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• Quantifying flow-ecology relationships
allow for the development of flow stan-
dards.

• All flow regime components affected
fish and benthic macroinvertebrate as-
semblages.

• Aquatic organisms' response to flow var-
ied across flow classes and ecoregions.

• Single metric flow standards would un-
derestimate the impacts of any flow al-
teration.
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The natural flow regime (i.e. magnitude, frequency, duration, timing and rate of change of flow events) is crucial
formaintaining freshwater biodiversity and ecosystem services. Protecting instream flow from anthropogenic al-
terations first requires an understanding of the relationship between aquatic organisms and the flow regime. In
this study, we used a unique framework based on random forest modeling to quantify effects of natural flow re-
gimemetrics on fish andmacroinvertebrate assemblages across ecoregions and flow regime types in the state of
South Carolina, USA.We found that all components of thenaturalflow regime affected bothfish and benthicmac-
roinvertebrate assemblages, suggesting thatmaintaining natural aspects of all flow regime components is critical
for protecting freshwater diversity. We identified hydrologic metrics and flow regime components such asmag-
nitude, frequency, and duration offlow events, thatwere associatedwith the greatest ecological responses for in-
dividual stream classes to help managers prioritize hydrologic and biological metrics of interest during
environmental flow standard development. The response of aquatic organisms to hydrologic metrics varied
across stream classifications and ecoregions, highlighting the importance of accounting for differences inflow re-
gime and ecoregion when designing environmental flow standards. We provide a flexible framework based on
statistical flow-ecology relationships that can be used to inform instream flow management and assess effects
of flow alteration on riverine assemblages.

© 2021 Published by Elsevier B.V.
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1. Introduction

Instream flow, deemed the “master variable”, shapes the physical
processes, water quality, biological components, and energy transfer
that drive the ecological characteristics of freshwater systems (Hayes
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et al., 2018; Monk et al., 2006; Poff, 2018; Power et al., 1995). Natural
flow regime, defined as the timing, magnitude, frequency, duration,
and rate of change of flow events, is crucial for maintaining freshwater
biodiversity and ecosystem health (Bunn and Arthington, 2002; Poff
et al., 1997). Each flow regime component helps define a unique physi-
cal template that acts as an ecological filter and a selective force to dif-
ferentially shape the ecological and evolutionary characteristics of
freshwater systems (Bunn and Arthington, 2002; Naiman et al., 2008;
Olden and Kennard, 2010; Poff et al., 1997). Altering the naturalflow re-
gime can cause adverse changes in biotic and abiotic characteristics of
freshwater ecosystems, presenting a serious conservation concern
(Arthington et al., 2018; Poff and Zimmerman, 2010; Webb et al.,
2013). Traditional streamflow management of focusing solely on mini-
mum flow may be inadequate in protecting riverine ecosystems be-
cause no single flow regime component affects riverine ecosystems
alone (Bunn and Arthington, 2002; Poff et al., 2010). Key flow regime
components are often neglected during the development of streamflow
policy that balance human and ecosystem needs (Postel and Richter,
2003). This neglect is due in part to our limited understanding of aquatic
organism response to the various aspects of the flow regime, with stud-
ies finding inconsistent responses across time and space (Lynch et al.,
2018; Mcmanamay et al., 2013a; Praskievicz and Luo, 2020; Webb
et al., 2013). These inconsistences highlight theneed for regional studies
to determine which flow regime components are most important and
how organisms respond to these different components across space
and streams with different flow regimes.

Flow regime and hydrology of a given stream is strongly dependent
on climate, position in the river network, geomorphology, topology, and
landcover characteristics (Winter, 2001). Accordingly, flow regime and
stream hydrology vary across landscapes with a mosaic of climate and
catchment characteristics, leading to streams with differing habitat
templates and assemblage compositions (Poff and Ward, 1989). A con-
sequence of this variation is that the ecological responses to flow regime
properties (i.e. flow-ecology relationships) can vary across flow re-
gimes, even within the same drainage division (Arthington et al.,
2006; Kennard et al., 2010; Poff et al., 2010). On the other hand, studies
suggest flow-ecology relationships should be similar for rivers within
similar flow regimes (Arthington et al., 2006; Poff et al., 2010). At a re-
gional scale, collecting biological and hydrologic data for every stream
is infeasible. Hydrologic classification of streams into similar flow re-
gimes is, therefore, an important step prior to modeling flow-ecology
relationships at large spatial scales, allowing managers to generalize
flow-ecology relationships within similar flow regimes (Olden et al.,
2012). This step is particularly important for regions with a high
diversity of habitat types and flow regimes, such as South Carolina.
However, our understanding of the general transferability of flow-
ecology relationships across flow regimes is still lacking. Determining
extent to which and how flow-ecology relationships change across
flow regimes has important implications for the development of man-
agement plans.

Modeling regional flow-ecology relationships requires data that
adequately capture the complexity of flow regimes and biological
characteristics across space and time (Arthington et al., 2018; Fox
and Magoulick, 2019; Gwinn et al., 2016; Poff and Zimmerman,
2010). Yet the absence of paired biological observations and hydro-
logic data for large space and temporal scales is a common problem
for regional flow-ecology studies (Patrick and Yuan, 2017; Poff
et al., 2010; Wheeler et al., 2018). The space-for-time approach can
overcome this issue by using contemporary data over a large spatial
scale to understand and model temporal patterns that would be
otherwise undetectable (Blois et al., 2013). By using data that
spans a full range of hydrologic and biological characteristics across
large spatial gradients, this approach captures natural variation in
the data that represent future or past scenarios (Blois et al., 2013;
Poff and Zimmerman, 2010). Biomonitoring programs for water
quality provide baseline data well suited for evaluating the biological
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characteristics of assemblages and of the response of assemblages to
disturbance over large spatial scales, but this data often lacks concor-
dant hydrologic data (Monk et al., 2006). Addressing the lack of
matching hydrologic and biological data in our study area, hydro-
logic metrics that represent all components of the flow regime
were simulated for every stream segment in South Carolina (SC),
providing the data needed to quantify flow-ecology relationships
at a regional scale using the space-for-time approach. The complex-
ity of relationships between ecological and hydrologic characteris-
tics as well as the development and use of hundreds of flow
metrics lends to the inability of finding “general, transferable
relationships” (Mcmanamay et al., 2013b; Poff and Zimmerman,
2010). Due to the inability to collect biological data at a river-by-
river basis, studies widely advocate for quantifying flow-ecology re-
lationships at regional scale to facilitate the identification of broadly
applicable flow-ecology relationships (Arthington et al., 2006; Poff
et al., 2010).

Globally, human appropriation of water resources via dam construc-
tion, groundwater withdrawals, water diversions/abstractions, and
other hydromorphological alterations severely modify the natural
flow regime, leading to pervasive declines in aquatic ecosystem integ-
rity (Bunn and Arthington, 2002; Carlisle et al., 2011; Vörösmarty
et al., 2010). In the United States, it is estimated that the majority of
streams are severely affected by flow alteration (Carlisle et al., 2011),
and the growing water demand, increasing droughts, and climate
change are likely to exacerbate this problem (Acreman et al., 2014).
Over the last few decades, this threat promoted the study of environ-
mental flows and the establishment of environmental flow standards
to protect and restore the biodiversity of freshwater systems. Yet, devel-
opingmanagement plans that protectflow regimes from anthropogenic
alterations is challenging and complex, requiring balancing human
water use needs with the natural streamflow required to maintain es-
sential ecosystem goods and services of riverine systems.

Amajor goal of environmental flow studies is to provide quantita-
tive estimates of relationships between flow regime properties and
ecological responses to create targeted management plans for river-
ine systems and environmental flow standards (Arthington et al.,
2006; Bunn and Arthington, 2002; Poff et al., 2010), yet no such
study has been completed for SC. Accordingly, the goal of this study
is to quantify relationships between key hydrologic and biological
response metrics to inform the process of developing recommenda-
tions for environmental flow standards in the state of SC, USA. Using
a unique statistical framework based on random forest and robust
datasets of fish and benthic macroinvertebrate assemblage data, we
specifically sought to understand how much variation in biological
metrics can be explained by hydrologic metrics, which metrics are
most important, and how those relationships varied among
ecoregions and types of hydrologic regimes. We also aimed to use
model-predictions across various hydrologic gradients describing
the natural flow regime to visualize flow-ecology relationships to es-
timate potential biodiversity loss.

2. Methods

2.1. Overview

We examined relationships among ecologically relevant hydrologic
metrics and biological responsemetrics for fish andmacroinvertebrates
in wadeable streams of South Carolina, USA (Fig. 1). First, we used the
Watershed Flow Allocation model (WaterFALL®; (Eddy et al., 2017) to
calculate 171 flow metrics for each stream segment in the state. We
then used principal components analysis to reduce this set to 24metrics
representing the key elements of the natural flow regime, stratifying
all segments by ecoregions and hydrological classes. We used a
powerful machine learning tool—random forest models—to relate hy-
drologic metrics to a large dataset of stream fishes and benthic



Fig. 1. A graphic depiction of the method work flow.
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macroinvertebrates collected by state management agencies. This ap-
proach allowed us to (1) quantify variation in biological metrics ex-
plainable by hydrologic metrics, (2) identify the most important
hydrologic metrics affecting biota in each ecoregion and flow regime
type, and (3) develop scaled prediction curves that can be easily
interpreted to provide guidance towardflow-relatedmanagement deci-
sions (Fig. 2).

2.2. Study area

South Carolina (SC) is an ideal area to explore flow-ecology relation-
ships, containing a diversity of stream habitats and flow regimes. Span-
ning five level III ecoregions, streams in SC range from clear, high
gradient mountain streams in the Blue Ridge to low gradient, black
water streams in the Middle Atlantic Coastal Plain (Fig. 1; Omernik,
1987). In addition, SC has four major drainage basins, with high aquatic
biodiversity and many endemic species within these basins. Roughly
146 freshwater and diadromous fish and 1092 macroinvertebrate taxa
occur throughout SC, and these assemblages tend to strongly differ in
taxonomic and functional composition from upland to lowland streams
and among ecoregions (Denison et al., 2021; Glover et al., 2008; Marion
et al., 2015; McManamay et al., 2015a). The streams in our study vary in
fluvial habitat type, disturbance level, flow regime, and streamgradient,
providing the hydrologic variation needed for a space-for time-
approach (Fig. 1). The total upstream cumulative drainage area of our
stream segments ranged from 0.185–4369 km2 (mean = 134 km2),
encompassing headwater streams to small rivers. Our study analyzed
a total of 981 stream segments (a catchment inlet and outlet), covering
2% of all stream segments in SC. These stream segments were randomly
3

selected using a geographic information system-based selection pro-
gram and stratified by drainage basin, ecoregion, stream size to provide
robust coverage of the ecoregions and drainage basins within SC (Scott,
2008).

2.3. Flow metrics and hydrological classification

In a preceding study (Eddy et al., in review),WaterFALL was used to
simulate daily streamflows over a 30-year period for each stream seg-
ment in SC as defined by the medium resolution National Hydrography
Dataset, with the exception of tidally influenced streams,which allowed
for the calculation of 171 hydrologic metrics for each simulated stream
reach. WaterFALL is a distributed rainfall-runoff model that simulates
daily streamflowvolumeswithin each enhancedNational Hydrography
Dataset (NHDPlus) catchment defining a watershed of interest. The
model accounts for withdrawals, discharges, and onstream reservoirs
within the network and using the NHDPlus catchments as the hydro-
logic unit and network. WaterFALL is calibrated and validated against
streamflow measurements from US Geological Survey (USGS) gages,
using a weight-of-evidence approach across both quantitative perfor-
mance measures and qualitative graphical representations of model
performance (i.e., flow duration curves). Eddy et al. (2017) describes
an application of earlier version ofWaterFALL to North Carolina streams
and rivers to provide hydrologic metrics for subsequent ecological flow
analyses (Phelan et al., 2017). The performance of themodel in simulat-
ing hydrologic metrics within that body of work and in an additional
comparison study ofWaterFALL with other hydrologic models for a sin-
gle southeastern US basin (Caldwell et al., 2015) provide support for the
use of WaterFALL in pursuing the investigations outlined in this study.



Fig. 2.Maps of sampling sites for macroinvertebrates and fish assemblages, HUC8, major drainage basins, ecoregions, and hydrologic classes.
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For the hydrologic simulations supporting this study (Eddy et al., in
review), WaterFALL was parameterized using the following geospatial
data: land-use from the 2016 National Land Cover Database at a 30 m
resolution (Jin et al., 2019), climate data (daily temperature and precip-
itation) at a 4-km resolution from 1987 to 2018 (Daly et al., 2008), sub-
surface parameters from the Sacramento Soil Moisture Accounting
Model (Zhang et al., 2016), and geomorphology from Soil Survey Geo-
graphic Database (USDA-NRCS, 2014) at the NHDPlus catchment scale.
Additional tabular data were used to parameterize human alterations
to the natural flowing system (i.e., reservoir regulation, withdrawals,
discharges, small barriers, and channelized areas of retention). Descrip-
tions and sources of these alterations are described in full in Eddy et al.
(in review). The simulated flow values from theWaterFALLmodel were
calibrated against observed flow values from 59 USGS gages within the
study region, including both reference and non-reference/human-im-
pacted watershed conditions (Fig. S1). These gages span a range of
drainage areas from 11 to 1996 km2 with an average drainage area of
257 km2. A 12-year calibration period (2006–2018; water years
beginning October 1 of the prior year and ending September 30 of the
listed year) followed by an 8-year validation period (water years
1998–2005) were used to set and validate model parameters, where
each run considered a one-year spin up period to establish initial condi-
tions. These time spans were chosen to include at least one major
drought and several wet periods within each period.

First, a combination of classic hydrologic goodness of fit statistics
and qualitative evaluation were used to guide the calibration process.
The goodness of fit statistics include percent bias (PBIAS), coefficient
of determination (R2), the Nash-Sutcliffe Efficiency (NSE) (Nash and
Sutcliffe, 1970), and rNSE, a modified version of the NSE to account for
extreme high-flow events that may skew calculations of monthly NSE
and givesmoreweight to low-flowperiods. For these quantitativemea-
sures, the thresholds set by Moriasi et al. (2007) were used to classify
model calibrations into very good, good, and satisfactory performance.
Given the range in stream classification assignments, streamflow ranges
and regimes, and ratings of observations on which comparisons are
made (Table 3), we chose the slightly less restrictive performance
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criteria described by Moriasi et al. (2007). Bias in mean streamflow
within ±10%, ±15%, and ±25% indicated very good, good, and
satisfactory model performance, respectively. Model performance is
classified in terms of NSE values as very good (NSE > 0.75), good
(0.75 ≥ NSE > 0.65), and satisfactory (0.65 ≥ NSE > 0.50) (Moriasi
et al., 2007). Neither analysis inMoriasi et al. (2007) or (2015) provides
criteria specifically for rNSE beyond calling for its use. We therefore
apply the NSE criteria to the rNSE measure for evaluation. To examine
model performance across the tails or themore extremeflow conditions
not always well highlighted by single quantitative metrics, flow dura-
tion curves were used. In some cases, the calibrations with the best
performing quantitative metrics were passed over in favor of calibra-
tions with slightly lower performance measures but better representa-
tion of extreme low or high flow conditions. Goodness of fit statistics,
PBIAS, NSE, and rNSE, demonstrated an expected range of performance
for stream gauges across the study area with full details on the perfor-
mance described in Eddy et al. (in review). Second, model performance
in terms of simulating the 171 hydrologic metric was evaluated using
both the simulated and observed streamflows at 31 of the 59 calibration
gages across the full 30-year simulation period, where the remaining 28
gages were removed from the evaluation due to limitations in the ob-
served data. Following most studies evaluating simulated hydrologic
metrics, we applied the acceptance criteria of ±30% to the PBIAS evalu-
ation for hydrologic metrics (Caldwell et al., 2015; Murphy et al., 2013;
Vigiak et al., 2018).

Once calculated, modeled hydrologic metrics were average over a
30-year period of daily streamflows at each catchment from water
years 1989–2018. Frommodeled hydrologic metrics, we selected a sub-
set of metrics corresponding to Indicators of Hydrologic Alteration
(IHA) that are minimally redundant and ecologically relevant compo-
nents of the flow regime (Olden and Poff, 2003). In addition to the
IHA metrics, we also used Colwell's index of constancy as a measure of
flow stability (Colwell, 1974). To better capture high flow conditions,
we also calculated median and specific annual maximum flows,
resulting in 24 metrics (Table 1). Metric selection followed the recom-
mendations and methods given in Olden and Poff, 2003. We



Table 1
List of hydrologic metrics, their associated flow regime component, and description based
on Henriksen et al. (2006).

Code Flow
regime

Description

DL16 Duration Low flow pulse duration. The average pulse for flow events
below a threshold equal to the 25th percentile value for the
entire flow record.

DL17 Duration Coefficient of vitiation in DL16
DL18 Duration Number of zero-flow days
DH15 Duration High flow pulse duration. The average duration for flow

events with flows above a threshold equal to the 75th
percentile value for each year in the flow record.

DH16 Duration Coefficient of vitiation in DH15
FL1 Frequency Low flow pulse count. Average number of flow events with

flows below a threshold equal to the 25th percentile value for
the entire flow record

FL2 Frequency Coefficient of vitiation in FL1
FH1 Frequency High flow pulse count. Average pulse duration for each year

for flow events below a threshold equal to the 25th percentile
value for the entire flow record.

FH2 Frequency Coefficient of vitiation in FH1
MA1 Magnitude Mean daily flow (cfs)
MA3 Magnitude Mean of the coefficient of vitiation (standard

deviation/mean) for each year of daily flows
MA41 Magnitude Annual runoff computed as the mean of the annual means

divided by the
MA42 Magnitude Coefficient of vitiation of MA41
ML17 Magnitude Base flow index. The minimum of a 7-day moving average

flow divided by the mean annual flow for each year.
ML18 Magnitude Coefficient of vitiation in ML17
ML22 Magnitude Specific mean annual minimum flow. Annual minimum flows

divided by the drainage area
MH14 Magnitude Median of annual maximum flows. The ratio of annual

maximum flow to median annual flow for each year
MH20 Magnitude Specific mean annual maximum flow. The annual maximum

flows divided by the drainage area
RA8 Rate Number of reversals. Number of days in each year when the

change in flow from one day to the next changes direction
TA1 Timing Constancy or stability of flow regime computed via the

formulation of Colwell (see example in Colwell, 1974).
TL1 Timing Julian date of annual minimum
TL2 Timing Coefficient of vitiation in TL1
TH1 Timing Julian date of annual maximum starting at day 100
TH2 Timing Coefficient of vitiation in TH1
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investigated metric redundancy using the commonly accepted ap-
proach of correlation-based principal components analysis (PCA)
(Olden and Poff, 2003). We retained PC axes with eigenvalues greater
than 1, and only selected hydrologicmetricswith loading values greater
0.5 and less than−0.5 on at least one of the retained axes (Mackay et al.,
2014; Olden and Poff, 2003). From this subset of metrics, we calculated
the Pearson correlation values among all metrics, avoidingmetrics with
correlations higher than 0.7. The Pearson correlation values among all
metrics are presented in Table S1.

Simulation uncertainty varied among hydrologicmetrics, with some
metric beingmore confidently simulated than others (Eddy et al., in re-
view). We therefore avoided metrics with larger uncertainty (Fig. S2)
and focus on those that confidently estimate observed stream flows
and simulate hydrologic metrics (Fig. S2). Timing metrics generally
preformed the best out the hydrologic metrics, and average condition
magnitude hydrologic metrics consistently performed better than rate,
frequency, and duration metrics based on the goodness of fit statistics
(Fig. S1). The low flow magnitude metrics had a mixture of both over-
(ML18, ML21) and under-prediction (ML4, ML17, ML22) by the
model, but unitless baseflow ratio (ML17) was consistent simulated
(Fig. S2). High flow magnitude metrics were either well predicted
(MH8,MH16,MH20) or slightly over-predicted (MH10,MH14).Metrics
indexing low and high flow variability (FL2 and FH2) performed best
out of the frequency metrics across all sites (Fig. S2). Low flow pulse
count (FL1) and high flood pulse count (FH3) also performed acceptably
for most streams and high flow pulse count (FH1) was less stable in its
5

calculations across a wide range of conditions. High flow duration met-
rics fellmorewithin the acceptance range of bias than the lowflowmet-
rics (Fig. S2), with DL16 and DL17 tending to be overestimated at some
sites. Number of reversals (RA8) and to a slightly lesser extent the num-
ber of daily rises (RA5) show more acceptable simulation results
(Fig. S2). Although a limited number of gages were available in three
of the four monitored ecoregions, gages tended to perform better per-
formance at higher elevation (Blue Ridge and Piedmont) sites (Fig. S2).

Hydrologic classification of streams is a critical component of envi-
ronmental flow assessments because flow-ecology relationships can
differ among flow regimes (Poff et al., 2010). This step is particularly
crucial for SC, given the diversity of fluvial habitats among ecoregions
(Fig. 1). Accordingly, we used a hydrologic classification for rivers of
the conterminous US provided by (McManamay and DeRolph, 2019).
This classification consists of eight natural stream classes based on
reference-quality gauges. Of those eight classes, only four natural hy-
drologic regimes occurred in SC: perennial runoff streams, character-
ized by moderately stabile flow and distinct seasonal extremes (Class
1, 615 stream segments); stable baseflow streams, characterized by
high precipitation, sustained high baseflows, and moderately high run-
off (Class 3, 183 stream segments); perennial flashy; characterized by
moderately stabile flow with high flow variability (coefficient of varia-
tion in daily flows) (Class 4, 138 stream segments); and intermittent
streams, classified by intermittent periods of no flow punctuated by
flooding events (Class 5, 45 stream segments). This approach resulted
in five different stream groupings: Piedmont (stream classes 1 and 4),
Middle Atlantic Coastal Plains (stream class 1), and Southeastern Plains
(stream classes 1 and 3). Limited biological data was available for the
Blue Ridge ecoregion and no hydrologic data was calculated for the
Southeastern Coast Plains due to the tidal influence in this area (Eddy
et al., in review). Therefore, these ecoregions were not induced in our
study. Stream classes were analyzed separately in this study to account
for themajor ecological and evolutionary patterns that occur across the
ecoregions (Abell et al., 2008).

2.4. Biological metrics

Fish and benthic macroinvertebrate assemblage composition data
were provided by SCDNR (fish) and SCDHEC (benthic macroinverte-
brates). All surveys were collected and identified by professional biolo-
gists with knowledge of the species and systems. These surveys were
intended to quantify species abundance and diversity of the sampling
sites. Both the fish and macroinvertebrate stream segments span all
major drainage basins and level III ecoregions in SC, except the Southern
Coastal Plains, capturing hydrologic variation across SC (Fig. 1). Fish as-
semblages were surveyed at a total of 492 stream segments between
April and October from 2006 through 2011 using a backpack electro-
fishing unit following a standardized stream assessment protocol by
the SC Department of Natural Resources (Scott et al., 2009). For the
Blue Ridge and Piedmont streams, fish were collected using a single
pass of 30 times the wetted width of the reach whereas collections in
the Southeastern Plains and Middle Atlantic Coastal Plain ecoregions
were made using three passes 20 times the wetted width. The differ-
ences in sampling methods between the upland and lowland regions
were to account for lower capture efficiency observed in lowland
streams, presumably due to more complex habitats and heavier cover
(Scott, 2008). We calculated a suite of biological response metrics for
fish and macroinvertebrate assemblages at each site (Table 2). Taxa
richness and Shannon diversity index were calculated for both taxa
groups. We used proportional representation of individuals in the
genus Lepomis because most of these species are ecologically tolerant
and habitat generalists (Lynch et al., 2018). Because life history traits
of fish are strongly influenced by the hydrologic regime (Mims and
Olden, 2012), we used proportional representation of individuals be-
longing to a breeding strategy in each site. Breeding strategy categories
included open substrate spawning, brood hiding, and nest spawning



Table 2
Abbreviation, description, and association with type of biological metrics.

Abbreviation Description Type

Fish metrics
Richness Taxa richness Ecological

integrity
Shannon Shannon's diversity index Ecological

integrity
Lepomis Proportional representation of individuals in the

genus Lepomis
Tolerance

Brood Hider Proportional representation of individuals in the
brood hiding breeding strategy (Balon, 1975).

Ecological
integrity

Nest
Spawner

Proportional representation of individuals in the nest
spawning breeding strategy (Balon, 1975).

Ecological
integrity

Open
substrate

Proportional representation of individuals an open
substrate spawning breeding strategy (Balon, 1975).

Ecological
integrity

Lotic Proportional representation of individuals that prefer
lotic environments

Ecological
integrity

Tolerance Proportional representation of tolerant individuals Tolerance
Benthic Macroinvertebrate metrics
Richness Taxa richness Ecological

integrity
Shannon Shannon's diversity index Ecological

integrity
EPT Proportional representation of individuals in Ecological

integrity
Chronomidae Proportional representation of individuals in

Chrionomidae family
Tolerance

M-O index Average of an index indicative of Odonata and
Megaloptera taxa preference for lotic or lentic
conditions

Ecological
integrity

Tolerance Average tolerance index for macroinvertebrate taxa Tolerance
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species (Balon, 1975; Frimpong and Angermeier, 2009). We also used
the proportional representation of tolerant individuals where the num-
ber of tolerant individuals should increase in streams with greater hy-
drological alteration. Tolerance rankings for fish were taken from
North Carolina Department of Environmental Quality stream fish com-
munity assessment program. In addition, we calculated the propor-
tional representation of individuals that prefer lotic habitats. Lotic
fishes have life history strategies and traits adapted to natural flow re-
gimes and would respond to alteration of the flow regime (Poff et al.,
1997; Bunn and Arthington, 2002; Frimpong and Angermeier, 2009).

Macroinvertebrates were collected from 530 stream segments be-
tween 1995 and 2018, following a timed-qualitative, multiple habitat
sampling protocol by SC Department of Health and Environmental Con-
trol (see SCDHEC, 2017 for details). This protocol is widely used by
many regulatory and non-regulatory agencies and ensures an adequate
representation of themacroinvertebrate assemblage. Sampleswere col-
lected using kick nets, D-frame dip nets, finemesh samplers, and sieves
for a three person-hour sampling effort. Sampling teams independently
use one of the samplingmethods previously listed to sample the appro-
priate habitat. Macroinvertebrates were identified to the lowest possi-
ble taxonomic resolution within the class Hexapoda. This resulted in
91% of organisms identified to the genus level and 9% to the family
level. We calculated the percent contribution of individuals belonging
to orders Ephemeroptera, Plecoptera, and Trichoptera (EPT) and the
percent contribution of individuals in the family Chironomidae. Species
within the EPT orders are generally associated with high water quality
and less disturbed habitats. Species in the Chironomidae family are gen-
erally considered as tolerant, increasing in abundance within disturbed
habitats (Barbour et al., 1999; Karr, 1991). Benthic macroinvertebrate
tolerance index was gathered from the literature (Barbour et al., 1999;
Bressler et al., 2006; MDEQ, 2003). If no tolerance index was given at
the genus level, the tolerance index for that family was used. Finally,
we also calculated a Megaloptera-Odonata index. Taxa within the
Megaloptera and Odonata orders are long lived and have differing pref-
erences for lotic or lentic conditions. Therefore, changes in this index
should reflect dry stream conditions in the past. Based on an index cre-
ated by SCDHEC for SC, taxa were assigned values ranging from 1 to 10
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indicative of their preference for lotic or lentic conditions (personal
communication with David Eargle, SCDHEC).

2.5. Statistics

Flow-ecology relationships can be highly complex and nonlinear,
particularly in large scale studies across multiple flow regimes
(Arthington et al., 2006; Knight et al., 2014; Rosenfeld, 2017). Accord-
ingly, we used random forest models–a powerful machine learning al-
gorithm that combines hundreds of decision trees and their
predictions into a single model, improving predictive accuracy and pro-
viding a robust predictive tool for quantifying complex and nonlinear
flow-ecology relationships (Breiman, 2001; Cutler et al., 2007). Within
each stream class, random forestmodels allowed us to (1) quantify var-
iation in biological metrics explainable by flowmetrics (R2), (2) identify
the most important flow metrics affecting biota in each ecoregion and
flow classification (i.e. variable importance), and (3) calculate model-
predicted values to provide guidance toward flow-relatedmanagement
decisions. Prior to analyses, we removed the pervasive effect of stream
size on biological metrics by regressing metrics against the total up-
stream cumulative drainage area, then extracted the residuals for fur-
ther analysis. These values represent patterns in biological metrics
that cannot be explained by stream size, enabling a clearer signal of
flow-ecology relationships to be detected. Random forest models were
carried out using the “cforest” function (Hothorn et al., 2015). Model
training and performance was evaluated using the “caret” package in
R version 4.0.0 (Kuhn et al., 2020; R Core Team, 2020).

Each decision tree in random forest is created using a subset of var-
iables and a bootstrapped sample of the dataset. The remaining data, the
out-of-bag (OOB) sample, is used to estimate the predictive perfor-
mance of the model and variable importance (Breiman, 2001; Cutler
et al., 2007). We used pseudo R2 based on OOB data as a measure of
model performance (Ellis et al., 2012). To evaluate the ability of hydro-
logic metrics to predict the biological response metrics, we randomly
split the data into training (70% of data) and test data sets (30% of
data), using the models built with the training data to predict the test
data. Next, we used linear models to quantify how well these predicted
values match the observed values (test data). Selecting random subsets
of the data will inevitably cause the predictive ability of models to vary.
Therefore, we repeated these steps five times to obtain the average R2

and quantified the uncertainty of variance explained using standard de-
viation. Only models with moderate or greater predictive ability (R2

values greater than 0.5) were considered for further analyses.
The second important inference from random forest, variable impor-

tance, can be defined as the mean decrease in model accuracy that
would be caused by omitting that variable from themodel. Variable im-
portance shows which predictor variables have the greatest influence
on the response variable. This step is useful in applied settings because
identifying important metrics within stream classes will help managers
set priorities during flow standard development. We used ‘conditional’
variable importance, which is a more robust estimate than traditional
important metrics when variables are correlated (Ellis et al., 2012;
Strobl et al., 2008). Although we selected minimally redundant hydro-
logic metrics, some metrics were correlated to some extent (Table S1).
Some explanatory variables can have a negative importance, so that in-
clusion of these variables can produce increased error rates (Pyne et al.,
2017). Therefore, variables with negative importance values were se-
quentially removed through the iterativemodeling process, eliminating
the variable with the largest negative value and rerunning the analysis.
This process was repeated until no negative importance values remain.

Finally, we used the final random forest models to predict biological
metrics as a function of changes in hydrologic metrics. To do so, we first
selected important predictor variables and model-predicted values to
range from zero to one, allowing for clear visualization of potential rela-
tionships in like terms. Then, for each hydrologic metric of interest, the
maximum value was reduced in 10% increments until the minimum



Table 4
The average R2 values from linear models testing correlation between the observed and
predicted biological response metric values from the fish random forest models for each
stream class. The standard deviation is shown in the brackets.

Perennial runoff Stable baseflow Perennial flashy

Piedmont
Richness 0.70 (0.03) NA 0.61 (0.03)
Shannon 0.56 (0.02) NA 0.59 (0.03)
% Open substrate 0.64 (0.03) NA 0.39 (0.05)
% Nest spawners 0.63 (0.03) NA 0.63 (0.03)
% Brood hiders 0.68 (0.04) NA 0.53 (0.03)
% Lotic 0.50 (0.02) NA 0.48 (0.02)
% Tolerance 0.51 (0.08) NA 0.41 (0.04)
% Lepomis 0.48 (0.03) NA 0.54 (0.05)
Southeastern Plains
Richness 0.61 (0.02) 0.60 (0.03) NA
Shannon 0.56 (0.07) 0.19 (0.07) NA
% Open substrate 0.42 (0.06) 0.48 (0.03) NA
% Nest spawners 0.49 (0.03) 0.53 (0.02) NA
% Brood hiders 0.50 (0.02) 0.48 (0.03) NA
% Lotic 0.71 (0.02) 0.53 (0.02) NA
% Tolerance 0.61 (0.06) 0.26 (0.07) NA
% Lepomis 0.59 (0.03) 0.53 (0.03) NA
Middle Atlantic Coastal Plains
Richness 0.37 (0.06) NA NA
Shannon 0.39 (0.03) NA NA
% Open substrate 0.43 (0.08) NA NA
% Nest spawners 0.55 (0.03) NA NA
% Brood hiders 0.40 (0.07) NA NA
% Lotic 0.45 (0.03) NA NA
% Tolerance 0.52 (0.08) NA NA
% Lepomis 0.40 (0.07) NA NA
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metric value, keeping all other hydrologicmetrics in themodel constant
at their mean. These results were plotted to examine the flow ecology
relationships and identify potential critical values along important
flow gradients indicating thresholds of change in assemblage composi-
tion and biological responses.

3. Results

A total of 107 fish and 455macroinvertebrate taxa were collected in
SC, with highest taxa richness found in perennial runoff streams within
the Piedmont (Table 3). Fish species richness per site fish ranged from 3
to 31 (mean = 14.3). For macroinvertebrates, taxon richness per site
ranged from 7 to 83 (mean = 39.3). We retained five axes from the
PCA of the hydrologic metric dataset that explained a cumulative 76%
of the variation in taxon richness (Fig. S3, Table S2). We retained 24 hy-
drologic metrics for analysis, each having loadings greater than 0.5 or
less than -0.5 on at least one component. We found that redundancy
among hydrologic metrics varied (Table S1). Only three pairs of vari-
ables were correlated more than |r ≥ 0.70| (Table S1). FL1 showed high
correlation with FH1 (0.71), DL16 (-0.74), and RA8 (0.82). In addition,
ML22 was strongly correlated to MA41 and ML17.

3.1. Variance explained

Random forest models indicated that biological response metrics
were poorly to strongly predicted by the 24 selected hydrology metrics
across all stream and eco-region groupings (average R2 = 0.19–0.75;
Table 4), with higher average R2 being found for macroinvertebrates
(R2 = 0.53, SD = 0.12) in comparison to fishes (R2 = 0.51, SD =
0.12). Fish species richness was the best predicted biological response
metric, followed by percentage of nest spawning species (Table 4). In
contrast, the percentage of open substrate spawning fish species was
Table 3
The number of stream segments, total number of taxa, average number of taxa, and num-
ber of HUC8s in each stream class for fish and macroinvertebrate assemblages.

Fish assemblages Perennial runoff Stable baseflow Perennial flashy

Southeastern Plains
No. stream segments 92 66 NA
No. taxa present 72 65 NA
Mean No. taxa per site 15 15.5 NA
No. of HUC8 10 11 NA
Piedmont
No. stream segments 130 NA 69
No. taxa present 77 NA 62
Mean No. taxa per site 14.1 NA 13.9
No. of HUC8 12 NA 9
Middle Atlantic Coastal Plains
No. stream segments 77 NA NA
No. taxa present 53 NA NA
Mean No. taxa per site 13.1 NA NA
No. of HUC8 10 NA NA

Macroinvertebrate
assemblages

Perennial
runoff

Stable
baseflow

Perennial
flashy

Southeastern Plains
No. stream segments 67 50 NA
No. taxa present 203 159 NA
Mean No. taxa per site 38.5 43.96 NA
No. of HUC8 14 9 NA
Piedmont
No. stream segments 225 NA 67
No. taxa present 246 NA 197
Mean No. taxa per site 40.1 NA 42.5
No. of HUC8 15 NA 11
Middle Atlantic Coastal Plains
No. stream segments 50 NA NA
No. taxa present 156 NA NA
Mean No. taxa per site 26.5 NA NA
No. of HUC8 9 NA NA
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poorly predicted by the hydrologic metrics (Table 4). Formacroinverte-
brates, the percentage of EPT taxa and mean tolerance were best
predicted by the hydrologic metrics, whereas percentage of Chirono-
midae species had the lowest average R2 value (Table 5). We found
the highest average R2 in stream class 1 in the Southeastern Plains and
Piedmont ecoregions for both taxa groups (Tables 3 and 4).

3.2. Hydrologic metric importance

Conditional importance from the random forest models was used to
identify hydrologic metrics that had the greatest influence on the bio-
logical response metrics within each stream class. All components of
Table 5
The average R2 values from linear models testing correlation between the observed and
predicted biological response metric values from the macroinvertebrate random forest
models for each stream class. The standard deviation is shown in the brackets.
Megaloptera-Odonata index is given as M-O index.

Perennial runoff Stable baseflow Perennial flashy

Piedmont
Richness 0.56 (0.07) NA 0.54 (0.05)
Shannon 0.54 (0.04) NA 0.53 (0.03)
EPT 0.51 (0.05) NA 0.53 (0.05)
Chironomidae 0.60 (0.06) NA 0.34 (0.05)
M-O index 0.51 (0.03) NA 0.58 (0.05)
Tolerance index 0.64 (0.02) NA 0.56 (0.05)
Southeastern Plains
Richness 0.63 (0.06) 0.23 (0.04) NA
Shannon 0.66 (0.03) 0.36 (0.07) NA
EPT 0.56 (0.05) 0.53 (0.06) NA
Chironomidae 0.50 (0.05) 0.51 (0.06) NA
M-O index 0.51 (0.08) 0.57 (0.02) NA
Tolerance index 0.67 (0.03) 0.45 (0.09) NA
Middle Atlantic Coastal Plains
Richness 0.75 (0.06) NA NA
Shannon 0.67 (0.05) NA NA
EPT 0.66 (0.06) NA NA
Chironomidae 0.26 (0.04) NA NA
M-O index 0.34 (0.04) NA NA
Tolerance index 0.51 (0.05) NA NA



Fig. 3. Heatmaps of conditional importance values from the random forest model for fish (Left graph) and macroinvertebrates (Right graph). Conditional importance values for each
biological metric were scaled from 0 (no influence on model) to 1 (largest influence on model). The stream classes are indicated after biological metric name as follows: Middle
Atlantic Coastal Plains perennial runoff (M1), Piedmont perennial runoff (P1), Piedmont perennial flashy (P4), Southeastern Plains perennial runoff (S1), and Southeastern Plains
stable baseflow (S3). Megaloptera-Odonata index is given as M-O.
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the flow regime were important predictors of the biological response
metrics in at least one stream grouping except for percentage of open
substrate spawning fish (Fig. 3), where the rate at which flow condi-
tions change showed no ability to predict this biological responsemetric
(Fig. 3). In general, magnitude, frequency, and duration of flow events
were often associated with high values of conditional importance for
fish and macroinvertebrates. The conditional importance value and
identity of hydrologic metrics associated with the biologic response
metrics varied among stream classes, but no patternwithin stream clas-
ses was detected. Hydrologic metrics associated with high flow events
and MA1 frequently had the highest conditional importance values for
fish biological responsemetrics. Formacroinvertebrates,metrics associ-
ated with low and high flow events and metrics measuring magnitude
commonly had high conditional importance value. In addition, the coef-
ficient of variation for hydrologic metrics also had high conditional im-
portance values for both fish and macroinvertebrates (Figs. 3). For
macroinvertebrates in the Middle Atlantic Coastal Plains, MH20 often
had the highest conditional importance value across all biological met-
rics (Fig. 3).

3.3. Flow-ecology relationships: biological metrics

Hydrologic metrics indexing all five flow regime components relate
to biological response for fish and macroinvertebrates. We detected
general trends in theflowecology relationships forfish andmacroinver-
tebrates. For example, higher values of metrics that characterize the du-
ration and magnitude of both high and low flow events, such as MH14,
MH20, DH15, and DL16, tended to decrease diversity metrics and in-
creased those associated with tolerant species or measures, with a few
exceptions (Figs. 4). Higher mean daily flow, base flow, and flow con-
stancy had the opposite effect on the biological metrics (Figs. 4). In ad-
dition, metrics describing flow variability generally had the opposite
trend to those metrics indexing stability (Figs. 4). The shape of the
flow-ecology relationships often differed across stream classes (Fig. 5;
Figs. S2-8).
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In the proceeding paragraphs, we characterize relationships as ei-
ther positive (+) or negative (–). For fish assemblages, we found asso-
ciations between the percentage of brood hiding species and FH1 (–),
FL1 (–), MA1 (–), MH20 (–), and ML18 (–) when analyzing perennial
runoff and perennial flashy streams in the Piedmont perennial runoff
and stable bases flow streams (Fig. 4; Figs. S4–5). We found relation-
ships among the percentage of nest spawning species and DH15 (–),
DH16 (+), DL16 (–), FH1 (+), FH2 (–), FL2 (–), MA1 (+), MA3 (–),
MA41 (+), MA42 (–), ML17 (–), ML18 (+), ML17 (– and +), MH14
(–), MH20 (+), RA8 (–), TA1 (+), and TL2 (+) for all ecoregions
(Fig. 4; Figs. S4-S6). Annual minimums between 240 and 280 Julian
days were associated with higher percentages of nest spawning species
in Piedmont streams (Fig. S7). The percentage of open-substrate
spawning species was related to DH16 (–) and MA1 (+) in Piedmont
perennial runoff streams (Fig. 4; Figs. S2–S3).We detected relationships
among the percentage of tolerant fish species and DH16 (–), DL16 (–),
DL17 (–), FH1 (+), FH2 (–), FL1 (+), FL2 (–), MA1 (–), MA42 (–) and
TA (–) for perennial runoff in the Southeastern Plains, Middle Atlantic
Coastal Plains, and Piedmont (Fig. 4; Figs. S4–S6). In addition, we
found higher values of the percentage of tolerant fish species when an-
nual minimum flows occurred between 200 and 230 Julian days in the
Middle Atlantic Coastal Plains (Fig. S5). We found associations among
percentage of Lepomis species and DH15 (–), DH16 (–), DL16 (–), FH1
(+), FH2 (–), MA1 (+), MA41 (+), ML17 (–), RA8 (+), TA1 (+), and
TH2 (+) for perennial runoff streams in the Southeastern Plains as
well as perennial runoff and perennial flashy streams in the Piedmont
(Fig. 4; Figs. S2–S4). We found relationships among the percentage of
lotic species and DH16 (+), FH1 (–), FH2 (+), FL2 (+), MA1 (+),
MH20 (–), ML17 (+), ML18 (–), and TA1 (+) (Fig. 4; Fig. S4–S6). Shan-
non diversity index was associated with DH15 (–), DL16 (–), MA1 (+),
MA42 (–), MH20 (–) and TL2 (–), for perennial flashy and perennial
runoff streams in the Piedmont (Fig. 4; Fig. S4–S6). Higher values of
Shannon diversity index were associated with annual minimum flows
between 220 and 280 Julian days for perennial flashy streams in the
Piedmont (Fig. S5). We found relationships among species richness



Fig. 5. The predicted relationships among fish richness and MA for stream classes Middle
Atlantic Coastal Plains perennial runoff (Mid Atlantic 1), Piedmont perennial runoff
(Piedmont 1), Piedmont perennial flashy (Piedmont 4), Southeastern Plains perennial
runoff (SE Plains 1), Southeastern Plains stable baseflow (SE Plains 3).

Fig. 4. Summarizing the relationships found by the random forestmodels given in Figs. S2–S9, stackedbar plots depicting the number of positive or negative relationships amongbiological
and hydrologic metrics for fish (A) and macroinvertebrates (B). Hydrologic-biological metric relationships were assigned a value based on whether they were negative (−1) or positive
(1). The sum of these values is shown in the stacked bar plot, showing which biological metric was associated with each hydrologic metric, number of times this relationship occurred
across stream classes, and relationship direction.
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and DH15 (–), DL16 (–), FH1 (–), FL1 (–), FL2 (+), MA1 (+), MA42 (–),
MH20 (–), RA8 (+), TA1 (+), and TL2 (–) for perennial runoff and pe-
rennial flashy streams in the Piedmont as well as perennial runoff and
stable baseflow streams in Southeastern Plains (Fig. 4; Fig. S4–S6). Addi-
tionally, higher values of species richnesswere associatedwith low flow
events around 280 Julian days for these regions (Fig. S7).

For macroinvertebrates, we found associations among the percent-
age of EPT species and DH15 (+), DL16 (–), FH1 (–), FL1 (–), FL2 (+),
MA1 (+), MA3 (–), MH14 (–), MH20 (–), ML17 (+), RA8 (–), TA1
(+), and TL2 (–) (Fig. 4; Figs. S8–S10). We showed relationships
among percentage of Chironomidae and DL16 (+), DH16 (–), FH1
(+), FH2 (–), FL2 (+), MA1 (–), MH20 (+), and TA1 (–) for perennial
runoff streams in the Piedmont and Southeastern Plains (Fig. 4;
Figs. S8–S10). The percentage of Chironomidae species was highest
when annual maximum flow events occurred around 250 Julian days
for perennial runoff streams in the Southeastern Plains (Figs. S11). We
showed relationships among macroinvertebrate tolerance index and
DH15 (–), DH16 (–), DL17 (–), FH1 (+), FH2 (–), FL1 (+), FL2 (–),
MA1 (–), MA41 (+), ML17 (–), ML18 (+), MH14 (+), MH20 (+),
TA1 (–), TL2 (+), and TH2 (+) for all ecoregions and stream classes ex-
cept stable baseflow (Fig. 4; Figs. S8–S10). Higher tolerance values were
seen during annual minimum flows between 240 and 260 Julian days
for perennial flashy streams in the Piedmont (Fig. S11). We found asso-
ciations among Megaloptera-Odonata index and DH16 (–), DL16 (–),
FH1 (+), FH2 (–), FL2 (–), MA1 (+), MA41 (+), MH20 (+), MH14
(–), ML22 (–), TA1 (+), and TH2 (–) for all ecoregions except the
Middle Atlantic Coastal Plains (Fig. 4; Figs. S8–S10). We saw higher
values of Megaloptera-Odonata index at roughly 220 and 250 Julian
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days for perennial runoff streams in the Southeastern Plains and peren-
nial flashy streams in the Piedmont, respectively (Figs. S11). Shannon
diversity index increased along gradients of DH15, DH16, DL17, FH2,
FL2, MA1, ML17, and TA1 and decreased along gradients of FL1, FH1,
MH14, MH20, ML18, and RA8 for all stream classes except stable
baseflow (Fig. 4; Figs. S8–S10). We found relationships among species
richness and DL16 (+), DL17 (+), FH1 (–), FL1 (–), FL2 (+), MA1
(+), MA3 (–), MA42 (+), MA41 (+), MH14 (–), MH20 (–), ML17
(+), ML18 (–), RA8 (–), TA1 (+), and TH2 (–) for all stream classes ex-
cept stable baseflow (Fig. 4; Figs. S8–S10). In theMiddle Atlantic Coastal
Plains, we saw the highest richness values during annual minimum
flows around 300 Julian days for perennial runoff streams (Fig. S11).

4. Discussion

Wequantified relationships between biological and hydrologicmet-
rics for fish and aquatic macroinvertebrates within wadeable stream
classes. Our random forest models had a reasonable ability to predict
the distribution of the biological metrics for all stream classes, with no
metric being clearly better predicted than others. We observed many
relationships among hydrologic and biological metrics, which is a first
step toward developing recommendations for environmentalflow stan-
dards in South Carolina and potentially in other geologically similar re-
gions (Arthington et al., 2006). All components of the flow regime
played a role in shaping ecological response for both taxa groups.
Based on conditional importance, the magnitude, frequency, and dura-
tion of flow events had the greatest influence on the biological metrics.
However, the response of aquatic organisms to hydrologic metrics var-
ied across stream classes, highlighting the importance of accounting for
differences in flow regime and ecoregion when designing environmen-
tal flow standards.

4.1. Flow-ecology relationships and components of the flow regime

All five components of theflow regime affectedfish and invertebrate
assemblage metrics, indicating that natural hydrological variability is
critical for maintaining essential ecosystem goods and services and
anthropogenic alteration to the flow regime would negatively impact
aquatic biodiversity in SC (Arthington et al., 2006; Poff and
Zimmerman, 2010). With South Carolina's population growing rapidly,
increasing 11.3% between 2010 and 2019 (US Census Bureau 2021),
human induced alteration of flow regime is expected to become a
greater threat to aquatic biodiversity in the future. In addition, droughts,
land use, and climate change will continue to exacerbate this problem,
negatively impacting society and natural systems. Identifying stream
segments that will be negatively impacted in the future would allow
policy and managers to prioritize areas of conservation concern.
However, this study did not identify specific stream segments with an
increased threat of future hydrologic alteration and biological degrada-
tion. Predictions of future flow alterations and the associated ecological
impacts as human population increaseswould greatly benefitmanagers
and future water planning in SC.

Many flow-ecology relationships were consistent with prior under-
standing of the taxon-specific ecology. For example, mean annual flow
(MA1) was noticeably the most important predictor of many fish bio-
logical metrics in our study, even after removing the pervasive effect
of stream size. Other studies also observed a positive relationship be-
tween mean flow and biological metrics (Hayes et al., 2018;
Mcmanamay et al., 2013a; Poff and Zimmerman, 2010; Rapp and
Reilly, 2017). Reductions in mean stream discharge can lead to loss of
aquatic habitat connectivity, refugia for aquatic species, changes in geo-
morphic complexity, alteration of habitat space, rise in water tempera-
ture, increased risk of anoxia, and other detrimental outcomes (Graf,
2006; Hayes et al., 2018;Welcomme et al., 2006). Overall, significant re-
ductions inmean annual flow are likely to have negative effects on both
fish and benthic macroinvertebrate assemblages.
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In general, we found that higher magnitude high-flow events
(MH20) reduced key fish and macroinvertebrate biological metrics
and increased representation of tolerant macroinvertebrate taxa. This
flow metric often had the greatest influence on the macroinvertebrate
metrics. Sufficiently high-flow pulses can negatively affect benthic
macroinvertebrates and fishes by dislodging benthic macroinverte-
brates from the streambed, washing juvenile fishes downstream,
reducing prey density, or increasing sediment load (Gido et al., 2013;
Mcmanamay et al., 2013a). Extreme flows caused by climatic events
such as typhoons or hurricanes, can strongly influence aquatic insect di-
versity and assemblage structure. Increased runoff due land cover
change can cause unnaturally high-flow pulses and is often associated
with lower and longer low-flow events and reductions in baseflow
(Shuster et al., 2005). However, anthropogenic reduction in the magni-
tude of high-flow events via flow regulation can also negatively impact
aquatic communities (Graf, 2006; Hayes et al., 2018;Webb et al., 2013).
Ultimately, ecological responses to high flow events depend on how the
timing, duration, and magnitude of high-flow events interact with the
traits of the organisms responding to them (Gido et al., 2013; Mims
and Olden, 2012). For example, flood-pulses can increase recruitment
for broadcast-spawners fish species but reduced recruitment for species
with other life history characteristics (King et al., 2003; Rodger et al.,
2016; Zeug and Winemiller, 2008).

The frequency and duration offlow eventswere also particularly im-
portant for both macroinvertebrates and fish assemblages in this study,
with frequency of high-flow events (FH1) consistently having a larger
influence than other frequency and duration metrics. Response of mac-
roinvertebrate and fish assemblages to the frequency and duration of
low-flow events (FL1 and DL16) follows ecological expectations with
FL1 andDL16 negatively related to biologicalmetrics associatedwith di-
versity and positively related to tolerance metrics. Increased frequency
and duration of low-flows can result in diminished water quality and
aquatic biodiversity (Hayes et al., 2018). Higher frequency (FH1) and
duration (DH15) of high flows tended to reduce biological metrics asso-
ciated with diversity and increased tolerance metrics in our study. In-
creasing FH1 can cause habitats to become more unstable, higher
watershed disturbance, and increased sediment transportation,
resulting in the decline of fish and macroinvertebrates biodiversity
(Kennen et al., 2008; Knight et al., 2008). However, the response of bio-
logical metrics to FH1 varied in our study. For example, frequency of
high-flow events was positively associated with proportional represen-
tation ofMegaloptera andOdonata individuals, butwas negatively asso-
ciated with macroinvertebrate taxa richness. Other studies find
differential responses to high-flow frequency as well (Booker et al.,
2015; Webb et al., 2013). For example, high-flow frequency reduced
species richness and winter spawners but was positively related with
periodic strategists (Bruckerhoff et al., 2019; George et al., 2021;
Mcmanamay et al., 2013a). Alteration of high-flow frequency and dura-
tion can also cause deleterious effects on aquatic organisms by altering
habitats characteristics and changing reproductive cues (Hayes et al.,
2018; Lynch et al., 2019; Poff and Zimmerman, 2010; Webb et al.,
2013). Our results corroborate the findings of other studies suggesting
that the duration and frequency of flow events can strongly influence
aquatic organisms and alteration of flow duration and frequency
would likely affect aquatic organisms (George et al., 2021; Hayes et al.,
2018; Poff and Zimmerman, 2010; Webb et al., 2013). Additionally,
the magnitude, duration, and frequency of high and low flow events
flow components will inevitably impact aquatic organisms to a greater
extent as future global climate change further alters the hydrologic
cycle (Wilhite et al., 2014; Xenopoulos et al., 2005).

The coefficients of variation in flow events (DH16, DL17, FH2, FL2,
MA3, MA42, TL2, and TH2) were positively associated with fish and
macroinvertebrate biological responsemetrics, consistent with findings
of other studies (Gido et al., 2013; Iwasaki et al., 2012; Kennen et al.,
2008, 2012; Knight et al., 2014; Poff and Allan, 1995). These metrics
often better predicted the biological metrics better than the actual
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flowmetrics they describe. The positive relationships among variability
of flow events (coefficients of variation in a flow metric) and biological
integrity metrics may result from losses of weak competitors as hydro-
logic events stabilize (Hayes et al., 2018). However, studies report in-
verse relationship between flow variability and biological integrity of
native species (Gido et al., 2013; Knight et al., 2014) while others sug-
gest that flow variability may not be ecologically useful in areas with
wide ranging flow regimes (Clausen and Biggs, 2000). For example,
Kennen et al., 2012 observed decreases in annualflow variability dimin-
ished taxa richness. Consistent with other studies, we also found
constancy of flow events (TA1) was an important predictor of the
biological metrics, particularly for macroinvertebrate metrics
(Bruckerhoff et al., 2019; George et al., 2021; Knight et al., 2008,
2014). This result suggests that fish and macroinvertebrates are
responding positively to less disturbed and more stable conditions.
High constancy or lower flashiness is associated with longer spawning
season length, more habitat for spawning, less harsh habitats, and in-
creased surface area for macroinvertebrate colonization and reproduc-
tion that could result in the positive relationship between biological
integrity metric and TA1 seen in our study (Bruckerhoff et al., 2019;
Knight et al., 2008; Poff and Allan, 1995). The timing of low-flow events
was also an important predictor of the biological metrics in our study
suggesting changes in the timing of flow events, such as altering TH1
by releasing high volumes ofwater, may adversely impact fish andmac-
roinvertebrate assemblages by disruption of life-cycle cues. Similar to
other studies, we also found that higher baseflow (ML17) increased
macroinvertebrate biological integrity metrics (Zorn et al., 2012),
suggesting reductions in baseflow could negatively impact aquatic
organisms.

4.2. Inter- and intraregional variability

Although we saw similar trends in the direction of relationships be-
tween hydrologic and biological metrics, the shape of the flow-ecology
relationships often differed across stream classes. For example, the rela-
tionship between fish Shannon diversity and MA1 varied among the
stream classes with a linear relationship found for perennial runoff
streams in the Piedmont but a logistic curve detected for perennial run-
off streams in the Middle Atlantic Plains (Fig. S3). In addition, we often
found relationships between hydrologic and biological metrics
that were absent in the other stream classes. These results are unsur-
prising given the high variation in habitat type, geography, flow regime,
and assemblage composition across SC. Variation in flow-ecology
relationships across stream classes is congruent with other studies
(Bruckerhoff et al., 2019; George et al., 2021; Monk et al., 2006; Poff
et al., 2010; Praskievicz and Luo, 2020; Rapp and Reilly, 2017). For ex-
ample, fish richness showed positive correlations with natural flow
magnitudes in the coastal plains of the southeastern US, whereas no re-
lationship was apparent in upland areas (Mcmanamay et al., 2013a).
This pattern implies that biological assemblages in some flow regimes
may be more sensitive to flow alterations than others.

The lack of relationships in some stream classes that were present in
others may result from several factors. First, some biological metrics
were not well represented in certain stream classes. For example, very
few brood hiding fish species were collected from perennial runoff
streams in the Southeastern Plains ecoregion, limiting our ability to de-
tect relationships for certain metrics and areas if one existed. Second,
some stream classes may display a relatively limited range of hydrolog-
ical conditions and biological variation within a stream class compared
to other stream classes. Third, the response of organisms to hydrology
and strength of flow-ecology relationships can vary spatially and tem-
porally (Bruckerhoff et al., 2019; Lynch et al., 2019), particularly during
extreme hydrologic events such as drought (Lynch et al., 2018). Com-
bining data sampled across different years that spans drought and
flood years may diminish our ability to detect flow-ecology relation-
ships since species response to flow may differ across years with
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extremehydrologic events. However, a review of flow-ecology relation-
ships across space and time suggest that flow-ecology relationships are
readily transferable across time (Chen and Olden, 2018). Fourth, the
ecological response of aquatic organisms to natural changes in flow
can differ from the ecological response to anthropogenic-induced flow
alterations (Mcmanamay et al., 2013b). For example, fish in the South
Atlantic Region of the US generally had positive ecology responses to in-
creases in naturalflowmagnitudes,whereas no ecological responsewas
observed for anthropogenic increases in flowmagnitude (Mcmanamay
et al., 2013b). Our study encompassed both altered and “natural” sys-
tems, potentially inhibiting the detection of flow-ecology relationships
if they change dramatically with anthropogenically-induced flow varia-
tion. Fifth, some hydrologic metrics characterizing high and low flow
events, are difficult to model with a degree of uncertainty (Eddy et al.,
in review). This potential source of modeling error may impact our abil-
ity to find flow-ecology relationships and should be considered when
interpreting the results. The selection of hydrologic metrics for the de-
velopment of environmental standards requires careful consideration,
with model uncertainty being one critical aspect. For this study, we se-
lected metrics with good performance (i.e., low simulation bias), mini-
mal redundancy, and ecological relevance. However, not all metrics
performed equally, with metric performance varying among metrics,
flow regime components, and watersheds. Managers should also be
aware of the variation inmodel performance and hydrologic estimation
across ecoregions, stream classes, and low conditions when developing
flow standards. Finally, while hydrology plays a strong role in determin-
ing aquatic assemblages, it may work in concert with many other envi-
ronmental factors such as temperature, water quality, geomorphology,
and landcover (Booker et al., 2015; Bruckerhoff et al., 2019;
McManamay et al., 2013b, 2015b). Hydrologic factors often indirectly
influence aquatic organisms through physical and/or chemical environ-
mental factors, making it hard to untangle the mechanisms responsible
for change in aquatic assemblages because flow-ecology relationships
may be concealed or complicated by other environmental factors
(Bruckerhoff et al., 2019; Monk et al., 2006).

Some flow-ecology relationships in this study were complex and
sometimes unanticipated within regions. For example, percentage of
brood hiding fishes was negatively related to mean daily flow, in con-
trast to our expectations. Brood hiders prefer areas with higher annual
runoff in stable systems and are associated with high gradient streams
(McManamay et al., 2015b;McManamay and Frimpong, 2015). The pat-
tern seen in our study may be due to the strong association of brood
hiders with high gradient streams. In our study area, high gradient
streams with more brood hiding species, would be smaller with less
daily discharge than low gradient streams. Another unexpected result
was thepositive relationship amongnest-spawners andhigh-flowmag-
nitude and frequency. With high parental care, we would expect nest-
spawning to be advantageous in more predictable environments
with less frequent flooding events during the spawning season
(Winemiller, 2005). In addition, we presume large floods would in-
crease the risk of nests being scoured away. However, nest guarding
may be beneficial in unstable environments because nesting sites can
be chosen in areas protected from frequent and high floods (Carlisle
et al., 2011), and some nest-spawners can spawn multiple times even
if nest are destroyed (Lukas and Orth, 1993). In addition, connection
among main river channel and lentic habitats, where nest-spawners
are abundant, may increase with high-flowmagnitudes and frequency,
allowing for great exchange nest-spawners among these habitats (Zeug
and Winemiller, 2008). Expecting macroinvertebrate richness to de-
crease with longer low-flow durations, we instead observed a unimodal
response. Species richness may increase as drought tolerant species
enter the system until the selective pressures of low flow are strong
enough to extirpate sensitive species, creating a unimodal response.
Other studies noted that both tolerant and intolerant macroinverte-
brates were able to persist in streams with reduced high-flows if their
traits allow them to adapt to the environment (Brooks et al., 2011;
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Carlisle et al., 2009). A similar pattern was observed for fish species in
North Carolina, where fish abundance and diversity increase during
drought as drought immigrants moved into the system (Grossman
and Ratajczak, 1998).

4.3. Toward developing management recommendations

Theflow-ecology relationships identified in this study provide a quan-
titative basis for implementation of environmental flow standards and
offer managers a flexible framework to guide discussions on water per-
mitting andmanagement policy. Our approach allowsmanagers to prior-
itize metrics for a proposed water withdrawal project, with metric
selection based on which flow regime components will be altered, the
stream class where the proposed project will be placed, and biological
metrics of interest. Flow-ecology relationships of prioritized hydrologic
and biological metrics can then be used to estimate the biological re-
sponse to changes of the flow regime components within a given stream
class. A major benefit to quantifying flow-ecology relationships at re-
gional scale study is the potential to make predictions for unsampled
stream segments within the same stream class (Olden et al., 2012; Poff
et al., 2010). For example, a proposed water withdrawal from a stream
segment within the Southeastern Plains stable baseflow stream class
will reduce MA1 and increase DL16. Given the current flow conditions
of the stream, managers can estimate the impact of these streamflow
changes could have on prioritized biological metrics, helping managers
determine the best management practices for sampled or unsampled
streams.

It is important to account for the reliability of flow-ecology relation-
ships because they vary depending on metric, taxonomic group, and
stream class. Our hydrologic metrics were not able to predict biological
metricswith high reliability across all stream classes, adding to the com-
plexity of setting flow standards. For example, the predictive ability of
most fish biological metrics was low in the Middle Atlantic Plains, but
many models for benthic macroinvertebrates in the Middle Atlantic
Plains performed well in this ecoregion. In this case, managers should
use the benthic macroinvertebrates biological metrics rather than fish
biological metrics when discussing flow standards in this area. This
also occurs across stream classes. For instance, macroinvertebrate rich-
ness is well predicted in all stream classes except SE plains stable
baseflow streams. Managers will need to prioritize biological metrics
based on variance explained and metrics suited to their goals.

Our results reveal important differences in flow-ecology relation-
ships both among and within ecoregions, demonstrating complexities
of in flow-ecology relationships among flow regime types (Arthington
et al., 2006; Kennard et al., 2010; Poff et al., 2010). In addition, many
flow-ecology relationships occur in one stream class but not others.
These inter-stream class differences emphasize the importance of tai-
loring environmental flow standards toward individual stream flow
classes and their distinctive ecological communities. This is particularly
true in areas with high taxonomic, geographic, and hydrologic diversity
such as SC. Furthermore, subdividing streams based on both ecoregion
and flow regime offers a means of not only increasing the predictive
ability of models but also provides a more precise tool for the manage-
ment of fluvial systems (Mcmanamay et al., 2013b). Creating a single
statewide flow standard would likely over or under estimate the im-
pacts of any given flow alteration. Developing flow standards adapted
to each stream class would provide managers with a more accurate
tool in which to predict the ecological impact of flow alteration. Addi-
tionally, all components of the flow regime (i.e. magnitude, frequency,
duration, timing and rate of change of flow events) affected numerous
aspects of both fish and benthic macroinvertebrate assemblages in all
ecoregions and flow classes, implying the use of a single metric in the
development of flow standards would not adequately protect riverine
biodiversity (Bunn and Arthington, 2002; Poff et al., 1997). Instead,
managing instream flow to protect all aspects of the naturalflow regime
will likely be a more effective approach.
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The goal of many environmental flow standards is to determine a
static water withdrawal threshold or “rule of thumb”. The idea of
straightforward thresholds that are consistent and transparent is attrac-
tive. However, thresholds neglect our fundamental understanding of
the natural flow regime and the vital role of flow variability plays in
maintaining essential riverine ecosystem goods and services and limits
the flexibility in creating more comprehensive flow standards
(Arthington et al., 2006). In areas with varying and complex flow-
ecology relationships such as SC, static flow standards can hinder man-
agers’ ability to determine unacceptable level of risk of degradation. Al-
though random forests can detect and fit non-linear relationships, we
observed few obvious thresholds that indicated a distinct change in
the biological condition of fish andmacroinvertebrates alonghydrologic
gradients. Many of the relationships in our study were linear or wedge-
shaped (Knight et al., 2014). These relationships avoid the pitfall of cre-
ating aminimum flow target that can be easily applied butmay actually
cause harm to river ecosystems (Annear et al., 2004; Arthington et al.,
2006). Instead, managers can determine acceptable levels of flow alter-
ation and biodiversity degradation within each stream class, using pri-
oritized biological metrics and hydrologic metrics.

Although our data covered some fifth and sixth order streams, we
were unable to model flow-ecology relationships for large rivers. Only
wadeable streams and smaller rivers, sampled using standardized
methods, were included in this study. Sampling of large rivers requires
different gear types and sampling methods, and merging data with such
different samplingmethods and frameworks could bias results.Moreover,
the concept of ecosystem health may be defined much differently for
large rivers, being potentially less associated with biotic community
structure and more associated with other ecosystem services such as
water quality or food production (Yates et al., 2019). However, in SC
much of the direct surface water withdrawals and large-scale hydrologic
alterations from impoundments occur in larger rivers. Accordingly, a log-
ical next step in this will be to analyze large river systems in SC, compar-
ing and contrasting the result obtained in this study. Another data
limitation of this studywas the lack of sites in theBlueRidge andSouthern
Coastal Plains ecoregions. Robust hydrologic models could not be created
for the Coastal Plain due to the tidal influence in this area, and few biolog-
ical sites were available for the Blue Ridge because it covers such a small
portion of the state. However, important hydrologic metrics in the Pied-
mont may be similar to the Blue Ridge (Praskievicz and Luo, 2020).

Ultimately, management policy that minimizes changes to the natu-
ral flow regime will help maintain the essential ecosystem goods and
services of freshwater streams. However, environmental flows require
balancing humanwater use needswith the needs of riverine ecosystem.
Quantifying flow-ecology relationships are an initial step toward im-
proving environmental flow standards. Here, we provide a flexible
framework based on statistical flow-ecology relationships using empir-
ical data from which managers can enhance environmental flow stan-
dards for SC and assess the impact of stream flow alteration on
aquatic assemblages.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2021.149721.
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