting in no substantial change in total mortality rates over
all ages fully recruited to the gear.

When natural mortality is constant, a catch curve for a heavily exploited popu-
lation with a minimum-length-limit harvest regulation in effect might increase in
slope beyond some age due to intense exploitation past the length limit (Figure
6.5). Such biases, caused by violation of the constant-mortality assumption, can be
reduced if the catch curve is split into the unexploited and exploited segments
and analysis applied to each segment independently. For instance, if a walleye
population is being fished under a 40-cm length limit, the catch-curve analysis
could be applied separately to those age-classes smaller than 40 cm (Zwould rep-
resent Mif catch-release mortality and illegal harvest were low), and those larger
than 40 cm (Zwould represent M+ Fif it was assumed that all legal-sized fish were
exploited equally).

6.3.3 Precision of Catch-Curve Mortality Estimates

The precision of the instantaneous mortality rate Z derived from regression of
abundance as a function of age is assessed by calculating its variance (S7), which is
the variance of the slope of the regression line (Neter et al. 1990):
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Figure 6.5 Catch curve for a hypothetical population that experiences constant recruitment
and constant natural mortality but an increase in fishing mortality past age 8. Separate esti-
mates of Z should be calculated for fish age 2 through age 8 (line A-B) and for fish age 8
through age 15 (line B-C).

MSE

S? = ,
SXZ - ([SX.1%/n) (6.6)

z

where MSE is the mean square error term from the regression model, X; are the
ages used in constructing the catch curve, and n the number of i ages included in
regression. The square root of S? represents the standard error of the slope (8,),
and 95% confidence limits would be

Clygs of Z=Z+ 115 ,_9) S

-

(6.7)

The proper tvalue is that for a two-tailed test. The statistical software package
SAS (SAS Institute 1998), as well as others, provides estimates of the standard
errors of the slopes when performing regression analysis. Note that the precision
of Zincreases with the number of ages /included in the analysis and decreases as
the scatter of points along the regression line increases. In only rare instances will
the slope not be declared different from zero; such outcomes should not pre-
clude calculation and reporting of mortality rates (Maceina and Bettoli 1998).

Testing whether two instantaneous mortality rates differ is equivalent to testing
for inequality of slopes. Although the mathematics are cumbersome, the null hy-
pothesis that the slopes are equal can be tested using an F-test generated by a SAS
program (Box 6.6).
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Box 6.6 Comparing Instantaneous Mortality Rates from Catch Curves

Comparing instantaneous mortality rates (2) for two or more populations is equivalent to compar-
ing the slopes of the catch-curve regression lines. Below are catch-at-age data for two populations
that fully recruited to the gear at age 2.

Age (years) 1 2 3 4 5 6 7 8 9
Lake 1 433 818 243 67 48 5 30 42 22
Lake 2 305 491 155 100 30 49 16 6

The SAS program to calculate and compare the slopes of the catch-curve regression lines is given
below.

Data A;

Input Lake Age Catch @@;
InCatch = log(catch);

If Age < 2 then delete;
Cards;

11433 12818 13243 1 4 67 1548 165 1730 1842 19 22
21305 22 491 2 3 155 2 4 100 2530 2649 27 16 2 8 6

Proc SORT; By Lake;

Proc REG; Model LnCatch = Age; By Lake;

Proc GLM; Class Lake; Model LnCatch = Age Lake Age*Lake; Run;

The output is given as follows:

Table Catch-curve regression (log, catch) for Lake 1.

Analysis of Variance

Source df Sum of squares Mean square F-value P>F
Model 1 8.94246 8.94246 7.02 0.0380
Error 6 7.63908 1.27318

Corrected total 7 16.58154

R? 0.5393 Root MSE 1.12835

Adjusted R? 0.4625 Dependent mean 4.01440

cv 28.10766

Parameter Estimates

Parameter
Variable df estimate SE t-value P>|t|
Intercept 1 6.55225 1.03737 6.32 0.0007

Age 1 -0.46143 0.17411 -2.65 0.0380
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Table Catch-curve regression (log, catch) for Lake 2.

Analysis of Variance

Source df Sum of squares Mean square F-value P>F
Model 1 12.18239 12.18239 72.74 0.0004
Error 5 0.83743 0.16749

Corrected total 6 13.01981

R? 0.9357 Root MSE 0.40925

Adjusted R? 0.9228 Dependent mean 3.95749

cv 10.34116

Parameter Estimates

Parameter
Variable df estimate SE t-value P>|t|
Intercept 1 7.25554 0.41649 17.42 <0.0001
Age 1 -0.65961 0.07734 -8.53 0.0004

Table The general linear model (GLM) procedure for comparison of regressions (log, catch) of
lakes 1 and 2 (n = 15).Sum of squares abbreviated as SS.

Source df SS Mean square F-value P>F

Model 3 21.13693771 7.04564590 9.14 0.0025
Error 11 8.47650657 0.77059151

Corrected total 14 29.61344429

R? 0.713762 Root MSE 0.877833

cv 22.01277 Log.catch mean 3.987838

Source df Type | SS Mean square F-value P>F

Age 1 20.08252514 20.08252514 26.06 0.0003
Lake 1 0.39457442 0.39457442 0.51 0.4892
Age*Lake 1 0.65983816 0.65983816 0.86 0.3746
Source df Type llI SS Mean square F-value P>F

Age 1 21.11299343 21.11299343 27.40 0.0003
Lake 1 0.26295830 0.26295830 0.34 0.5709
Age*Lake 1 0.65983816 0.65983816 0.86 0.3746

The instantaneous mortality rates (i.e., slopes of the catch-curve regression lines) for lakes 1 and 2
were -0.46143 and —0.65961, respectively; thus, annual mortality rates were 37% and 48%. Direct your
attention to the Type Ill sum of squares (SS).The null hypothesis that the two slopes were similar is
tested with the F-value associated with the Age*Lake interaction term (F = 0.86). At 1 and 11 df, the
significance of the test is P = 0.3746.Thus, we accept the hypothesis that the slopes were similar.
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6.3.4

6.3.5

6.4

Weighted Catch-Curve Analysis

Regression lines fit for catch curves give equal weight to each observation. For
example, in the sample of largemouth bass in Figure 6.3B, a frequency of five age-
7 fish carried as much weight when fitting the line as a frequency of 62 age-2 fish.
However, it is sometimes desirable to weight each observation according to the
amount of information it contains (Steel and Torrie 1980). Weighted linear re-
gression will deflate the influence of older and rarer fish (Maceina 1997). A SAS
program to perform weighted catch-curve regression is given in Box 6.4. In our
largemouth bass example with the 2 years of data (Figure 6.3B), the weighted
regression using the predicted log,(catch) at each age as the weighting factor
yielded a slope Z of —0.479, which translates to an A of 38%, in this case similar to
the unweighted estimate of 37%.

Cohort Catch Curves

When ancillary data suggest that recruitment, mortality rates, or both are varying
enough to render standard catch-curve analysis unreliable, mortality rates can be
estimated by following a year-class, or cohort, over time. Although this approach
avoids the need for assuming constant recruitment, the assumption of constant
mortality is still required if mortality is estimated by regressing catch at age over
more than two ages or years.

All of the preceding catch-curve examples have discussed estimating annual
mortality rates based on a single, large random sample that represents a standing
age structure or a pooling of several annual samples that represents an average
standing age structure. However, catch curves can also be constructed to estimate
cohort mortality over short time frames by use of multiple samples. For instance,
if a cohort of hatchery fish is marked before stocking, subsequent sampling of
marked fish should reveal a decline in its abundance over time. If the catch data
are log, transformed and plotted against days poststocking, the slope of the line
will represent the instantaneous daily mortality rate, which can then be expanded
to estimate mortality on a weekly, monthly, or annual basis, as in the example of
brown trout in Figure 6.6. Similarly, in a study of age-0 largemouth bass mortality,
Timmons etal. (1980) collected fish in shoreline rotenone samples weekly through
the summer and fall and fit a catch curve to the declining catch per unit effort.
Weekly instantaneous mortality rate was —0.226, which translated into a weekly
interval mortality rate of 20%.

Correspondingly, annual mortality for individual year-classes can be estimated
by examining declining abundance in annual samples (Box 6.7). In many situa-
tions in which routine monitoring efforts provide samples of fish that are subse-
quently aged, long-term databases are available to perform these analyses.

LENGTH-BASED MODELS

Length-based models do not use estimates of age directly; instead they use growth
parameters such as the L. (asymptotic length) and K (rate at which L, is ap-
proached) parameters from the von Bertalanffy or other growth models (Chapter
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Figure 6.6 Catch curve for microtagged brown trout (N = 17,322) stocked into the Watauga
River, Tennessee, March 1998, and subsequently sampled using electrofishing gear on eight
dates (Bettoli 1999). Note that the daily instantaneous mortality rate (Z) and the daily interval
mortality rate (A) are similar because the size of the interval is small. During a 32-week (224 d)
creel survey that began when the fish were stocked, it was estimated that 4,612 of these brown
trout were harvested during the survey period; thus, the interval exploitation rate () was 4,612/
17,322, 0r 27%.The total mortality rate (A) over that same interval was 1 - e"@249 = 68%. Thus,
the interval natural mortality rate () was A — p = 41%.

5) to convertlength to age. Like catch-curve models, assumptions of length-based
models include (1) recruitmentis constant within the period covered by the length
distribution, or at least recruitment has varied in a random fashion, (2) mortality
is constant over ages, (3) only lengths fully recruited to the gear are included
(equivalent to the descending portion of a catch curve), (4) growth is constant
and adequately described by the growth model, and (5) the sampling gear ad-
equately represents the standing length distribution. Another assumption made
by length-based models is that recruitment into the smallest length considered
for analysis is constant through time each year, so that the shape of the length
distribution and mean length does not vary seasonally. This last assumption is
violated in populations that exhibit seasonal instead of continuous recruitment
but may be avoided by taking multiple samples within the year and pooling them
before analysis (Ralston 1989) or by limiting analysis to longer (i.e., older) fish for
which length at age is generally more variable and recruitment spread out over a
year. Given these stringent assumptions, length-based estimates should be used
when only a rough approximation will do or there is no better option.
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Box 6.7 Cohort Catch Curves

Spring electrofishing samples at 40 sites in Normandy Reservoir indicated that recruitment by
spotted bass varied more than twofold among years (Sammons and Bettoli 1998); therefore,
analysis of cohort catch curves was employed. The catch from the 1992 cohort in annual samples
taken between 1993 and 1998 was as follows.

Sample year 1993 1994 1995 1996 1997 1998
Age (years) 1 2 3 4 5 6
Number 65 66 27 6 4 1

These and other data suggested that fish were not fully recruited to the gear until age 2.The
Chapman-Robson estimator (Box 6.3) was used to estimate annual survival, S, and ages 2 through 6
were assigned coded ages of 0 to 4.Thus, N = 104; T=55;

T

=——— =035,
N+T-1

SE, =0.046, and
Clygs = 0.35 + 1.96(SE;) = 0.35 + 0.090.

Alternatively, the slope of the catch curve could be calculated to estimate Z.The low catch of age-6
fish restricted the analysis to ages 2 through 5. Natural logarithms were taken of the catch data, and
a regression line was fit to the points, yielding a slope of —0.99 and a SE of 0.14.Thus, annual survival
for ages 2 through 5 was S = %% = 0.37. Although this estimate was similar to the 35% Chapman-
Robson estimate, the Cls (calculated with equation [6.7]) were broad (20-68%) because of the small
number of age-classes in the regression model. In this example, the Chapman-Robson estimate
and variance are clearly superior to the regression estimate.

6.4.1. Estimates from Average Length

The rationale behind these methods is that as mortality increases, the average
length of fish in a population is expected to decrease. Various models have been
developed to convey this relation (reviewed by Hoenig et al. 1983), but the most

common is that attributed to Beverton and Holt (1956):

L,-L

'mean

Z=K——: (6.8)

L L

mean x

where Kand L, are von Bertalanffy growth parameters, L, the length above which
all fish are equally vulnerable to capture by the collection gear, and L., the

mean length of fish larger than L,.

A similar method but based on median length instead of mean length was

developed by Hoenig et al. (1983):

,_ _0.693K
AT (6.9)

median™ *x
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6.4.2

where Y, 4m =-10g,(1 = L cgian/ L.); Y,=-log,(1 - L,/L,); and L4, is the median
length of fish above L,. Hoenig et al. (1983) indicated that estimates based on the
median length were more robust because median length is less sensitive to vari-
ability in growth and year-class strength than is mean length. Box 6.8 shows how
equations (6.8) and (6.9) are applied to estimate mortality.

Approximate variances for Zin equations (6.8) and (6.9) were derived by Hoenig
et al. (1983) but are not reproduced here because of their length. Alternatively,
variances may be derived by bootstrapping from the expected distributions of K,
L., L, L., and L 4,.,. Bootstrapping (Efron and Tibshirami 1998; Haddon 2001)
is a method for estimating variance based on resampling from the statistical distri-
bution of each variable included in the computation of Z

Estimates from Length-Frequency Distributions

When alength-frequency distribution is available a catch curve may be constructed
through conversion of lengths to age relative to L.. Pauly (1984) developed a
length-converted catch-curve procedure that consists of regressing the logarithm
of the number of fish in the ith length interval (V,, dependent variable) against
the relative age ¢ of fish in the interval:

log,(N)) = a— bt;, (6.10)

where ¢/ =-log,(1 - [L,/L.]), and L, is the midpoint of the ith length interval.
The slope of this regression (b) represents 1 — (Z/K), and thus Z= K(1 — ). An
example is given in Box 6.8. A variance equation for Z has not been derived;
however, the variance may be estimated by bootstrapping from the distributions
of Kand b.

When estimates of L. and K are not available, several methods may be used to
derive approximations. First, dividing the mean length of the three largest fish
known from the population stock by 0.95 may adequately approximate L. when
the population is not too heavily exploited (Pauly 1984). Second, L. may be esti-
mated from the maximum length of fish observed (L,,,) with an empirical equa-
tion derived by Froese and Binohlan (2000; log, L., = 0.044 + 0.984log, L,.; length
in centimeters). Note that L, is smaller than L, because L. represents a popula-
tion mean, whereas L, represents the largest fish. Third, L, may be approxi-

mated through regression of L, (L, = lower limit of each length interval in the
length-frequency distribution) on L ..,— L, (Lyecun

than L, in the length-frequency distribution) as suggested by Wetherall etal. (1987):

= mean length of fish larger

(Lmean - Lx) =a- be) (611)

where L, = —a/b. Once an estimate of L, is obtained by one or more of these
methods, K may be estimated by rearranging the growth equation, and if an esti-
mate of length at time ¢ (L,) is available and ¢, is assumed equal to zero,

ko Tos(- (1L

(6.12)
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Box 6.8 Mortality Estimation with Length-Based Models

We use a largemouth bass data set from Columbus Lake, Mississippi, to illustrate mortality compu-
tations from length-based models.The von Bertalanffy model parameters (K and L,) were available
from a parallel study in Columbus Lake and were K= 0.226 and L, = 636 mm (see Chapter 5 for
calculations). All largemouth bass 150 mm or longer were considered equally vulnerable to the
collection gear (electrofishing); thus, L, = 150.The mean and median length of fish 150 mm or
longer in the data set were L,.,,= 260 and L .., = 255.Therefore, based on equation (6.8),

Z= K(Loc - Lmean)/(Lmean - Lx)
=0.226(636 - 260)/(260 - 150) = 0.773.

Based on equation (6.9),

Z =0.693K/([-10g{1 - Ly giun/L 1] — [<log {1 - L /L. 1))
=0.693(0.226)/[-log,(1 - 255/636) — (-log,(1 - 150/636)] = 0.644.

Mortality can also be estimated using a length-converted catch curve (Pauly 1984).The length-
groups in the length—frequency distribution of the largemouth bass population in Columbus Lake
(see figure in this box) are converted to relative age t and regressed on log, of the number of fish
in the ith length interval as in equation (6.10):

log.(N;) =a- bt/
=497 -2.27t].

Then,Z=K(1 - b) =0.226[1 - (-2.27)] = 0.739.Regression was limited to length-groups 15 cm and
greater.

Figure Length-frequency distribution of the largemouth bass population in Columbus
Lake.The number of fish in each length-group is represented by N,and ¢/ is as defined in
equation (6.10).

N
5
39
55
99
82
56
27
36
52
65
73
36
15
19
18
13
8
19
9
12
9

i

0.161

0.180
0.200 43
0.219
0.238 64
0.259 86
0.280 106
0.300
0.322
0344 81
0.367
0389 45
0.412
0.437
0460 43
0.486
0.512
0.540
0.566 63
0

0.

0.

0.

0

_. _‘

o N g

S o t
|

(0]
o
|

60

40

20

0
9.5 13.5 17.5 21.5 255 29.5 335 37.5 41.5 455 49.5

Midpoint of length group (cm)




Mortality 23

6.5

6.5.1

MARK-RECAPTURE MODELS

Mortality can be measured directly by marking individual fish. Historically, mark—
recapture models have been developed to estimate abundance, which naturally
leads to methods for estimating mortality (i.e., reductions in abundance); how-
ever, more recently, the focus of mark-recapture models has shifted towards esti-
mation of mortality (Lebreton et al. 1992). Although an extensive literature on
mark-recapture models exists (see reviews by Ricker 1975; Seber 1982; Lebreton
etal. 1992; Schwarz and Seber 1999), we describe only three approaches for esti-
mating Z. Additional details about the use of mark-recapture models to estimate
abundance are given in Chapter 8.

Our presentation is brief because tagging is not extensively used to assess mor-
tality of fish populations, mostly due to the cost and the practical difficulties re-
lated to tagging a representative sample of a population and obtaining unbiased
recovery data. Major commercially or recreationally exploited fish stocks are usu-
ally large and distributed over a wide area. Thus, mark-recapture estimates de-
pend on tagging large numbers of fish and often cooperation from fishers to find
and report marked fish. In the past, mark-recapture estimation has sometimes
failed because too few fish have been tagged or because fishers and other mem-
bers of the industry have been reluctant to report recoveries (Hilborn and Walters
1992; Miranda et al. 2002).

Mark-recapture models make many assumptions about the tagged sample and
untagged population. Assumptions include (1) the tagged sample is representa-
tive of the entire population; (2) there is no tag loss or it can be accounted for
(e.g., Seber 1982; Fabrizio et al. 1996); (3) mortality rates are not influenced by
tagging; (4) all tagged fish within a tagged cohort have constant mortality and
recovery probabilities in a given period; (5) mortality and recovery probabilities
do not depend on age and are the same for the tagged sample and untagged
population; (6) Fand M are additive and independent; (7) M is constant within
and between periods; (8) fishing mortality imposed by a user group is constant
for the period of the year that the fishery is operating; and (9) tagging takes place
over a short period (although there are models that account for continuous tag-
ging; see Ricker 1975 and Seber 1982). These assumptions are not made by all
models, and not all models make the same assumptions.

Single Tagging Event

If fish are tagged only once, mortality may be estimated from the decline of tagged
individuals. Estimates of losses may be obtained by recapturing tagged fish at vari-
ous time intervals or by relying on the fishery to catch and report tagged fish. The
former approach is applicable if it is possible to tag a large proportion of the
population, so that the expectation of collecting tagged fish in subsequent samples
is reasonably high. The latter approach is applicable when there is a high likeli-
hood that tags will be recognized and reported by commercial or recreational
fishers. Both approaches assume that effort is constant, or at least known, so that
catch in a given period can be standardized per unit of effort. Whichever method
is used, declines in number of tagged fish can be equated to declines in number
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6.5.2

of fish in a cohort and analyzed with the various catch-curve techniques described
earlier. For example, the fraction of fish bearing a tag for any two successive peri-
ods of recaptures will indicate interval mortality rate:

A_l Tiv1
=l-— (6.13)

i

where 7, = number of fish recaptured during period ¢;, and 7, ; = number of fish
recaptured during period ¢;,; (Box 6.9). When recaptures are available from a
series of periods, a regression of either (1) log, of the fraction of fish caught
bearing a tag or (2) log, of the number caught per unit of effort, as a function of
time, would produce a decreasing slope equivalent to Z:

log (% /n;) = a— bt;, or (6.14)

log,(r./f) = a—bt;, (6.15)

where n;, = number of fish caught in ¢, f = fishing effort in ¢, a = regression
parameter, and b = slope parameter representing Z. Which approach is used will
depend on the data available and the assumptions that are appropriate. The as-
sumption of constant recruitment is no longer relevant because the user is deal-

ing with a single group of fish of known initial abundance.

Multiple Tagging Events

Whereas a single tagging event assumes constant survival to estimate mortality,
multiple tagging events allow relaxation of this assumption. Studies based upon
two tagging events followed by one recapture event (Ricker’s method, Ricker 1975;
Seber 1982) can account for variable mortality if recruitment is assumed constant.
A triple-catch study is based upon two tagging events with recaptures collected
during the second tagging event and during a third sampling event (Bailey 1951;
Ricker 1975). A triple-catch study can account for variable recruitment (which
includes immigration) and variable mortality (which includes emigration). Mul-
tiple mark-recapture data are best handled by a model proposed independently
by both Jolly (1965) and Seber (1965) that accounts for variable recruitment and
mortality. The Jolly-Seber model is more general and powerful than any of the
other methods and can estimate population size and recruitment in addition to
mortality using four or more mark-recapture periods; estimates are limited to
sizes of fish that were tagged. Example applications for Ricker’s method are given
by Ricker (1975), triple-catch method by Fairfield and Mizroch (1990) and Evans
and Lockwood (1994), and Jolly-Seber method by Hightower and Gilbert (1984),
Law (1994), and Fabrizio et al. (1997). Below, we describe the Ricker and Jolly—
Seber methods for estimating mortality.

Ricker (1975) and Seber (1982) describe similar methods for determining mor-
tality from tagging in two successive years. With both methods, tagging occurs at the
start of two periods (e.g., seasons or years) using tags that distinguish between the
two tag groups. With Ricker’s method, recaptures are taken during both years from
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fishers. If mortality is assumed constant over years, then mortality is estimated by
equation (6.13). Thus, only one marking followed by two recapture periods are
needed. If mortality cannot be assumed constant over years, Ricker’s method esti-
mates mortality in period 1 as

YoM
A=1-22, (6.16)
Too My
with variance
V(A1)=Af(l+l+l+l), (6.17)
Mo T My My

where m, = fish marked at the start of time 1, m, = fish marked at start of time 2, 7,
= fish marked and recaptured in time 2, and 7, = fish marked in time 1 and
recaptured in time 2. Seber’s method also uses equation (6.16), but 7, and r, are
measured through samples taken soon after the second release. Both of these
methods assume that natural mortality is constant over ages. The equations for
both methods are the same because the expectation of the ratio /7, is unchanged
through time 2. For Ricker’s method, it is not essential that all recaptured fish be
reported, only that reporting rate is constant over years. Both Seber and Ricker
provide equations modified to compensate for small number of recaptures. An
example application of Ricker’s method is given in Box 6.9.

The Jolly-Seber method estimates mortality by evaluating changes in popula-
tion size, including increases (recruitment and immigration) and decreases (deaths
and emigration), from multiple mark-recapture samplings on an open popula-
tion. Thus, estimates of mortality represent death only when emigration is zero.
Fish are captured and marked during brief collection periods (e.g., days), and in
between are longer periods (e.g., months) in which recapturing is not attempted
and no tags are released. During the first collection period, fish are marked with
numbered tags that distinguish individuals, and during the last period, fish are
checked for marks. During intermediate periods, fish are checked for marks, un-
marked individuals are tagged, and marked individuals are noted and released.
Categories of marked and recaptured are tallied by collection period as shown in
Table 6.2. Then, the interval mortality rate between collection period ¢and collec-
tion period i+ 1 is estimated as

Bz’+l

A=1- —M——,
' Bi—r+m,;

(6.18)

where the number of marked fish in the population at the time of the ith sample,
B,, equals ., + m;k, /7., and r.;, m;, k;, and 7,. are as defined in Table 6.2. Seber
(1965) proposed a modified estimator of B,, B,"=r.,+ 1 + (m;+ 1)k, /(7. + 1) for a
small number of recaptures. Variance equations are given by Seber (1982) and by
programs listed in Table 6.3. We illustrate application of the Jolly-Seber method
in Box 6.9.
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Box 6.9 Total Mortality Estimation from Marked Recaptures

Single tagging event

In late winter 1995, before intense fishing began, 1,596 crappies were tagged in Sardis Reservoir,
Mississippi. Of these, 655 were recaptured and reported by anglers during the first year after
tagging, 225 in year 2,89 in year 3,and 34 in year 4 (in this example, recaptures have been
preadjusted for tag loss and nonreporting; Miranda et al. 2002). Following equation (6.13), where
r; = number of fish recaptured during period t;,

Ai=1=(r./r),
A,=1-(225/655) = 0.66,
A,=1-(89/225) = 0.60, and
A;=1-(34/89) = 0.62.

Alternatively, regression of log,(r;/f;) as a function of t; (equation [6.15] assuming constant f,.= 1,
where f, = fishing effort in t;,) yields

log,(r;/f;) =a - bt
=74-0.98t,

which indicates Z=-0.98 and thus A = 0.62.

Multiple tagging events

Crappies were tagged at the beginning of two consecutive years in Lake Sham. In all, 1,700 crappies
were marked in year 1 (m;) and 1,500 in year 2 (m,).In year 1,430 crappies were recaptured (r,,); in
year 2,360 of the crappies tagged earlier that same year were recaptured (r,,), and 249 tagged the
previous year (r;,). If annual mortality can be assumed constant, then A for year 1 (and year 2) may
be estimated with equation (6.13) as A, = 1 — (249/430) = 0.42. However, if mortality is suspected to
vary over years, then A, and V(A,) may be estimated with Ricker’s method (equations [6.16] and
[6.17]) as

r,m
A =1- 121 =_1_249X'|,500 -039,
M, 360 x 1,700
L 1 1 1
andviay=a2 st o P oozey( L L )L
i 1("12 57) m1+m2) (249 360+1,700+1,500 0.0012.

Estimation of mortality for year 2 would require a third year of marking and recaptures.

6.5.3 Other Mark-Recapture Methods

Many Jolly-Seber-type models have been developed in recent years (Buckland
1982; White 1983; Burnham et al. 1987; Cormack 1989; Lebreton et al. 1992;
Pradel et al. 1997; Schwarz and Seber 1999). In particular, Pollock and Mann
(1983) extended the Jolly-Seber model to enhance application to fisheries by
accounting for differential mortality over age-groups. Advances in computer tech-
nology have facilitated development of these models and allowed a number of
extensions such as constraining of the model parameters (e.g., fixing mortality
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A 5-year tagging program was completed to monitor mortality (as well as population size and
recruitment, which are not shown in this example) of largemouth bass in Lake Travesty. Fish were
marked and recaptured annually during a 2-week collection period in spring each year, and results
were analyzed with the Jolly-Seber method.

Table Five-year history of marking and recaptures (recaptures were preadjusted for tag loss) in a
largemouth bass fishery. See Table 6.2 for explanation of symbols.

G m; b G G Ly r; ki
1 643

2 489 43 43 43
3 712 28 31 59 40
4 630 12 16 48 76 31
5 3 9 19 37 68

re 86 56 67 37

Computations of annual interval mortalities are made with equation (6.18) as shown below. As an
example,

B2 -1 484

A=1- =1- =0.44
By-ry+m, 418 - 43 + 489

!

Table Computations of annual interval mortalities. The number of marked fish in the population
at the time of the ith sample is given by ;.

i m; r. L k; B A

1 643 86 0 0 0 0.35
2 489 56 43 43 418 0.44
3 712 67 59 40 484 0.47
4 630 37 76 31 604

5 68

between 0 and 1) and setting selected parameters constant (e.g., mortality over
time). Parameters can also be modeled as functions of ordinary variables, with a
regression equation built into the recapture model; thus, mortality can be made
dependent on environmental conditions or capture rates dependent on measures
of effort. Maximum likelihood estimation of model parameters and associated
probabilities is facilitated by computer power, superseding traditional determinis-
tic estimates. Treatment of these computer models is beyond the scope of this

chapter; however, we list many in Table 6.3.
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Table 6.2 Classification of marked and recaptured fish in a Jolly-Seber-type model with five
mark-recapture periods. Only marking takes place in the first period, mark and recapture in
periods two through four, and only recaptures in the last period. Time period is t; m, represents
the number of fish marked in t; r; the recaptures in time period t; of fish marked at an earlier t;;
r.the total number of recaptures that were originally tagged in t;; r, the total number of
recaptures in t; regardless of when they were tagged; and k; the total number of recaptures
made after t; of fish marked before t. Application is illustrated in Box 6.9.
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6.6

6.6.1

SEPARATION OF FISHING FROM NATURAL MORTALITY

Fisheries scientists may need to know the proportionate effects of several compo-
nents of mortality. Most commonly, we wish to isolate the effect of fishing from
the effect of all other influences on mortality, a group often lumped together as
natural mortality. It is possible to obtain estimates of fishing and natural mortality
independently. Most commonly, and given Z = F+ M (Table 6.1), Z and F are
measured and M estimated as the difference. However, this approach results in
estimates of M that are not independent of F. At least six different approaches
may be used to estimate M, F, or both, including (1) regression of Zas a function
of fishing effort to estimate M, (2) catch-curve analysis to estimate M, (3) mark-
recapture to estimate F, (4) direct census to estimate F, (5) production modeling
to estimate M, and (6) meta-analysis to estimate M, F, and Z

Regression of Z as a Function of Fishing Effort to Estimate M

Natural mortality (M) is commonly estimated as the difference between Zand F
For unfished populations or segments of populations, M equals Z and may be
estimated using methods described earlier. As unfished populations are rare, other
approaches must be used. Changes in fishing effort can lead to changes in Z, and
the relation between fishing effort and Zcan be used to achieve the separation of
Fand M (Paloheimo 1958). Thus, with Z as the dependent variable and fishing
effort as the independent variable, the slope of the line becomes a catchability
coefficient and the intercept (i.e., when effort is zero) becomes M (Figure 6.7).
This method requires a minimum of two x—y pairs, but more is better.

There are at least three drawbacks for this method. First, because the indepen-
dent variable (i.e., fishing effort) is estimated with considerable error, a basic
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Table 6.3 Selected computer programs for analyzing mark-recapture data from multiple
tagging events in open populations. Many of these programs include the ability to fit
customized log-linear and constrained maximum log-likelihood models and impose arbitrary
temporal, group, and covariate constraints to select the best model.

Program Description References

BAND2 Estimates number of animals that must be marked to achieve Wilson et al. (1989)
a specified level of precision for mortality estimates.

BROWNIE Estimates mortality and recovery rates for two age-classes Brownie et al.
(e.g.,juvenile and adult) inopen populations. (1985)

CAPQUOTA Estimates expected coefficients of variation of mortality Pollock (1981)
and capture probability.

CONTRAST Compares estimates of mortality when variances and covariances Hines and Sauer
are available (analogous to means comparisons in ANOVA). (1989)

ESTIMATE Estimates mortality and recovery rates for one-age-class Brownie et al.
(e.g., juvenile or adult) open populations. More flexible than (1985)

BROWNIE but not as flexible as MARK.

JOLLY Estimates mortality and capture probability for one-age-class Pollock et al.(1990)
open populations.Widely used but not as flexible as MARK.

JOLLYAGE Similar to program JOLLY, it estimates mortality and capture Pollock et al.(1990)
probability for two-age-class open populations.

MARK Estimates mortality and capture probability for open White and
populations. Allows a wider class of encounter histories and Burnham (1999)
constraints than do other programs and was developed
primarily for mortality estimation. It will handle various mark-
recapture models, the joint live-recapture and dead-recovery
models, robust-design models, and multi-strata models. It is the
newest and potentially most complete package.

MULT Estimates mortality and recovery rates with additional models Conroy et al.(1989)
for estimating reporting rate.

POPAN Estimates mortality and capture probability for open populations. Arnason and

Schwarz (1999)

RELEASE Estimates mortality and goodness-of-fit tests for a large class of Burnham
mortality models for open populations. Originally developed to etal.(1987)
estimate survival for a large suite of fish mark-release experiments

SURGE Estimates mortality and allows easy implementation of linear Pradel and
models. Lebreton (1993);

Cooch et al.(1996)

SURPH Estimates mortality using mark-recapture data as a function of Smith et al. (1994)
environmental and experimental effects. These effects may apply
to a population (such as ambient temperature) or an individual
(such as body length).

SURVIV Estimates mortality with multinomially distributed data. SURVIV is White (1992)
very flexible and used heavily as a research tool. However, one needs
a FORTRAN compiler to run program and a healthy appetite for
programming to get things to work. Not recommended for novices.

TMSURVIV Estimates mortality and capture probability and the proportion Pradel et al.(1997)

of “transients” in open populations.
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Figure 6.7 Separation of fishing (F) and natural (M) mortality by regression of Z as a function
of fishing effort.The intercept of regression represents M.

6.6.2

assumption of regression analysis is violated. The effect is to flatten the slope
because, as the measurement error in the independent variable increases, any
relationship between the dependent and independent variables becomes indis-
tinguishable, driving the slope toward zero. Flattening of the slope can produce
an overestimate of the intercept and thus M. Second, this method is applicable
only when the relation between effort and Z is linear (i.e., catchability is con-
stant). Conceivably, the same fishing effort may not encounter the same catchability
in different years because of changes in population density or gear efficiency.
Third, an unreliable estimate of the yintercept (i.e., M) will result if the fishing
effort does not vary greatly; ideally, estimates of Zwould be available over a wide
range of fishing effort, including very low levels.

Catch-Curve Analysis to Estimate M

Under limited conditions, the linearized catch-curve analysis described in section
6.3.2 may be used to estimate M. Conceivably, some of the age-groups available
for analysis may not be available to the fishery. The slope of a line fitted through
these points may be interpreted as M. For instance, in situations where a length-
limit regulation exists and catch-and-release mortality and illegal harvest are vir-
tually zero, fishing mortality for protected fish is in effect zero. Hence, any esti-
mates of Zwill constitute estimates of M for fish in those protected lengths.
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6.6.3

Mark-Recapture to Estimate Fand M

Estimates of F'can be derived from tagged fish recaptured by fishers if concurrent
estimates of Z are available. Estimation procedures depend on whether one or
multiple release periods are employed. Various methods are available (reviewed
by Seber 1982), but we limit our presentation to methods counterpart to those
identified for estimating Zin section 6.5. An additional assumption is that fishers
report tagged fish; violation results in an underestimate of F. Various methods
have been designed to adjust for underreporting (Zale and Bain 1994; Hearn et
al. 1999), but none of the underreporting adjustments are fully satisfactory
(Miranda et al. 2002).

If fish are tagged in only one marking period, fishing mortality may be esti-
mated from the proportion of tagged individuals captured in the fishery. This
approach is applicable when there is a high likelihood that tags will be recognized
and reported by commercial or recreational fishers. Equation (6.13) estimated A
as the fraction of fish bearing a tag in two successive periods of recaptures. If the
number of fish bearing tags in the first period (m,) and the number of tagged fish
captured by fishers in this period (f;) are known, the interval fishing mortality, .,
can be estimated as

== (6.19)

my
and F= pZ/A. A variance equation for (6.19) was given by Ricker (1975) and
Jagielo (1991). If w is assumed constant over several recapture periods, a weighted
estimate of mean exploitation is obtained as

b= fitfoto o+ i
my(1+ S +S5+...+8'"]) (6.20)

where S;is the survival in each period. These computations are illustrated in Box
6.10.

If fishing mortality cannot be assumed constant, and mark-recapture is con-
ducted over two or more periods, estimates of ., for each period i can be obtained
by making successive estimates with equation (6.19). If mark-recapture is contin-
ued for three or more periods, estimates of p, for each period i can be estimated
as (Ricker 1975)

- (6.21)

where m;is the number of fish marked at the start of period ¢ f;. is the number of
fish marked in year ¢ caught by fishers over all years, f,is the number of marked
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Box 6.10 Fishing Mortality Estimation from Marked Recaptures

Single tagging event

Consider the 1,596 crappies tagged in Sardis Reservoir and used in Box 6.9 to illustrate computa-
tion of total mortality. Recall that 655 were recaptured and reported by anglers during the first year
after tagging, 225 in year 2,89 in year 3,and 34 in year 4 (in this example, recaptures have been
preadjusted for tag loss and nonreporting; Miranda et al. 2002). Following equation (6.19),

655

= 41%,
1,59 '

i = =

where m, = number of fish bearing tags in the first period and f,= number of tagged fish captured
by fishers in this period. If i can be assumed constant over the 4 years of tag returns, a weighted
estimate of mean exploitation can be obtained with equation (6.20) as

po nthttho 6554225489434 1,003 00
my(1+ST+S2+...+577)) 1,59 (1+0.34+0.40°+0.38°) 2,482 ’

Multiple tagging events

The 5-year tagging program for largemouth bass in Lake Travesty described in Box 6.9 provided
data to estimate exploitation. Fish were marked and recaptured annually during a 2-week collec-
tion period in spring each year, and anglers were asked to report tagged fish they harvested.The
4-year history of tag reports is summarized below (recaptures were preadjusted for tag loss and
nonreporting).

fish caught each year i, regardless of when they were marked, and £;is the number
of marked fish caught after year ¢ of fish marked before year ¢. When mark-recap-
ture occurs over three or more periods, equation (6.21) is preferred over succes-
sive estimates with equation (6.19) because equation (6.21) incorporates more
recapture information.

Some relatively new approaches integrate changes in fishing effort with tradi-
tional multiperiod mark-recapture data to estimate FFand M, and possibly tag-
reporting rate, from a data matrix like the one illustrated at the bottom of Box
6.10. Hoenig et al. (1998) describe two approaches, one that estimates /'and M
from the pattern of effort over the course of a year or other period and another
that estimates them from the pattern of effort over years. Brooks et al. (1998)
develop a method to separate F from M in situations where two user groups (e.g.,
commercial and recreational fisheries) are exploiting a fish population. Separa-
tion of M and F is made possible by differences in recapture rates and seasonal
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Table Tag reports for the largemouth bass fishery in Lake Travesty. The symbol m; represents the
number of fish tagged in year i, f,. is the number of fish marked in year i caught by fishers over all
years; f.;is the number of marked fish caught each year j, regardless of when they were marked; k;
the total number of tagged fish caught after year i of fish tagged before year i.

Recaptures by anglers of fish marked in year,

Year and f.. m; 1 2 3 4 f, k;

1 643 89 89 173
2 489 60 63 123 202
3 712 19 35 92 146 212
4 630 5 20 41 75 141 141
f. 173 118 133 75

Computations of annual exploitation estimated with equation (6.21) are as follows.

M =

2]

3

4

_ 118(123)
489(202)

_ 133(146)
712(212)

_ 75(141)
630(141)

f,. f.
_;:L(w):m%'
mik,  643(173)
=15%,
=13%,and
=12%.

effort between users. Hearn et al. (1998) present a method for estimating /and
M from twice-a-period tagging (e.g., twice per year over several years). Tagging
takes place before a heavy fishing episode and once again at the end of this epi-
sode; M and Fare sorted out by comparing rates of returns from the two mark-
ings, over years.

Radio tags may also be used to estimate Z, M, and Fin large-bodied species. For
instance, Hightower et al. (2000) applied telemetry to estimate natural mortality
of striped bass. The general approach was to locate repeatedly live and dead ra-
dio-tagged fish at fixed time intervals. The rate of decline in the number of live
fish located over time provided information to estimate Z, whereas locations of
dead fish provided information to estimate M. Fishing mortality may be estimated
indirectly by subtraction or directly if the circumstances allow for inventorying
harvest of radio-tagged fish. A key advantage of this approach is the information
gained about the timing and causes of mortality. Telemetry studies are labor
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intensive but may be pertinent to estimating mortality in closed populations, par-
ticularly where the effort can fulfill other information requirements (e.g., move-
ment pattern or habitat use).

6.6.4 Direct Census to Estimate F

Fishing mortality can be derived from estimates of w and Z (Table 6.1). Values of
W may be obtained through mark-recapture (section 6.6.3) or through direct
census of harvest and population size. Direct census of harvest () involves esti-
mating the total number of fish taken by the fishery during a time period (re-
viewed by Malvestuto 1996; and Fabrizio and Richards 1996), and direct census of
the population (N) involves estimating the average population size during the
same period (reviewed by Seber 1982; and Schwarz and Seber 1999). These two
censuses estimate exploitation as p. = H/ N. Instantaneous fishing mortality is then
estimated as F'= wZ/A.

The phenomenon of catch-and-release mortality in recreational fisheries has
received much attention in recent decades. When catch-and-release mortality is
low or negligible, conventional estimates of 'and M will not be grossly affected.
For instance, catch-and-release mortality was 3% for cutthroat trout in the
Yellowstone River (Schill et al. 1986) and 2% for common snook in southern
Florida waters (Taylor et al. 2001). However, high levels of catch-and-release mor-
tality will confound what otherwise might be a straightforward measurement of I
and M. For instance, 67% of striped bass died after being caught and released in
a Tennessee reservoir during summer (Bettoli and Osborne 1998), and reef fishes
such as red snapper often experience high (>30%) catch-and-release mortality
(Gitschlag and Renaud 1994). Catch-and-release mortality represents unaccounted
fishing mortality, and high levels of catch-and-release mortality will inflate esti-
mates of natural mortality. When M is high, the success of harvest regulations
depends on the level of catch-and-release mortality (Waters and Huntsman 1986).

If estimates of release rates (P,) and catch-and-release mortality (P,) are avail-
able, these can be used to adjust exploitation rate (') as

, [
p'=p+PP, -7 (6.22)

r

For example, suppose that a reward-tag study estimated p = 40%. If a concur-
rent creel survey indicated that 50% of fish caught are released, and an indepen-
dent study indicated that 10% of the fish released do not survive, the adjusted
exploitation rate would be 44%.

6.6.5 Production Modeling to Estimate M

Csirke and Caddy (1983) estimated Mfrom the relation between yield and Z. This
method assumes a parabolic relation between Zand yield, and represents an ex-
tension of the traditional Graham-Schaefer production model (Ricker 1975). If
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total catch (yield) and Z are known for a series of years (at least three, more is
better), yield (Y;) can be modeled in terms of Z with a quadratic equation as

Y= b+ 0,7, — bZ?. (6.23)

This equation corresponds to a parabola with a convex-downward curvature. When
F=0,yield becomes zero and Zbecomes M, so that equation (6.23) becomes

Y=0y+bM~-bM?=0 (when F=0). (6.24)
Solving for M,
M= (=b, + [b® — 4byb,]"°) /20, . (6.25)

Figure 6.8 provides an example application. A limitation of this method is the
assumption of a parabolic relation between Y and Z The model may be made
more realistic by using new formulations of the basic parabola model (several
models are reviewed by Quinn and Deriso 1999). Another limitation is that to
produce reliable regression coefficients there must be enough contrast in the
values of Z.

Y =-57 + 4157 - 2287>
M=0.15

I I I
0.5 1 1.5 2

Instantaneous mortality (2)

Figure 6.8 Estimating M from the relation between Zand yield (Y), assuming a traditional
Graham-Schaefer-type curve.When F = 0, yield becomes zero and Z becomes M.
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6.6.6

Meta-Analyses to Estimate M, F,or Z

Meta-analysis is a method for objectively synthesizing information from the litera-
ture and subjecting that information to statistical analysis (Wolf 1986). Unlike
traditional literature reviews, the methodology of meta-analyses is clearly presented
so that others can see how decisions were made. Meta-analysis has clearly defined
procedural steps to translate the findings of different research to a common pa-
rameter defined statistically.

Meta-analyses can be used to develop empirical regression equations predic-
tive of mortality. Natural mortality is consistently related to factors such as growth
rate, ultimate body size, fecundity, age at sexual maturity, and temperature. For
example, fish populations with slow growth tend to have low M values; a slow-
growing species or population simply cannot bear high natural mortality with-
out becoming extinct. Likewise, fishing mortality is related to factors such as
fishing effort and diversity of target species. Meta-analyses make use of these
natural associations between mortality and allied variables to develop regional
or wide-ranging, single or multispecies, predictive models. Selected examples
are listed in Table 6.4.

Given that sources of mortality are difficult to sort out, empirical models de-
rived through meta-analyses are sometimes used to estimate mortality compo-
nents. For example, Campana (1987) used Pauly’s meta-analysis (Table 6.4) to

Table 6.4 Selected meta-analyses that use associations between mortality and allied variables
to develop regional or wide-ranging predictive models.

Meta-analysis Reference

In high-latitude stocks, there was a close association between M (annual) and the Rikhter and Efanov
age (years) when 50% of the population was sexually matured (Tm,,). The equation (1976)
was M =1.52Tm,, %72 - 0.155.

With data on 10 species the relation between M (annual) and gonadosomatic
index (GSI = gonad weight/total weight) was estimated as M = 4.64GSI - 0.37.

Annual natural mortality (M) was analyzed for 175 stocks, including 84 freshwater

and marine species of tropical to polar distribution. A predictive equation was
derived for M based on the von Bertalanffy growth parameters K (annual),

L.. (cm),and T (mean annual surface temperature, °C). The equation was
M — _e0.01 52+0.654log K -0.279log L, +0.463log,T

Instantaneous total mortality (2) was modeled relative to longevity

(Y..ax« = Mmean age of “the oldest specimens”in a sample). Unfortunately,
longevity can be as difficult to estimate as mortality; thus, the value of such
relations is limited. The equation was Z = g701109.Yn, + 146,

For 40 largemouth bass populations in North America, M (annual) was related
to the average number of degree-days (DD) above 10°C in a year as
M =0.000159DD + 0.197.

Wilde determined that the fraction of fishing mortality due to tournaments

(TM; %) was related to water temperature (T; °C) in 45 events: TM = 0.10427"58,

Gunderson (1980)

Pauly (1980)

Hoenig (1983)

Beamesderfer and
North (1995)

Wilde (1998)
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6.7.1

6.7.2

estimate M for haddock, and Ebbers (1987) used the model to estimate M for
largemouth bass. The user of models derived through meta-analyses should rec-
ognize the limitations of the models. Because mortalities and their predictors are
often difficult to estimate, and come from a variety of studies using different tech-
niques, quality of the models derived through meta-analyses may be questionable.
Moreover, the models predict only average mortality for a given population char-
acteristic, or a set of characteristics in the case of multivariate models, whereas the
study population may fall above or below the mean. Pascual and Iribarne (1993)
evaluated the predictive power of several empirical models and found that error
around mortality predictions was high. Thus, estimates from models derived
through meta-analysis can be unreliable and should be used only as rough ap-
proximations in preliminary analyses or exploratory modeling that seek only rela-
tive solutions.

REFERENCE POINTS

Managing a fishery requires adjusting input and outputs to obtain a desired out-
come. Reference points are targets or limits that help guide such adjustments.
Target reference points represent a desirable condition toward which a popula-
tion may be guided to obtain a desired outcome; limit reference points represent
a danger zone to be avoided.

Reference Points Based on F

The relationship between yield-per-recruit (yvariable) and F (xvariable) is gener-
ally depicted as a dome-shaped curve. The peak of the curve has a slope of zero
and identifies the F that produces the maximum yield-per-recruit (f,,; Quinn
and Deriso 1999). This target reference point is often difficult to estimate be-
cause of the flat-topped shape of the yield-per-recruit curve. An easier target ref-
erence point to estimate is I ;, which estimates the fishing mortality at which the
slope of the dome-shaped yield-per-recruit curve is 10% of its value at the origin.

This value is always less than £ ,, and therefore more conservative.

ax

Reference Points Based on M

In unfished or lightly fished populations, mortality limit reference points may be
established based on M. For surplus-production models, Gulland and Boerema
(1973) proposed a simple empirical formula (i.e., MSY = 0.5MB,) to establish
maximum sustainable yield (MSY) in terms of the unfished standing stock (B,)
and the natural mortality at which the slope of a dome-shaped yield curve is zero.
Their assumption relies on the symmetrical Schaefer yield model to assume that
MSY will occur at 0.5 the unfished standing stock and that Fys, = M. Because there
is little evidence that Fyg = M, this equation has been generalized to MSY = pMB,,
with p equal to 0.5 or other fraction. In general, p should be higher for long-lived
species (low M) than for shortlived ones (high M). Patterson (1992) suggested
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6.7.3

6.8

that for small pelagic species, a pnear 0.5 (i.e., Fyg, = 0.5M) should be sustainable.
Caddy (1998) suggested that pshould decrease as Mincreases, so that p=0.8-0.9
for long-lived (M= 0.1-0.2) terminal predators and p=0.4-0.5 for short-lived (M
= 1.1 - 1.4) small prey species.

Reference Points Based on Z

Because partitioning mortality into /*and M is often difficult, there are advan-
tages in expressing mortality limit reference points in terms of Z For surplus-
production models, Caddy and Defeo (1996) used time series of paired annual Z
and catch to approximate the Zvalues that resulted in MSY. For age-structured
models applied to recreational fisheries management, Miranda (2002) derived
limits on Zbased on size objectives for the fishery stated in terms of mean length
or a size structure index. The relation between Z and mean length of fish was
described by a decaying exponential curve (equation [6.8]). This curve suggested
that to preserve fisheries with large fish requires maintaining a low Z, although
exact levels depended on growth rate. The relation between Zand proportional
stock density (PSD; Anderson and Neumann 1996) was described with the model
(Miranda 2002)

log, (PSD/100)

- (6.26)
lo — s

where f;= number of years it takes fish to grow to stock size and ¢, = number of
years to quality size (size is defined according to species by Anderson and Neumann
1996). Thus, fast-growing populations can withstand higher mortality to maintain
atarget PSD. Equations (6.8) and (6.26) can be used to establish reference points
based on threshold size objectives for the fishery (Box 6.11).

COMPENSATORY AND ADDITIVE MORTALITY

Additive mortality assumes that an increment in /“or M results in an equal incre-
ment in Z When increments in FFor M lead to disproportionate or no increment
in Z, mortality is compensatory (Figure 6.9). Populations near carrying capacity
are more likely regulated by compensatory processes and populations at low den-
sity by additive processes (Bartmann et al. 1992). Hence, a population may ex-
hibit additive mortality at low density and compensatory mortality at high density,
but a continuum of escalating partial compensation between completely additive
and completely compensatory mortality is possible (Nichols et al. 1984; Conroy
and Krementz 1990).

Adult fishes probably experience lower levels of compensatory mortality than
do higher vertebrates because fish are better able to adjust their growth rate to
food availability, lengthening the period they can survive with limited food
(Weatherley and Gill 1987; Shuter 1990). Nevertheless, compensatory mortality
may result from cumulative effects. During periods of reduced growth through



Mortality 39

Box 6.11 Establishing Target Mortality Caps in Length-Based Fisheries Management

Consider, for instance, that in the Columbus Lake example (Box 6.8) a fishery management objec-
tive is for largemouth bass in the population (and thus perhaps the angler’s creel) to average 300
mm total length or better (average length estimate includes only fish fully vulnerable to the
collection method). If Z is excessive, whether due to F or M, few fish will live to old age (= large size),
and thus the management objective cannot be met. Given the existing growth conditions
described by the von Bertalanffy growth model (K = 0.226 and L., = 636 mm), the length above
which all largemouth bass are considered equally vulnerable to electrofishing (L, = 150 mm), and
the target mean length (L,,.,,= 275 mm), the limit Z may be estimated with equation (6.8) as

636 -275 _
275-150

Z=0.226 0.65.

Alternatively, if the management objective for the largemouth bass population is expressed in
terms of PSD instead of mean length, a limit on Z can be estimated with equation (6.26). Assume
that the target PSD is 50 and that it takes 1.1 year for the average largemouth bass in the popula-
tion to grow from stock to quality size (i.e. t,—t;=1.1); then

log,(50/100)
1.1

=0.63.

These Z values represent limit reference points above which the management objective cannot be
achieved.The limit is intended to prevent overfishing that renders the size distribution of a
population undesirable from a fishery perspective. The limit is not a target for management, but
instead it helps managers define the upper cap of mortality. If the cap is approached, additional
emphasis must be placed on monitoring the fishery. If the cap is exceeded, Z must be immediately
reduced through cuts in F that are equal to or larger than the excess Z.

intra- or interspecific competition for resources, other stressors (e.g., disease, para-
sitism, or predation) may act synergistically to cause density-dependent mortality.
Cushing (1981) suggested that predation acts in a density-dependent manner in
some pelagic marine fish stocks. Allen et al. (1998) found that mortality was addi-
tive in largemouth bass populations but could be compensatory in crappies and
northern pike. For crappies, empirical data showed no relation between p and A
atlow levels of p but a positive slope at mid- to high levels of w; for northern pike,
there was no relation between p and A.

The existence of compensatory mortality can be examined by plotting inde-
pendent estimates of A and w to identify potential trends like those shown in
Figure 6.9. Such estimates may be obtained from existing data or by experimen-
tally manipulating w through harvest restrictions. A plot of 'on Zwould be prob-
lematic because computation of Finvolves Z (i.e., I'= wZ/A), and thus Zwould be
included in both axes. The relation between A and . is expected to be direct and
linear if mortalities were completely additive. Conversely, the plot is expected to
be slopeless or nearly so if mortalities were completely compensatory. Burnham



40

Chapter 6

Interval total mortality rate (A)

Interval fishing mortality rate (u)

Figure 6.9 Conceptual models of the relation between . and A under (A) additive, and (B)
compensatory mortality. The flat portion of the curve in (B) implies natural mortality is changing
and compensating for increased fishing mortality.

6.9

and Anderson (1984) present statistical models to test whether mortality con-
forms to either of these extremes or some intermediary level of compensation.

PERSPECTIVES ON BIASED AND IMPRECISE MORTALITY ESTIMATES

It should be apparent from the preceding sections that estimating mortality with
sufficient accuracy and precision is not easy. Even the simplest estimation models
require data that are difficult and expensive to collect, apart from having to rely
on collection methods that have numerous biases. The models make various as-
sumptions, which are often disregarded by Mother Nature and ignored by fisher-
ies scientists. The saving attribute is that mortality has well-defined lower and
upper limits, 0 and 100%, that conveniently bound the estimates. Given these
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difficulties, it is appropriate to end this chapter with our views on how to deal with
the uncertainties associated with mortality estimates.

Uncertainties result from inaccurate and imprecise estimates (i.e., estimates
that have error). Accuracy refers to how close an estimate of mortality matches
the true value, whereas precision refers to how close repeated estimates of mortal-
ity would agree with each other (Chapter 3). Error encompasses both the impre-
cision and inaccuracies of estimates. Uncertainty about accuracy of mortality esti-
mates is created by error in estimating variables that affect the computation of
mortality, such as fish age, size structure, growth rate, harvest rate, tag retention,
and tag reporting. Error arises from imperfect representation of the population
by the sampling process, inability to meet the assumptions of the estimating model,
and lack of complete knowledge about the functioning of populations (e.g., addi-
tive versus compensatory mortality). Uncertainty due to poor precision results
from the high variability associated with population variables that include sam-
pling and natural components. Sampling error is introduced by the sampling gear,
timing, and procedures; this error can be reduced through improved collection
methods, proper sampling design, and increased sample sizes. Natural variability
results from normal population fluctuations; although this variability does not
constitute error, measures of error normally include natural variability. Francis
and Shotton (1997) and Charles (1998) provide good reviews with more refined
classifications of uncertainties.

Uncertainty in mortality estimates can be reduced by confronting the ques-
tions of accuracy and precision. Accuracy of estimates may be verified by compar-
ing multiple estimates made with different methods (e.g., mark-recapture, length-
based, and catch-curve models) or by evaluating estimates relative to covarying
population or environmental parameters to examine if they follow expected trends
(e.g., high Zvalues are unlikely when fishing effort is low, unless habitat is of poor
quality). If two estimates are similar, the fisheries scientist may begin to feel confi-
dent about the quality of the estimates and use the average of the two values.
Commonly, the estimates are not so similar, and the fisheries scientists ignores the
least certain one, takes the average of the two, or develops two recommendations
based on each of the estimates. If the estimates were highly different, averaging
should be avoided because there is a good possibility that one of them is wrong
and averaging would lead to an undesirable estimate (Schnute and Hilborn 1993).
When only a single estimate is available and its accuracy is not confirmed by
covarying variables, a second estimate should be sought.

Collecting ample, good data with proven protocols under acceptable sam-
pling designs can increase precision. For example, to perform catch-curve analy-
ses a reasonable sample size of aged fish could be about 200 for a heavily ex-
ploited, short-lived freshwater species with few age-classes or 500 or more for a
species with 10 or more age-classes in the population (Sampson and Yin 1998;
Ciepielewski 1999). However, exceptin cases where every death can be counted,
estimates will still contain error. The variability inherent in every estimate should
not be ignored by working exclusively with a point estimate. Instead, confidence
intervals should be estimated and further application of the mortality esti-
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mate must involve the range of values within the confidence band. Confidence
limits mix estimation error and natural variability, which is pertinent given
that management will be applied to naturally stochastic populations occupying
unpredictable environments.

Further analysis may involve appraisal of the effect of uncertainty on possible
outcomes and decision making. This step may take the form of an informal quali-
tative evaluation or a quantitative assessment using simple or complex models.
Qualitative evaluations often involve making conservative allowances for uncer-
tainties through arbitrary safety factors. Much attention has been given in the
literature to establishment of precautionary reference points for I (e.g., I, and
other F limits; Caddy 1998). Brown and Patil (1986) provide an example of a
qualitative evaluation of uncertainty to establish levels of F. Quantitative evalua-
tions may evaluate the outcome of models relative to the statistical distribution of
mortality and other (if any) variables in the model (i.e., sensitivity analysis; Saltelli
etal. 2000). These evaluations help identify the range of possible outcomes given
the uncertainty of the variables included in the model; however, models can in-
troduce additional uncertainty because they are unlikely to simulate accurately a
population’s dynamics.

CONCLUSIONS

We have presented numerous conceptual and mathematical models of mortality
in the preceding sections; however, mortality in fish populations should be more
than an abstract concept. Knowledge of mortality rates is fundamental to under-
standing the dynamics of exploited fish populations, and when compared to rates
of recruitment and growth, mortality rates are often the easiest to manage using
harvest regulations. Size limits, slot limits, creel limits, closed seasons, and gear
restrictions are all examples of regulations typically used to modify fishing mortal-
ity (Noble and Jones 1999). When you consider that promulgating regulations
and evaluating the subsequent response of freshwater fish populations to new
regulations is commonplace, it is surprising that mortality rates are not estimated
more routinely or scrutinized more intensely by fisheries scientists.

The most common methods used by inland fisheries scientists to calculate
mortality are linearized catch curves or Chapman—Robson’s catch curves. Although
some of the methods presented here have seen little use outside the marine lit-
erature, numerous freshwater sport fish and commercial fish populations are ex-
ploited in the same manner as marine stocks. For instance, crappie fisheries are
almost exclusively catch-and-harvest fisheries (i.e., catch and release of legal-sized
fish is unusual), as are most fisheries for paddlefish, catfishes, bluegill, walleye,
and sauger. Instead of large fishing fleets operating in marine systems, inland
fishers operate singly but with no less determination and zeal. The populations
that are exploited by marine and freshwater fishers are also identical with respect
to what is important to know about them and what fisheries scientists can do to
conserve or enhance these populations. It should also be apparent that many
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datasets lend themselves to several different analytical procedures that can pro-
duce different estimates of varying accuracy and precision. When estimates agree,
confidence in them will be high; however, when they disagree, they provide direc-
tion and justification for future efforts.

The greatest difficulty in estimating mortality is partitioning total mortality into
fishing and natural mortality. Whereas estimates of total mortality are abundant,
rates of exploitation are difficult to obtain and are known for comparatively few
populations; natural mortality rates are available for even fewer populations. The
need for accurate estimates of all three rates will grow more acute as more fisher-
ies scientists take advantage of recent advances in population models, whose out-
puts are critically sensitive to mortality rates.
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