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Abstract: Clinch Dace (Chrosomus sp. cf. saylori) is a newly recognized and yet-undescribed species
of minnow with a restricted and fragmented distribution in the upper Tennessee River basin in
southwestern Virginia, USA. We collected Clinch Dace from seven streams and observed varia-
tions at nine selectively neutral microsatellite DNA loci to infer population genetic processes and
identify units for conservation management. Bayesian cluster analysis showed that three of the
seven surveyed populations were genetically distinct, while the other four populations showed
signs of recent admixture. Estimated effective population sizes and m-ratios were low within most
populations, suggesting loss of alleles due to recent genetic drift. Positive FIS values, high aver-
age individual inbreeding coefficients, and high degrees of inferred relatedness among individuals
suggested that inbreeding is taking place in some populations. FST values were high, and analysis
of molecular variance indicated genetic divergence among populations. These indicators suggest
that Clinch Dace populations are subject to the genetic processes that are characteristic of small and
isolated populations.

Keywords: genetic drift; effective population size; genetic differentiation; management units

Key Contribution: The findings inform conservation planning by identifying units of management
and suggesting sources of individuals for translocations among wild or captive breeding popula-
tions, as well as demographic augmentation of targeted populations, to address genetic isolation
and inbreeding.

1. Introduction

Clinch Dace (Chrosomus sp. cf. saylori) (Figure 1) is a currently undescribed species
of minnow (Family Leuciscidae) that was first discovered in Tazewell County, Virginia,
USA, in 1999 [1]. Clinch Dace was first thought to be a disjunct population of the closely
related Laurel Dace (Chrosomus saylori). However, meristic and morphological differences
between these congeners, such as a longer anal fin base and shallower head in the Clinch
Dace, suggest otherwise [2]. Field identification of the Clinch Dace relies on differences in
breeding colors between it and the Laurel Dace; the Clinch Dace has an upper black lateral
band that extends all of the way to the caudal fin and two yellow spots at the caudal fin
base [2]. Clinch Dace is currently being described formally as a new species (Dave Neeley,
Tennessee Aquarium and Conservation Institute, personal communication).
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Figure 1. Clinch Dace (photo by R. Bourquin). 
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western Virginia, USA. Clinch Dace populations are isolated and have low densities [5]. 

White and Orth [3] showed negative correlations between Clinch Dace presence and sub-

strate particle size, stream width, and conductivity. Clinch Dace occupancy was positively 

correlated with the proportion of forested land in the respective watersheds [5]. Clinch 

Dace occupies restricted habitats in isolated patches, especially in areas affected by coal 

mining and logging; hence, it is vulnerable to local extirpation. Virginia’s Wildlife Action 

Plan [6] classifies Clinch Dace as Tier II—Very High Conservation Need. Clinch Dace is 

under review for potential listing under the U.S. Endangered Species Act [7]. 

To promote species viability, it may be necessary to facilitate natural migration via 

removal of barriers to migration or initiate population augmentations through transloca-

tion, captive breeding, and stocking. Assessment of genetic variation above and below six 

road crossings found none to be barriers to genetically effective migration [8]. Before aug-

mentation actions can be purposefully planned and implemented, managers need de-

tailed information on population genetics of Clinch Dace. Individual populations might 

or might not show the signatures of small-population genetic processes, i.e., random ge-

netic drift and inbreeding. As Clinch Dace are headwater specialists [3,5], populations are 

unlikely to disperse through larger unsuitable downstream habitats and, ultimately, the 

Clinch River itself. It is reasonable to hypothesize that some, if not all, of these populations 

should be regarded as demographically independent and distinct management units; 

therefore, we tested against the null hypothesis the notion that Clinch Dace populations 

are genetically homogenous. To characterize within-population genetic processes and 

population genetic divergence, and thereby inform management planning, we analyzed 

variations in microsatellite loci using DNA isolated from fin-clips of Clinch Dace collected 

across their distribution to assess populations’ genetic processes and structure. 

2. Materials and Methods

2.1. Fish Sampling 

In the summer of 2017, we sampled fish located in seven streams (Figure 2) known 

to be inhabited by Clinch Dace [9] using three-pass pulsed-DC electrofishing. Sample sites 

and sizes were Big Creek (n = 106), Greasy Creek (n = 6), Hart Creek, (n = 63), Hurricane 

Creek (n = 40), Lewis Creek (n = 3), Middle Creek (n = 11), and Pine Creek (n = 32). A small 

fin-clip was cut from the upper caudal fin of Clinch Dace and stored in 95% ethanol. Fin-

clips were given a unique identifier that corresponded to stream, reach, and fish length, 

and, in some cases, a photograph was taken. Any Clinch Dace that died during sampling 

were preserved in 10% formalin. All fish sampling was performed in accordance with Vir-

ginia Tech IACUC protocol FWC 16-188 and approved on 1 November 2016. 
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Surveys conducted since 1999 [3,4] have found that Clinch Dace occupy 16 streams in
eight drainages of the upper Clinch River in Russell and Tazewell counties in southwestern
Virginia, USA. Clinch Dace populations are isolated and have low densities [5]. White and
Orth [3] showed negative correlations between Clinch Dace presence and substrate particle
size, stream width, and conductivity. Clinch Dace occupancy was positively correlated
with the proportion of forested land in the respective watersheds [5]. Clinch Dace occupies
restricted habitats in isolated patches, especially in areas affected by coal mining and
logging; hence, it is vulnerable to local extirpation. Virginia’s Wildlife Action Plan [6] classifies
Clinch Dace as Tier II—Very High Conservation Need. Clinch Dace is under review for
potential listing under the U.S. Endangered Species Act [7].

To promote species viability, it may be necessary to facilitate natural migration via
removal of barriers to migration or initiate population augmentations through transloca-
tion, captive breeding, and stocking. Assessment of genetic variation above and below
six road crossings found none to be barriers to genetically effective migration [8]. Before
augmentation actions can be purposefully planned and implemented, managers need
detailed information on population genetics of Clinch Dace. Individual populations might
or might not show the signatures of small-population genetic processes, i.e., random ge-
netic drift and inbreeding. As Clinch Dace are headwater specialists [3,5], populations are
unlikely to disperse through larger unsuitable downstream habitats and, ultimately, the
Clinch River itself. It is reasonable to hypothesize that some, if not all, of these popula-
tions should be regarded as demographically independent and distinct management units;
therefore, we tested against the null hypothesis the notion that Clinch Dace populations
are genetically homogenous. To characterize within-population genetic processes and
population genetic divergence, and thereby inform management planning, we analyzed
variations in microsatellite loci using DNA isolated from fin-clips of Clinch Dace collected
across their distribution to assess populations’ genetic processes and structure.

2. Materials and Methods
2.1. Fish Sampling

In the summer of 2017, we sampled fish located in seven streams (Figure 2) known to
be inhabited by Clinch Dace [9] using three-pass pulsed-DC electrofishing. Sample sites
and sizes were Big Creek (n = 106), Greasy Creek (n = 6), Hart Creek, (n = 63), Hurricane
Creek (n = 40), Lewis Creek (n = 3), Middle Creek (n = 11), and Pine Creek (n = 32). A
small fin-clip was cut from the upper caudal fin of Clinch Dace and stored in 95% ethanol.
Fin-clips were given a unique identifier that corresponded to stream, reach, and fish length,
and, in some cases, a photograph was taken. Any Clinch Dace that died during sampling
were preserved in 10% formalin. All fish sampling was performed in accordance with
Virginia Tech IACUC protocol FWC 16-188 and approved on 1 November 2016.
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Figure 2. Map of study site showing areas occupied by Clinch Dace based on prior surveys [9].

2.2. Genetic Markers

We extracted DNA from fin-clips using the DNeasy Blood and Tissue kit (Qiagen,
Germantown, MD, USA). Concentration and purity of extracted DNA were quantified
using a µLite spectrophotometer (BioDrop, Cambridge, UK). We screened the following
17 microsatellite loci using primer pairs that were developed to amplify the microsatellite
DNA of European Minnow Phoxinus phoxinus [10]: Cto-A-247, LleB-072, LleC-090, Rru4,
BLi-84, BLi-98, BLi-153 [11–13], CypG9 [14], LceC1 [15], Lco3 [16], Ppro132 [17], Rru4 [18],
Lsou5, Lsou8 [19], Rhea20 [20], NLi-153 [21], CypG30 [22], and MFW1 [23]. Polymerase chain
reaction amplification protocols, including reaction mixtures, were modified from those
outlined by Grenier et al. [10] as necessary to promote amplification in this species. The
PCR protocol was as follows: initial denaturation 94 ◦C for 3 min; 35 cycles of denaturation
at 94 ◦C for one minute, annealing at 56 ◦C for 45 s, and extension at 72 ◦C for 1 min; and
final extension at 72 ◦C for 5 min. Fragment-size analysis was conducted using GeneMarker
(SoftGenetics, State College, PA, USA). A small subset of amplicons was sent to the Fralin
Life Sciences Institute (Blacksburg, VA, USA) for Sanger sequencing to confirm successful
amplification of the targeted microsatellite locus.

2.3. Data Analysis

We used Microchecker [24] to test for segregation of null alleles and PCR artifacts, such
as stuttering or large-allele dropout. Departures from the Hardy–Weinberg equilibrium and
the linkage disequilibrium were tested in Arlequin 3.5 [25], with exact tests using Markov
chain with a forecasted chain length of 1,000,000 and 100,000 dememorization steps for all
loci in all stream reaches.

To visualize and define population structures, the Bayesian cluster analysis imple-
mented within STRUCTURE 2.3.4 [26] was applied to assess support for different numbers
of population clusters (K) and assign individuals’ multilocus genotypes to those clusters.
We used the admixture model to infer ancestry, with a burn-in length of 10,000 and 100,000 Monte
Carlo Markov Chain iterations after the burn-in period. We assessed population divergence
at several levels. Firstly, we ran STRUCTURE’s admixture model, with all samples from all
collections with the set number of clusters (K) running from one to ten, as well as having
five replications. On the basis of the results of this run, we then applied the algorithm to
data from the four streams where admixture seemed most likely using K values from 1 to
5 and five replicate runs. Finally, we ran the admixture model for each stream individually,
with each having K from one to five and five replicate runs.
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Genetic diversity within inferred populations was quantified in terms of number of al-
leles per locus (A), allele frequencies, expected and observed heterozygosities (HE and HO),
and allelic size ranges (number of repeats, R) for each locus and averaged across all loci for
each population. M-ratios [27] were calculated as the number of alleles observed divided
by the number possible within the observed allele size range; m-ratios lower than about
0.7 indicated the occurrence of prior genetic bottlenecks. The inbreeding coefficient (FIS)
in each population was calculated using Fstat [28]. We employed the Bayesian analysis
available in Inest 2.2 [29,30] using default settings to differentiate the effects of inbreeding
from those of null alleles and genotyping errors. Effective population sizes (Ne) were esti-
mated in NeEstimator v2 [31] using the linkage disequilibrium method. Rare microsatellite
alleles were removed from the analysis to avoid upward bias of estimates. We used the pro-
gram MLrelate [32] to estimate genetic relatedness among individual Clinch Dace within
each stream.

Population-level genetic divergence was quantified using FST [33] and analysis of
molecular variance (AMOVA [34]). FST was calculated in GENEALEX 6.5 [35]. AMOVA par-
titioning genetic variation within and among individuals and populations was executed in
Arlequin 3.5 [25]. We measured the along-stream distances between the most-downstream
Clinch Dace-occupied sites between each pair of streams in ArcGIS 10.2.2 [36]. We then
plotted pairwise distances between the most-downstream Clinch Dace-occupied site on
each stream against FST in a scatterplot and calculated r2 in order to assess the effects of
isolation-by-distance.

3. Results
3.1. Polymorphism and Utility of Marker Loci

Of the 17 primer pairs tested, nine (Cto-A-247, LleC-090, BLi-84, BLi-153, Lco3, Lsou8,
Rhea20, CypG30, and MFW1) consistently produced amplification products that were
sufficiently clear to be analyzed for variation in fragment size (Table 1). Sequencing of
amplicons for loci CtoA-247, BLI-84, BLI-153, Lco-3, Lsou-8, and MFW-1 all showed one tract
of the repeated core motif, as reported for Phoxinus phoxinus and Gobio gobio by Grenier
et al. [10]. Locus LleC-090 exhibited two tracts of the core motif, as reported for Leuciscus
leuciscus by Dubut et al. [12].

Table 1. Clinch Dace microsatellite loci amplified and analyzed to determine fragment size.

Locus Primers (5′–3′) Core Motif Allele Size
Range Reference

CtoA247 F-6FAM:TGCAAACATATAAACTGAAACAAGG (ATC)7 160–166 [13]
R:GCAGGTATATTCCCAGCC

LleC90 F-PET:TCAGACACAACTAACCGACC (TC)15GG(TC)3 218–228 [12]
R:GGCGCTGTCCAGAACTGA

BLI_84 F-6FAM:CATTACTACGGAACCACAT (AC)4N24(CA)9 180 [11]
R:GCGAAAAGGAAAGAGACTGA

BLI153 F-6FAM:GCACAGCTCTAATCGGTCACT (AC)20 216–212 [11]
R:TATGGTCAAACACGGGTCAA

Lco3 F-VIC:GCAGGAGCGAAACCATAAAT (TG)9 246–262 [16]
R:AAACAGGCAGGACACAAAGG

Lsou8 F-PET:GCGGTGAACAGGCTTAACTC (GT)17 170–176 [19]
R:TAGGAACGAAGAGCCTGTGG

Rhca20 F-NED:CTACATCTGCAAGAAAGGC (GA)17 87–91 [20]
R:CAGTGAGGTATAAAGCAAGG

CypG30 F-VIC:GAAAAACCCTGAGAAATTCAAAAAGA (TAGA)7 280–240 [14]
R:GGACAGGTAAATGGATGAGGAGATA

MFW1 F-NED:GTCCAGACTGTCATCAGGAG (GT)14N3(GA)4 172 [23]
R:GAGGTGTACACTGAGTCACGC
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All microsatellite loci were proven to be polymorphic (Table 2), with populations
exhibiting as many as eight (Hurricane Fork, CypG30) alleles per locus. Microchecker
detected four instances of null alleles segregating within particular populations. No one
locus consistently yielded null alleles, and data for all loci were included in subsequent
analyses. Data for two loci in two populations (Hart Creek and Big Lick Creek) showed
apparent linkage disequilibrium; since this outcome was observed in only these 2 cases
among 72 tests for each of the 7 populations, we attributed this outcome to chance, and
data from these loci were retained for further analyses.

Table 2. Genetic diversity in Clinch Dace streams. Data for monomorphic loci are not shown.
N = number of samples; HO = observed heterozygosity; HE = expected heterozygosity; NA = mean
number of alleles at polymorphic loci; Range = mean range of allele sizes in base pairs for polymorphic
loci; M-ratio = ratio of A to Range; Sig H-W = ratio of loci with significant departures of genotype
frequencies from Hardy–Weinberg expectations to total number of polymorphic loci; Bonferroni
α = Bonferroni-corrected critical p-values for assessing significance of a departure of genotype
frequencies from Hardy–Weinberg expectations.

Stream N Polymorphic
Loci H0 He NA

Range
(bp) M-Ratio Sig

H-W
Bonferroni

α

Big Lick Creek 106 6 0.29 0.28 3.33 9.00 0.37 1/6 0.010
Greasy Creek 6 4 0.42 0.52 3.00 10.00 0.36 0/4 0.012

Hart Creek 63 5 0.36 0.42 3.80 10.80 0.40 1/5 0.010
Hurricane Fork 40 4 0.39 0.36 3.50 11.00 0.40 1/4 0.012

Lewis Creek 3 2 0.50 0.57 2.00 6.00 0.31 0/2 0.025
Middle Creek 16 3 0.35 0.42 3.67 13.33 0.39 0/3 0.017

Pine Creek 32 6 0.31 0.28 3.00 8.00 0.47 1/6 0.008

3.2. Recognition of Differentiated Genetic Units

STRUCTURE analysis of all samples revealed the strongest log-likelihood support
for there being five genetic clusters (K = 5) among the seven stream populations surveyed
(Figure 3). Populations in Hurricane Fork (population 1) and Hart Creek (population
2) clustered separately, while those in the remaining five streams (Pine Creek, Big Lick
Creek, Middle Creek and Greasy Creek) displayed apparent admixture. Cluster analysis
of populations in particular streams that run independently of one another showed no
structure among sites or reaches.
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Figure 3. Bar plot of results of Bayesian cluster and individual assignment analysis using STRUC-
TURE for the seven stream populations at K = 5; 1 = Hurricane Fork, 2 = Hart Creek, 3 = Lewis Creek,
4 = Pine Creek, 5 = Big Lick Creek, 6 = Middle Creek, 7 = Greasy Creek.

3.3. Within-Population Genetic Variation

Expected (HE) and observed (HO) heterozygosities (Table 2) were similar in most
cases. Bonferroni-corrected alpha values varied because the number of polymorphic loci
observed in each population varied; genotype frequencies at four loci distributed across
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four populations departed from Hardy–Weinberg equilibrium (Suppl. Table 1), and three of
those departures involved locus CypG30. We retained data for all nine loci that consistently
amplified Clinch Dace DNA for subsequent analyses.

At a locus-by-locus level, 25 of 30 m-ratios (Table S1), and at a multi-locus level, m-
ratios for all seven populations (Table 2) were lower than the criterion level of 0.70 suggested
by Garza and Williamson [27] (2001), suggesting that these populations underwent genetic
bottlenecks in the recent past. Estimated effective population sizes (Ne) for Clinch Dace
populations in each stream (Table 3) ranged from the low tens (five streams) to approxi-
mately 500 (Hart Creek). Small sample sizes for Lewis Creek and Middle Creek precluded
the estimation of Ne for these populations using the linkage disequilibrium method. In-
deed, only for Big Lick Creek, which had the largest sample size, was an upper limit for
Ne estimated. In this population, the ratio of effective population size to our estimated
population size was 0.26. The species does not exhibit distinguishable sexual dimorphism
based on size or color [2], and as it is an imperiled species, we did not sacrifice individuals
to observe gonadal development; hence, we cannot assess the impact of sex ratio upon Ne.

Table 3. Estimated effective population sizes. N = total number of samples analyzed, and
Ne = effective population size.

Stream N Ne
95% Confidence

Interval

Big Lick Creek 106 40.3 14.1–177.9
Greasy Creek 6 58.1 0.5–∞

Hart Creek 63 491.9 27.1–∞
Hurricane Fork 40 23.5 3.3–∞

Lewis Creek 3 ∞ ∞–∞
Middle Creek 16 ∞ 9.4–∞

Pine Creek 32 60.7 4.0–∞

Some populations showed indication of ongoing inbreeding. In total, 17 of 30 locus-
by-locus FIS values were positive and significantly greater than 0 (Table S1), but its multi-
locus value was significantly above random expectation for only the Hart Creek popu-
lation (Table 4). Average individual inbreeding coefficients Fi were greater than 0.1 in
four populations—Big Lick Creek, Hart Creek, Lewis Creek, and Middle Creek. Results
of maximum likelihood-based estimation showed that individuals within steams often
showed relatedness, i.e., they were inferred to have full-sibling, half-sibling, or parent–
offspring relationships (Figure 4). Not surprisingly, small population size and high fre-
quency of relatedness seemed to be linked. In Big Lick Creek, which had an estimated Ne
of 106, 19% of individual pairs were apparent parent/offspring, 10% were full-siblings, and
7% were half-siblings. In Greasy Creek, with an Ne of 58, 13% of individual pairs were
half-siblings. In Hart Creek, where Ne was 492, 14% of individual pairs were full-siblings,
10% were half-siblings, and 11% had parent/offspring relationships. In Hurricane Fork,
where Ne was 23.5, 1% of individual pairs were half-siblings, 22% had parent/offspring
relationships, and 10% were full-siblings. In Lewis Creek, with an N of 3 and where Ne
could not be estimated, two individuals were full-siblings. At Middle Creek, with an N
of 16 and where Ne could not be estimated, 23% of individual pairs had parent/offspring
relationships, 6% were half-siblings, and 3% were full-siblings. In Pine Creek, which had
an Ne of 61, 23% of individual pairs were parent/offspring, 6% were half-siblings, and 3%
were full-siblings.
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Table 4. Metrics of inbreeding within Clinch Dace populations. Multi-locus FIS values, with associated
probability of a random FIS value being greater or equal to the observed FIS; significant p values are
shown in bold font. Average individual inbreeding coefficient Fi with associated 95% confidence
interval after accounting for segregation of null alleles and genotyping errors.

Stream FIS
p (Random FIS
≥Observed FIS) Avg Fi (95%CI)

Big Lick Creek −0.023 0.732 0.227 (0.095–0.348)
Greasy Creek 0.212 0.126 0.075 (0.000–0.249)

Hart Creek 0.134 0.005 0.316 (0.003–0.505)
Hurricane Fork −0.095 0.469 0.012 (0.000–0.037)

Lewis Creek 0.143 0.734 0.418 (0.000–0.819)
Middle Creek 0.163 0.091 0.103 (0.000–0.201)

Pine Creek −0.090 0.956 0.088 (0.000–0.196)
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3.4. Between-Population Genetic Divergence

Fixation indices (FST) among populations in the respective streams ranged from a low
of 0.037 between Pine Creek and Middle Creek to a high of 0.527 between Middle Creek and
Lewis Creek (Table 5). The mean FST among populations in streams that are rather close
together, such as Pine Creek and Big Lick Creek, which are separated by only two stream
kilometers, was 0.2 (+SE = 0.02). The mean FST value among populations in streams that
are most distant from one another, such as Greasy Creek and Hurricane Fork, which are
separated from each other by 117 km, was 0.3 (+0.03). There was a weak and non-significant
relationship between the distance between sites and pairwise FST (y = 0.0012x + 0.1983,
r2 = 0.08). This non-significant relationship indicates that isolation-by-distance [37] was not
an important factor driving genetic divergence among Clinch Dace populations.

Table 5. Pairwise fixation index (FST) values among Clinch Dace populations between streams.

Big Lick
Creek

Greasy
Creek

Hart
Creek

Hurricane
Fork

Lewis
Creek

Middle
Creek

Big Lick Creek -
Greasy Creek 0.186 -

Hart Creek 0.305 0.310 -
Hurricane Fork 0.105 0.299 0.272 -

Lewis Creek 0.243 0.257 0.416 0.272 -
Middle Creek 0.157 0.207 0.313 0.335 0.526 -

Pine Creek 0.191 0.175 0.337 0.371 0.462 0.036

Basing our definition of populations on the results of the application of STRUCTURE,
analysis of molecular variance (AMOVA) was conducted in two different ways: (1) for all
streams as wholes independently, and (2) with Hart Creek, Hurricane Creek, and Lewis
Creek as distinctive streams, while all other streams were combined into a single popula-
tion cluster. For all streams analyzed separately (Table 6), AMOVA results showed that a
considerable amount of genetic variance—26.0%—was among populations. Most of the
remaining genetic variance—72.5%—was within individuals (72.5%), as is typical of popu-
lations of vertebrates. Only a small proportion of variance—1.5%—was among individuals
within populations (1.5%). Results from both AMOVA analyses were largely convergent;
there was more variation within populations than among populations, although there was
considerable inter-population divergence.

Table 6. AMOVA results for collection from all streams analyzed separately. Average FST over all
loci = 0.259. Significance test (1023 permutations) for FST: p-value = 0.000.

Source of Variation Sum of Squares Variance
Components

Percentage of
Variation

Among populations 125.008 0.030259 25.99
Among individuals
within populations 227.857 0.01789 1.54

Within individuals 224.5 0.84398 72.48
Total 577.365 1.16446

4. Discussion
4.1. Population Genetic Processes and Structure

To inform conservation planning, we conducted analyses of variation at nine mi-
crosatellite DNA loci to assess population genetic processes within and divergence between
seven Clinch Dace populations. Results of Bayesian cluster analysis showed that Clinch
Dace populations in Hurricane Fork and Hart Creek were the most differentiated from
those in other streams, while those in the other five streams (Lewis Creek, Big Lick Creek,
Pine Creek, Greasy Creek, and Middle Creek) showed some degree of admixture. The
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isolation may occur because Hurricane Fork and Hart Creek are the western-most sites
and less likely to have exchanged migrants with other sites. Apparent admixture among
some populations (Figure 2) suggests that Clinch Dace can migrate among streams or
could during episodes in the past. Our findings showed that the classical effects of small
population size have led to genetic drift and apparent inbreeding within some of these
populations, with co-occurring processes conforming to the small population paradigm [38].
Low estimated Ne values and m-ratios suggest that genetic drift has operated upon the re-
spective gene pools in these streams, contributing to the divergence among them. Non-zero
FIS values, high average Fi, and high degrees of relatedness in three of these populations
suggest that inbreeding is taking place in some populations. AMOVA results show that
over 25% of genetic variation occurs among populations and an overall FST of 0.26 indicates
considerable genetic divergence.

Population viability is dependent on population size and genetic variation. A mini-
mum effective population size would be at least 50 for short-term population viability and
500 for retaining long-term adaptive potential [39,40]. As all of the Clinch Dace populations
that we sampled had estimated effective sizes under either 50 or 500, it would seem that
all populations are vulnerable to extirpation over the short or long term. This problem
is compounded by Clinch Dace populations being fragmented across the landscape and
contemporary gene flow among populations being restricted or absent, exacerbating the
likelihood of loss of genetic diversity within populations. Furthermore, the 3:1 imbal-
ance in sex ratio observed by White and Orth [41] could decrease effective population
sizes by 25% [42]. Competition for access to spawning opportunities at nests could make
reproductive output unequal among individuals [43].

4.2. Management Implications

A first consideration for management of populations is defining biological units for
conservation. Moritz [44] defined management units (MUs) as demographically indepen-
dent populations, which might be diagnosed as populations that show divergence in allele
frequencies at nuclear loci. Palsboll et al. [45] defined MUs as units within which popu-
lation fluctuations are more dependent on births and deaths within the population than
on immigration from other populations; they defined management units as populations
of conspecific individuals among which the degree of connectivity is sufficiently low that
each population should be monitored and managed separately. Against this background,
MUs among Clinch Dace populations might be regarded, respectively, as Hurricane Fork,
Hart Creek, and the remaining five streams where mixing has apparently taken place in the
recent past.

Inference that individual populations have been subject to isolation, considerable ran-
dom genetic drift, and, in some cases, apparent inbreeding informs choices of management
options used to promote conservation and demographic recovery. Strategies might include
actions to address inbreeding, increase effective population sizes, and promote geneti-
cally effective migration among populations. Hence, conservation actions might include
translocations of individuals among populations, captive propagation and stocking, and
habitat improvements to increase ecological carrying capacity and migration likelihood. We
recommend adaptive management strategies that involve monitoring any translocations,
population augmentations, reintroductions, or habitat improvements to assess the efficacy
of any actions taken.

Translocations from large populations to small and at-risk populations might pro-
mote genetic rescue [46], addressing inbreeding and demographically boosting receiving
populations. However, translocations might also pose the genetic hazard of outbreeding
depression. Divergence at neutral genetic markers, such as microsatellites, does not address
the possibility of adaptive variation among populations; if neutral variation is considerable,
but adaptive variation is absent, then translocations may be safe. As it seems likely that
these populations were in genetic contact in the recent past, the likelihood of outbreeding
depression seems to be small [47]. Captive breeding and stocking of cultured individuals
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back into the same source populations avoids the risk of outbreeding depression, although
there is a risk that artificial propagation of such a sample of the population and subsequent
stocking could reduce the Ne content of the receiving population [48]. Tradeoffs related to
genetic risks must be carefully balanced, and there are guidelines for genetically cognizant
population augmentation practices [49,50].

This study identifies three possible donor populations (Hurricane Fork, Hart Creek,
and Big Lick Creek) and four possible recipient populations (Lewis Creek, Middle Creek,
Pine Creek, and Greasy Creek) for translocations. Despite relatively large Clinch Dace
populations being present in Hart Creek and Hurricane Fork, these populations may not be
suitable as donor populations because of their being genetically differentiated from other
populations—that is, there may be risk of outbreeding depression if individuals from these
streams were added to other Clinch Dace populations. However, this issue does not rule
them out as donor populations from these streams for introductions into streams where
Clinch Dace are currently not found. One low-risk translocation method could be to stock
Hart Creek individuals into Alvy Creek within that same drainage, a potentially suitable
stream with a downstream barrier, or an old mill dam.

Current Clinch Dace distribution may be more dependent on the legacy effects of pre-
vious mining activities and large-scale fish kills than the lack of instream habitat, suggesting
that Clinch Dace might be introduced into streams with suitable water quality and habitat
conditions, establishing new populations or re-establishing extirpated populations. Any
such actions would have to stock collections of individuals with sufficient genetic variation
to minimize risk of subsequent inbreeding and allow adaptation to local conditions. Fifteen
conservation areas for protection of Clinch Dace were proposed by Moore et al. [9] (2018);
within these areas, improvement in habitat would include measures to improve water qual-
ity and riparian zone integrity. Effective implementation would be complicated, however,
by ongoing mining activities in the upper watersheds and the multiplicity of landowners
in the lower watersheds, whose cooperation would be needed for habitat improvement on
a meaningful geographic scale.

5. Conclusions

Genotype frequencies at nine microsatellite DNA loci within and among seven popu-
lations of Clinch Dace, which is an imperiled species endemic to the Clinch River drainage
of southwestern Virginia, were indicative of small-population genetic processes. Small
effective population size, random genetic drift, and inbreeding were apparent within pop-
ulations. Genetic differentiation was observed among populations. Inference of these
processes will inform conservation management, which may include habitat improvements,
translocations of individuals among populations, and, perhaps, captive propagation and
stocking to augment existing populations or establish new populations.

Supplementary Materials: The following supporting information can be downloaded via the fol-
lowing link: https://www.mdpi.com/article/10.3390/fishes8070365/s1, Table S1: Locus-by-locus
genetic diversity metrics for Clinch Dace populations.
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