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Abstract – Understanding the environmental factors that regulate fish recruitment is essential for effective
management of fisheries. Generally, first-year survival, and therefore recruitment, is inherently less consistent in
systems with high intra- and interannual variability. Irrigation reservoirs display sporadic patterns of annual
drawdown, which can pose a substantial challenge to recruitment of fishes. We developed species-specific models
using an 18-year data set compiled from state and federal agencies to investigate variables that regulate the
recruitment of walleye Sander vitreus and white bass Morone chrysops in irrigation reservoirs in south-west
Nebraska, USA. The candidate model set for walleye included only abiotic variables (water-level elevation,
minimum daily air temperature during winter prior to hatching, annual precipitation, spring warming rate and May
reservoir discharge), and the candidate model set for white bass included primarily biotic variables (catch per unit
effort (CPUE) of black crappie Pomoxis nigromaculatus, CPUE of age-0 walleye, CPUE of bluegill Lepomis
macrochirus and CPUE of age-3 and older white bass), each of which had a greater relative importance than the
single abiotic variable (minimum daily air temperature during winter after hatching). Our findings improve the
understanding of the recruitment of fishes in irrigation reservoirs and the relative roles of abiotic and biotic factors.
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Introduction

Game management is often predicated on the desire
to maintain predictable populations that can sustain
consistent harvest over multiple years (Rosenberg
et al. 1993; Heino 1998). Unfortunately, in many
systems, population variability is the norm rather than
the exception (Gaston & McArdle 1994). For exam-
ple, recruitment – often considered to be the most
influential factor governing fish populations (May
1974; Gulland 1982; Donald 1997; Houde 2002) – is
inherently less consistent in systems with high intra-
and interannual variability. Fish are especially vulner-
able during early life stages, particularly in reservoirs
where unpredictable water fluctuations are common
(June 1977; Beam 1983; Maceina & Stimpert 1998),
as habitat constancy is inherently linked to constancy

in weather patterns (Houde 1987; Mion et al. 1998;
Hoxmeier et al. 2004). Challenges for fish to recruit
are exacerbated by water-level variability (Carline
1986), especially in irrigation reservoirs that experi-
ence unpredictable and often amplified summer draw-
downs in response to sporadic extremes in abiotic
conditions (Quist et al. 2003b; Olds et al. 2011).
Abiotic and biotic factors are known to regulate the

recruitment of fishes, but specific factors regulating
individual species are more difficult to ascertain. Abi-
otic conditions such as temperature, light, salinity and
oxygen clearly regulate growth (Brett 1979) and in
some cases survival (Oliver et al. 1979; Post & Evans
1989; Fox & Keast 1991; Johnson & Evans 1991).
However, biotic conditions are often equally impor-
tant, although generally more complex. For example,
survival and growth generally covary with food avail-
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ability (Persson & Greenberg 1990; Leggett & DeB-
lois 1994), which is influenced by prey abundance
(Ritchie & Colby 1988; Peterson et al. 2006), tempo-
ral and spatial overlap of predator hatching with prey
availability (i.e., match/mismatch; Cushing 1990;
Chick & VanDenAvyle 1999; Kaemingk et al. 2011),
intraspecific competition (Partridge & DeVries 1999;
Knoll 2007) and interspecific competition (Michaletz
et al. 1987; Roseman et al. 1996; Garvey & Stein
1998; Kaemingk et al. 2012). Similarly, predation
also regulates recruitment (Leggett & DeBlois 1994;
Köster & Möllmann 2000) and is influenced by canni-
balistic conspecifics (Chevalier 1973; Fox 1975; Polis
1981) and interspecific interactions (Pope et al. 1996;
Quist et al. 2003b). Ultimately, understanding fish
population dynamics, particularly in environments
with strong periodic cycles in fish abundance, requires
understanding the extent to which biotic and abiotic
factors interact to limit fish recruitment.
Walleye Sander vitreus and white bass Morone

chrysops are among the most popular sportfish in the
reservoirs of the Great Plains, USA (Stone 1996; Bau-
er 2002; Hurley & Duppong-Hurley 2005). Despite
the considerable effort by the Nebraska Game and
Parks Commission (NGPC) stocking walleye and
managing reservoirs for walleye and white bass, popu-
lations of walleye and white bass in south-west
Nebraska (USA) reservoirs are dynamic (Huber 2010a
–d; Newcomb 2010), as erratic recruitment has led to
‘boom and bust’ fisheries for these two species.
Although analyses from regionally similar systems
provide some insight (Quist et al. 2002, 2003b),
differences exist among systems, and specific reasons
for the dynamic nature of these populations are largely
unknown. Thus, further knowledge of the factors reg-
ulating walleye and white bass recruitment in irriga-
tion reservoirs is required to understand the ecology of
these fishes in the semi-arid Great Plains region.

Methods

Study area and reservoirs

The Republican River is an impounded tributary to
the Kansas River; the Republican River basin is con-
tained within three states (Fig. 1) in the Great Plains
region of the United States of America. Forty per
cent of the basin is in Nebraska, where it drains
nearly 25,000 km2 of primarily rangeland and crop-
land into 1,826 km of streams and rivers (Bliss &
Schainost 1973). Catastrophic flooding in 1935
prompted the construction of five large multipurpose
reservoirs (Table 1, Fig. 1) in the Republican River
basin in Nebraska: Enders Reservoir, Harlan County
Lake, Medicine Creek Reservoir (Harry D. Strunk
Lake), Red Willow Reservoir (Hugh Butler Lake)

and Swanson Reservoir. Harlan County and Swanson
reservoirs are on the mainstem of the Republican
River, whereas Enders, Medicine Creek and Red Wil-
low reservoirs are on separate tributaries to the
Republican River. Species commonly present in these
reservoirs include black crappie Pomoxis nigromacul-
atus, bluegill Lepomis macrochirus, channel catfish
Ictalurus punctatus, common carp Cyprinus carpio,
freshwater drum Aplodinotus grunniens, flathead
catfish Pylodictis olivaris, gizzard shad Dorosoma
cepedianum, hybrid striped bass M. chrysops 9
Morone saxatilis, largemouth bass Micropterus
salmoides, northern pike Esox lucius, smallmouth
bass Micropterus dolomieu, walleye, white bass and
white crappie Pomoxis annularis. Most of the species
present in the reservoirs are indigenous to the drain-
age; nonindigenous species include black crappie,
common carp, hybrid striped bass, largemouth bass
and smallmouth bass (USGS 2009).
As a result of agricultural overdevelopment (i.e.,

overappropriation of groundwater wells for cropland
irrigation) in the region, flows are substantially
reduced compared to circa 1970 levels throughout the
Republican River basin (Szilagyi 1999, 2001). This
reduction in flow has been attributed to cropland irri-
gation, changes in vegetative cover, water conserva-
tion practices and construction of reservoirs and
artificial ponds in the basin, all of which increase the
amount of water lost to evaporation over the basin
(Szilagyi 1999, 2001). Thus, only Medicine Creek
Reservoir delivers water for irrigation on a regular
basis; the other reservoirs deliver water for irrigation
only sporadically when there is sufficient inflow.

Data collection

Data for walleye, white bass, bluegill, black crappie,
white crappie, freshwater drum and gizzard shad were
obtained from standardised experimental gillnet sur-
veys conducted by NGPC during autumn 1993–2010.
A standard survey consisted of 4–8 gillnets that were
set overnight once in each reservoir during autumn of
each year. Gillnets were 45.6 m long and 1.8 m deep,
with six 7.6-m panels consisting of 1.9, 2.5, 3.2, 3.8,
5.1 and 7.6 cm bar mesh. We used catch per unit effort
(CPUE; number per gillnet night) as an index of abun-
dance. Although trapnets are the standard gear for
assessing bluegill and crappie populations, use of the
experimental gillnet data set provided us with both
longer-term data and more complete data than the use
of the trapnet data set. Ages of captured walleye and
white bass were determined by a single reader from
NGPC, using scales pressed into acetate slides and a
microfiche reader (Smith 1954). Age was not assigned
to other fishes. Autumn age-0 fish are often considered
an acceptable stage to measure recruitment (Willis
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1987); however, here we considered age-1 walleye and
age-1 white bass from autumn gillnets to be recruited to
the population as this is a more conservative estimate
that considers overwinter mortality (sensu Pratt & Fox
2002). Furthermore, experimental gillnets do not accu-
rately sample young-of-year walleye or white bass. We
obtained hydrological data for reservoirs (e.g., water
elevation, irrigation fluctuation and precipitation; see
Table 2) for 1993–2009 (1-calendar-year advance of
age-1 walleye and age-1 white bass data) from the U.S.
Bureau of Reclamation (USBR 2010). We obtained air
temperature data (Table 2) unique to each reservoir for
1993–2009 (1-calendar-year advance of age-1 walleye
and age-1 white bass data) from the National Oceanic
and Atmospheric Administration’s National Climatic
Data Center (NCDC 2010).

Statistical analysis

We used one-way ANOVA to test for differences in
minimum monthly air temperature between the
months of April and May during 1994–2009 to verify
that minimum air temperature did in fact increase
during spring. Likewise, we used one-way ANOVA to
test for differences in extent of range of monthly air
temperature (maximum monthly temperature minus
minimum monthly temperature during a given year)
between the months of April and May during 1993–
2009 to verify that temperature fluctuations decreased
as spring progressed. We used independent Durbin–
Watson tests to test for temporal autocorrelation on
residuals in the candidate model sets. We loge-trans-
formed (ln[x + 1]) CPUE of each species and trans-
formed independent variables when appropriate. Of
79 available year-by-reservoir combinations, there
were 12 instances of zero catch of age-1 walleye and
seven instances of zero catch of age-1 white bass
(Fig. 2). All independent variables were assigned a
1-calendar-year advance, so as to model their effect
on age-0 walleye and age-0 white bass. From the 51
independent variables (43 for each species, Table 2),
we developed multiple linear regression models that
best described ln(CPUE) during 1994–2010 for age-1
walleye and age-1 white bass independently (Fig. 2),
using reservoir as a fixed factor. We developed a
model set using stepwise multiple linear regression,
with variables added based on their adjusted R2. Each

Fig. 1. Map of the Republican River basin in Colorado, Kansas and Nebraska, USA, and the five irrigation reservoirs in Nebraska.

Table 1. Hydrological characteristics of the Republican River reservoirs in
Nebraska, USA. Surface area and maximum depth are based on active
conservation pool elevation. Annual fluctuation is the mean ± SE during
1993–2009.

Reservoir
Surface
area (ha)

Maximum
depth (m) Basin (ha)

Annual
fluctuation (m)

Enders 485 18.3 284,100 2.6 ± 1.5
Harlan County 5362 15.2 1,855,500 2.9 ± 1.8
Medicine Creek 737 13.7 227,900 4.3 ± 1.8
Red Willow 659 15.8 189,000 2.3 ± 1.2
Swanson 2023 14.6 2,232,600 2.4 ± 1.6
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Table 2. Input variables for models and explanation of variable abbreviations. We obtained hydrological data for reservoirs (e.g., water elevation, irrigation
fluctuation, precipitation) for 1993–2009 from the U.S. Bureau of Reclamation. We obtained air temperature data unique to each reservoir for 1993–2009 from
the National Oceanic and Atmospheric Administration’s National Climatic Data Center. We obtained fish data from standardised gillnet surveys conducted by
the Nebraska Game and Parks Commission during autumn 1993–2010. ‘Annual’ refers to January through December, unless otherwise stated. Age groups of
fish are pooled, unless otherwise stated.

Model variable Explanation

PRECIP_MR March precipitation (cm)
PRECIP_AP April precipitation (cm)
PRECIP_MAY May precipitation (cm)
PRECIP_JU June precipitation (cm)
SPR_PRECIP Spring precipitation† (cm)
PRECIP_YR Annual precipitation (cm)
Q_AP April reservoir discharge (millions of m3)
Q_MAY May reservoir discharge (millions of m3)
Q_JUNE June reservoir discharge (millions of m3)
SPR_Q Spring reservoir discharge† (millions of m3)
Q_YR Annual reservoir discharge (millions of m3)
IN_APRIL April reservoir inflow (m3)
IN_MAY May reservoir inflow (m3)
ACP_APRIL April reservoir elevation (m, relative to active conservation pool)
ACP_MAY May reservoir elevation (m, relative to active conservation pool)
ACP_MAX Maximum reservoir elevation (m, relative to active conservation pool)
ACP_MIN Minimum reservoir elevation (m, relative to active conservation pool)
MAY_SEPT Change in reservoir elevation, May–September (m)
MAX_MIN Change in reservoir elevation, Maximum to Minimum (m)
ELV_YR_PRIOR Annual change in reservoir elevation (April–April) (m)
APR_TMIN Minimum daily air temperature during April (°C)
APR_TMEAN Mean daily air temperature during April (°C)
APR_TMAX Maximum daily air temperature during April (°C)
MAY_TMIN Minimum daily air temperature during May (°C)
MAY_TMEAN Mean daily air temperature during May (°C)
WIN_TMEAN_ED Mean daily air temperature during winter prior to hatching‡ (°C)
MAY_TMAX Maximum daily air temperature during May (°C)
JUN_TMIN Minimum daily air temperature during June (°C)
JUN_TMEAN Mean daily air temperature during June (°C)
JUN_TMAX Maximum daily air temperature during June (°C)
SPR_TMIN Minimum daily air temperature during spring† (°C)
SPR_TMEAN Mean daily air temperature during spring† (°C)
SPR_TMAX Maximum daily air temperature during spring† (°C)
WIN_TMIN_ED Minimum daily air temperature during winter prior to hatching‡ (°C)
WIN_TMAX_ED Maximum daily air temperature during winter prior to hatching‡ (°C)
WIN_TMIN_OWM Minimum daily air temperature during winter after hatching‡ (°C)
WIN_TMEAN_OWM Mean daily air temperature during winter after hatching‡ (°C)
WIN_TMAX_OWM Maximum daily air temperature during winter after hatching‡ (°C)
APR_GDD Number of growing-degree days (maximum temperature > 10 °C) during April
JUN_GDD Number of growing-degree days (maximum temperature > 10 °C) during June
SPRING_GDD Number of growing-degree days (maximum temperature > 10 °C) during April–June
GSD Catch per unit effort (CPUE) of gizzard shad (catch per gill net night)
BLG CPUE of bluegill (BLG, catch per gill net night)
FWD CPUE of freshwater drum (FWD, catch per gill net night)
BLC CPUE of black crappie (BLC, catch per gill net night)
WHC CPUE of white crappie (WHC, catch per gill net night)
CRP CPUE of black and white crappie (catch per gill net night)
PREDS CPUE of BLG + FWD + BLC + WHC (catch per gill net night)
WAE_3_PLUS CPUE of walleye � age 3§ (catch per gill net night)
WHB_3_PLUS CPUE of white bass � age 3§ (catch per gill net night)
WAE CPUE of age-1 walleye¶ (catch per gill net night)
WHB CPUE of age-1 white bass** (catch per gill net night)

†Spring includes the months of March, April and May.
‡Winter includes the months of December, January and February.
§Fish � age 3 used as a surrogate for spawner abundance; no internal evaluation of fish was performed.
¶Used as dependent variable for walleye model and independent variable for white bass model.
**Used as dependent variable for white bass model and independent variable for walleye model.
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model produced by an iteration of the stepwise selec-
tion process was included in the model set until a
maximum of adjusted R2 for each model set was
determined. We then selected a subset of candidate
models from among the set of developed models
using Akaike’s Information Criterion (Akaike 1987)

corrected for small sample size (AICc, Hurvich &
Tsai 1989). We excluded models with a DAICc > 2
from the subset of candidate models (Royall 1997).
We assessed relative variable importance (RVI) by
summing the AICc weights over all models including
the explanatory variable. We conducted statistical

Fig. 2. Loge-transformed (ln[x + 1]) catch per unit effort (ln(CPUE); number per gillnet night) of age-1 walleye and age-1 white bass dur-
ing 1994–2010 from the five reservoirs of the Republican River basin in Nebraska, USA.
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analyses using SAS (version 9.2; SAS Institute Inc.,
Cary, NC, USA) and R (version 2.14.0; The R Foun-
dation for Statistical Computing, Vienna, Austria).

Results

Durbin–Watson tests for temporal autocorrelation on
model residuals were not significant. The minimum
temperature in this region during April (�7.5 ± 2.8 °
C, mean ± SD) was significantly less (one-way
ANOVA, F = 337.3, d.f. = 156, P < 0.0001) than
during May (0.1 ± 2.4 °C). Furthermore, the mean
monthly extent of temperature range during April
(37.6 ± 4.4 °C) was significantly greater (one-way
ANOVA, F = 28.56, d.f. = 156, P < 0.0001) than dur-
ing May (33.9 ± 4.5 °C).
The candidate model set for walleye (Table 3)

included two models with a DAICc � 2. There were
five abiotic and no biotic variables present in the can-
didate model set; reservoir was also present in the
walleye candidate model set. The mean (±SE)
adjusted R2 for the walleye candidate model set was
0.67 ± 0.01. Four variables in the candidate model
set had an RVI > 0.9; three variables had an
RVI > 0.99 (Table 4).
The candidate model set for white bass (Table 5)

included three models with a DAICc � 2. There
were four biotic variables and one abiotic variable
present in the candidate model set; reservoir was not
present in the white bass candidate model set. The
mean adjusted R2 for the white bass candidate model
set was 0.33 ± 0.02. Two variables in the candidate
model set had an RVI > 0.9 (Table 4).

Discussion

Walleye recruitment

The most important variable in the candidate model
set for walleye was maximum reservoir water level,
which was negatively related to year-class strength of

walleye. Quist et al. (2003b) also found year-class
strength of walleye to be negatively correlated with
reservoir elevation, although they were unable to
explain the mechanism behind these trends; they
hypothesised it may have to do with small (i.e., 1–2 m)
increases in reservoir water level during low-water
years, providing increased spawning habitat or
increased production of prey species. In our study
reservoirs, high reservoir water levels generally indi-
cated sufficient volume in the reservoir for irrigation
discharge. Another variable in the candidate model
set was May reservoir discharge, which was also neg-
atively related to year-class strength of walleye. How-
ever, annual precipitation was also included in the
candidate model set, but it was positively related to
year-class strength of walleye. Sufficient volume for
irrigation discharge was generally only present in
years with abundant annual precipitation, although
irrigators need to apply less water in wet years. Thus,
discharge was at a lower volume and typically started
later in the year, after some of the age-0 walleye had
moved away from the dam. Nonetheless, high dis-
charge can entrain age-0 walleye through the dam
leading to a direct reduction in the number of poten-
tial recruits in the reservoir (Walburg 1971). High
discharge levels during May could also lead to low
zooplankton abundance (sensu Watson et al. 1996;
Kalff 2003), which could reduce food availability for
larval walleye at a critical stage. Furthermore, previ-
ous studies indicate that harvest (Aggus & Bivin
1982), standing crop, natural reproduction and
spawning success of walleye (Willis & Stephen
1987) are greater in reservoirs with low discharge
(i.e., retention time > 1 year); as such, larval walleye
may not be suitable for stocking into reservoirs with
high discharge (Willis & Stephen 1987; Johnson
et al. 1988).
The second-most important variable in the candi-

date model set for walleye was maximum winter tem-
perature (experienced by sexually mature adult
walleye prior to spawning), which was negatively

Table 3. Parameter estimates for variables (Table 2) in candidate model sets for the recruitment of walleye to age 1. Models with a DAICc > 2 were excluded
from consideration. Data are from the Republican River basin, Nebraska, USA, 1993–2009.

Model Intercept ACP_MAX WIN_TMAX_ED RES PRECIP_YR SPRING_GDD Q_MAY Adj. R2 DAICc AICc w

1 0.58 �0.15 �0.09 Enders: 0.57 0.01 0.02 �0.04 0.69 0 0.64
Harlan County: 0.02
Medicine Creek: 0.55
Red Willow: �0.22
Swanson: 0.00

2 0.29 �0.17 �0.08 Enders: 0.56 0.01 0.03 –* 0.66 1.13 0.36
Harlan County: �0.05
Medicine Creek: 0.56
Red Willow: �0.20
Swanson: 0.00

*Variable not included in model.
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related to year-class strength of walleye; recruitment
is weak the following year when winter temperatures
are warm (Colby & Nepszy 1981). Annual matura-
tion of adult walleye gonads requires water tempera-
tures below 10 °C; thus, if water temperatures are not
sufficiently cold enough for a long enough duration,
walleye may skip spawning and resorb their gametes
over the next season (Colby & Nepszy 1981). Ova
resorption interferes with the development of next
generation of oocytes, leading to skipping of the next
spawning period (Colby et al. 1979). Thus, failure to
spawn in one season because of increased winter
water temperature may lead to failure to spawn in the
following season, leading to the loss of back-to-back
year classes (this was unaccounted for in our models).
The number of spring growing-degree days was

positively related to year-class strength of walleye.
Warm spring water temperatures may accelerate
spawning and shorten egg incubation time (Busch
et al. 1975; Colby et al. 1979) and result in greater
growth rates for larval walleye (Busch et al. 1975;
Colby et al. 1979). These factors allow larval walleye
to accelerate their development, switching to pisci-
vory earlier and therefore increasing their resource
intake and ultimately increasing recruitment (sensu
Quist et al. 2003a). In previous studies, both spring
warming rate (Busch et al. 1975; Madenjian et al.

1996) and mean spring temperature (Quist et al.
2003b) were positively related to the recruitment of
walleye.
Reservoir, included in the models as a fixed factor,

was present in the candidate model set for walleye.
Thus, there may be differences among these reser-
voirs in walleye recruitment. Though age-0 walleye
abundance was present in the candidate model set for
white bass, age-0 white bass abundance was not pres-
ent in the candidate model set for walleye. This is
most likely because the abiotic factors mentioned
above had a greater influence on walleye recruitment.
Moreover, we believe the stocking of walleye poten-
tially confounds the relationship between walleye
recruitment and abundance of age-3 and older wall-
eye, which is why it was not present in our candidate
model set.
Ultimately, these abiotic conditions not only influ-

ence walleye, but also influence the entire reservoir
community, which in turn affects the walleye popula-
tion. Thus, it is likely that these abiotic factors act
both directly and indirectly on walleye recruitment. If
early-season storms or abrupt changes in temperature
(an abiotic factor) influence larval walleye produc-
tion, they likely also influence the production of zoo-
plankton (a biotic factor), in particular the phenology
and abundance. Changes in zooplankton composition
and abundance could also affect many other age-0
and adult fishes, thus complicating the nature of the
relationship between abiotic and biotic factors influ-
encing walleye recruitment.

White bass recruitment

The most important variable in the candidate model
set for white bass was black crappie abundance,
which was positively related to year-class strength of
white bass. The second-most important variable in
the candidate model set for white bass was age-0
walleye abundance, which was also positively related
to year-class strength of white bass. Given that larval
white bass compete for resources with other age-0
fishes, including walleye (Michaletz et al. 1987; Beck
et al. 1998) and black crappie (Pope et al. 1996;
Galinat et al. 2002), it is likely that resource condi-
tions (e.g., abundant zooplankton and reservoir

Table 4. Relative variable importance (RVI) for variables (Table 2) present
in the candidate models sets for the recruitment of walleye (Table 3) and
white bass (Table 5) to age 1. Data are from the Republican River basin,
Nebraska, USA, 1993–2009.

Variable RVI

Walleye
ACP_MAX 0.999
WIN_TMAX_ED 0.997
RES 0.991
PRECIP_YR 0.939
SPRING_GDD 0.872
Q_MAY 0.642

White bass
BLC 0.950
WAE 0.948
BLG 0.824
WHB_3PLUS 0.731
WIN_TMIN_OWM 0.604

Table 5. Parameter estimates for variables (Table 2) in candidate model sets for the recruitment of white bass to age 1. Models with a DAICc > 2 were
excluded from consideration. Data are from the Republican River basin, Nebraska, USA, 1993–2009.

Model Intercept BLC WAE BLG WHB_3PLUS WIN_TMIN_OWM Adj. R2 DAICc AICc w

1 1.56 0.47 0.51 �0.62 0.29 0.06 0.36 0 0.51
2 0.35 0.47 0.44 �0.63 0.28 –* 0.32 1.05 0.30
3 1.78 0.46 0.57 �0.68 –* 0.05 0.31 1.96 0.19

*Variable not included in model.
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inflow) that favour the recruitment of one of these
species will also benefit the other two. It is also pos-
sible that adult crappie and age-0 walleye predation
on abundant age-0 gizzard shad (Michaletz 1997;
Quist et al. 2003a) reduces competition between age-
0 white bass and age-0 gizzard shad for zooplankton
(Michaletz et al. 1987). Alternatively, it is possible
that large abundances of age-0 walleye may provide
a ‘shading effect’ (as alternative prey, sensu Forney
1976) for age-0 white bass. White bass, black crappie
and saugeye S. vitreus 9 S. canadensis also respond
similarly to reservoir hydrology, producing weak year
classes in dry years and strong year classes in wet
years (Sammons & Bettoli 2000). As we discussed
with walleye, the distinction between abiotic or biotic
factors as regulators of recruitment of white bass is
complicated.
The third-most important variable in the white

bass candidate model set was bluegill abundance,
which was negatively related to year-class strength
of white bass. Age-0 white bass consume both zoo-
plankton and invertebrates before becoming pisci-
vores (Matthews et al. 1992; Quist et al. 2002).
Age-0 bluegill consume primarily zooplankton
(Kaemingk et al. 2012), and age-1 and older blue-
gill consume primarily macroinvertebrates (Olson
et al. 2003). This could create scenarios where
bluegill and age-0 white bass compete for food
resources, which could explain the negative correla-
tion in our model. However, given that year-class
strength of white bass was positively correlated
with both black crappie abundance and age-0 walleye
abundance and negatively correlated with bluegill
abundance, further investigation of species–specific
interactions in these systems is needed.
Another variable in the white bass candidate model

set was abundance of age-3 and older white bass,
which was positively related to year-class strength of
white bass. Abundance of age-3 and older white bass
was used as a surrogate metric for abundance of
spawning adults, as no evaluation of the condition of
white bass gonads was performed in the field during
sampling. The coefficient (�0.3) for this stock-recruit
regression (log[WHB]�log[WHB_3_PLUS]) is <1;
thus, there is likely a density-dependent mechanism
that is influencing white bass recruitment. Spawning
activity of white bass is positively related to reservoir
inflows during spring (Quist et al. 2002); however,
there was no evidence in these reservoirs of a white
bass spawning migration during the spring (Martin
et al. 2009) likely because of limited inflows in most
of the years studied. Spawning adult abundance is
generally considered to be positively related to year-
class strength of most fishes (Myers & Barrowman
1996). However, unlike walleye populations, which
are regularly augmented by stocking, white bass pop-

ulations in these systems are self-sustaining, thus
leading to the presence of a relationship between
white bass recruitment and abundance of age-3 and
older white bass.
Minimum winter air temperature (winter after

hatching) was the only abiotic variable included in
the white bass candidate model set; the relationship
was positive, indicating white bass recruitment is
positively influenced by milder (i.e., warmer mini-
mum temperatures) winters. Predation and starvation
are important overwintering factors for age-0 white
perch Morone americana (Fitzgerald et al. 2006). In
another study, 71% of age-0 white perch died at
2.5 °C versus only 11% at 4.0 °C, a finding linked to
the white perch remaining active but not feeding at
2.5 °C, maintaining their basal metabolic rate while
reducing their energy intake leading to a net energy
deficit (Johnson & Evans 1991). Size-dependent
overwinter mortality was also a factor; smaller white
perch (Johnson & Evans 1991) and smaller striped
bass Morone saxatilis (Hurst & Conover 1998; Sut-
ton & Ney 2001) died before larger conspecifics of
the same cohort. Other abiotic factors have been
related to white bass recruitment, including spring
precipitation and air temperature in eastern South
Dakota glacial lakes (Pope et al. 1997), spring air
temperature in a north-western South Dakota reser-
voir (Phelps et al. 2011) and spring inflow in Kansas
reservoirs (Quist et al. 2002; Schultz et al. 2002).

Interspecific differences in spawning period

There is a need to refine existing knowledge about
factors that regulate the recruitment of fishes, particu-
larly in changing environments (Baccante et al.
2011). Earlier-spawning species are likely more sub-
jected to adverse abiotic conditions because weather
in this region is typically more volatile during early
spring (i.e., greater likelihood of cold fronts and
greater temperature variability during early spring
than during late spring; Coupland 1958). In contrast,
later-spawning species are likely less subjected to
adverse abiotic conditions and likely more subjected
to adverse biotic conditions because many species,
including numerically dominant common carp and
gizzard shad, spawn during this period, and zoo-
plankton abundance declines during this period
(Sullivan et al. 2012) and could become limited.
The candidate model set for walleye (Table 3)

included only abiotic variables, and the candidate
model set for white bass (Table 5) included mostly
biotic variables, each of which had a greater relative
importance than the single abiotic variable in the can-
didate model set. Essentially, we believe earlier-
spawning species like walleye spawn during a period
typified by predictable biotic conditions and unpre-
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dictable abiotic conditions, whereas later-spawning
species like white bass spawn during a period typified
by unpredictable biotic conditions and predictable
abiotic conditions. In most of the reservoirs we stud-
ied, walleye were one of the first, if not the first, spe-
cies to spawn each year; only northern pike spawn
earlier among the suite of common species. Thus, in
a given year, larval walleye are typically the first to
emerge and feed in an environment that is biotically
predictable. However, walleye in these systems
spawn during a period where early spring storms and
cold fronts produce strong winds that can dislodge or
damage walleye eggs, increase water turbidity or
present a lingering decrease in air temperature, all of
which can negatively affect walleye recruitment. Fur-
thermore, changing temperatures could also lead to
reduced hatching success, or alter adult behaviour
and thus the duration or periodicity of spawning
activity.
Alternatively, white bass spawn approximately a

month after walleye (Carlander 1997), and the larvae
emerge into a dramatically different environment.
There are several species that spawn approximately
the same time as white bass, including smallmouth
bass, black crappie, white crappie and freshwater
drum (Carlander 1977; Bur 1984). Furthermore, com-
mon carp and gizzard shad, which also spawn
approximately the same time as white bass (Quist
et al. 2004), can numerically dominate the age-0 fish
community in these systems (Sullivan et al. 2011).
Larval white bass must compete for zooplankton with
other fishes, in particular hyperabundant common
carp and gizzard shad larvae. Furthermore, zooplank-
ton abundance declines during this period (Sullivan
et al. 2011) and could become limited. Therefore, the
emergence of these fishes within a short period cre-
ates an environment that is biotically unpredictable as
compared to when walleye larvae emerged. However,
the abiotic environment during this later period is
more predictable than when walleye spawn, with
milder temperatures and more consistent temperature
fluctuations.
We believe that these scenarios offer the most plau-

sible interpretation of the observed patterns. Alterna-
tively, it is possible that adhesive eggs are more
vulnerable to abiotic conditions than semi-buoyant
eggs or that demersal spawning activities may be regu-
lated by abiotic factors and pelagic spawning activities
may be regulated by biotic factors. However, it is also
plausible that abiotic factors regulate the recruitment
of both walleye and white bass, with white bass
recruitment being regulated indirectly by the abun-
dance of other species that are regulated by abiotic
conditions. Additional research from other regions and
species is needed to provide further evidence and to
fully explore inherent complexities.

Conclusion

Our study provides essential information regarding
factors regulating the recruitment of walleye and white
bass in irrigation reservoir ecosystems, and indicates
that variability in the fish’s environment within and
among years may be influential in determining the
nature of those factors. Our models could be used by
biologists and managers to better understand the
recruitment of walleye and white bass in irrigation res-
ervoirs throughout the southern Great Plains. Under-
standing the recruitment of fishes is a critical step in
improving our knowledge of their ecology, not only in
this region, but also throughout semi-arid regions of
the world.
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