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Condition

Kevin L.Pope and Carter G.Kruse

INTRODUCTION

The analysis of fish condition has become a standard practice in the management
of fish populations as a measure of both individual and cohort (e.g., age- or size-
group) wellness. Condition has been generically described as the well-being or
robustness of an individual fish (Le Cren 1951; Bulow et al. 1981; Blackwell et al.
2000). It has typically been estimated by comparing an individual fish weight to a
standard weight for a given length and assuming that larger ratios (condition
index) reflect a healthier physiological state (Bolger and Connolly 1989; Murphy
et al. 1991) or by directly measuring physiological parameters related to the en-
ergy stores, such as tissue lipid content (Craig 1977; Fechhelm et al. 1995). All
methods of calculating condition share the common goal of controlling for or
removing the confounding effects of absolute body size when comparing body
mass or other measures of nutritional state (Jakob etal. 1996). This is particularly
important for organisms with indeterminate growth, such as fishes (Reist 1985).

Measures of condition are generally intended to be an indicator of tissue en-
ergy reserves, with the expectation that a fish in good condition should demon-
strate faster growth rates, greater reproductive potential, and higher survival than
will alesser-conditioned counterpart, given comparable environmental conditions.
Subsequently, fish condition is of keen interest to fisheries scientists, and numer-
ous studies have investigated the relationship between measures of fish condition
and parameters such as growth, fecundity, population structure, life history adap-
tations, environmental conditions, or management actions such as stocking (Cone
1989; Brown and Murphy 1991; Gabelhouse 1991; Blackwell et al. 2000). Although
measures of condition in fish can be sensitive or related to factors that might
logically affect energy storage or fitness in an individual, there is commonly sub-
stantial interspecies, seasonal, environmental, and spatial variation that influences
our ability to interpret changes in fish condition.

Fisheries scientists often must assess population status, effects of manage-
ment actions, and anthropogenic influences on the resource they are managing
(Brown and Austin 1996). Fish condition, if appropriately interpreted, may char-
acterize components of the environment in which the fish exists (e.g., habitat,
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prey availability, and competition) and provide insights into ecological and physi-
ological processes (e.g., overwintering mortality, seasonal storage of lipids, and
maturation). Thus, measures or indices of fish condition can be valuable compo-
nents of a fisheries scientist’s assessment over multiple ecological scales. A critical
component for interpreting fish condition data in a useful and applicable man-
ner is the correct application of statistical methodologies when collecting and
analyzing data. The objective of this chapter is to provide a brief overview of fish
condition measures, focusing on condition indices, and illustrate commonly used
techniques to analyze, summarize, and interpret condition data.

WEIGHT-LENGTH RELATIONSHIPS

Anderson and Neumann (1996) noted that length and weight statistics are cor-
nerstones in the foundation of fisheries management and research. Weight-length
data have generally been used either to describe mathematically the relationship
between weight and length (Keys 1928) for purposes of conversion from one to
the other or to measure individual variation from an expected weight at a given
length as an indicator of condition (Le Cren 1951; Bolger and Connolly 1989). It
is often advantageous to describe the weight-length relationship of a population
to discern changes in body form. The power function,

W=al, (10.1)

generally describes the weight-length relationship of most fishes, where W is
weight, Lis length, ais a constant, and b is an exponent usually between 2.5 and
4.0 (a fish growing isometrically or maintaining the same shape across length
categories has an exponent of 3.0). The functional exponent b, which describes
the curve of the relationship, is generally different among species and can be
sensitive to biotic and abiotic influences, leading to different values of b between
sexes or localities, even within the same species.

Regression of Weight -Length Data

Because body form typically changes with increasing length (i.e., allometric growth;
b # 3.0), untransformed weight-length data are related in a curvilinear fashion
(Figure 10.1A). Although a curve can be fitted to the weight-length relationship
for estimation of the power function coefficients (nonlinear regression), these
types of data are more easily analyzed by linear regression after logarithmically
transforming the data (Figure 10.1B). Based on the ordinary least-squares regres-
sion model (y, =B, + B,x; + &), equation (10.1) becomes

log,,(W) = a + b(log,,L), (10.2)

where W (corresponding to the response or dependent y;) and L (independent
x;) are weight and length, respectively, a (3,) is the yintercept (log,, scaling), and
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b (B,) the slope of the line. The error (&) associated with estimating y; (W) from a
regression line is implicit in equation (10.2).

The regression assumptions of linearity, normality, homoscedasticity (equal
variance of y at each level of x), and independence (no changes in y at a given x
due to an influence such as sampling over time) must be met for meaningful
interpretation of the regression coefficients (Neter et al. 1989). If a population
(i.e., group or cohort of interest) is randomly sampled over a relatively short pe-
riod, logarithmically transformed weight-length data generally conform to the
basic assumptions and are related in a highly significant linear fashion. Biases can
be introduced into weight-length data by, among other things, introducing mea-
surement error, combining temporally or spatially separated samples for which
physiological or environmental changes may have affected body form (e.g., pre-
and postspawn or lotic and lentic individuals), or by incompletely and nonrandomly
sampling the entire size structure of the population (e.g., presence or absence of
a resource-limited size category). Suspected transgression of the linearity, vari-
ance, and independence assumptions can be initially assessed with residual analy-
ses, where residuals (the difference between the observed weight and the corre-
sponding weight predicted by the regression line) or the error associated with
using the regression model are plotted against the independent variable (length)
or the predicted value of y. Graphically, residuals should appear as a constant
band around zero, with no obvious patterns (Figure 10.1C, D, E, and F). Most
statistical packages will provide an option for these analyses. The transformed
weight-length data generally approximate a normal distribution and small de-
partures from normality do not create serious problems; however, data normal-
ity should not be assumed, especially when using the regression coefficients as
indices of population condition or the residuals as an index to individual condi-
tion. A normal probability plot is a general test to ensure normality of the data
(Figure 10.1G).

A linear relation can be a reasonably good approximation for nonlinear data
provided the values of the independent variable do not cover a wide range (Steel
and Torrie 1980), such as comparisons of individuals in a relatively narrow subset
of all lengths sampled (e.g., a small section of the curve). Furthermore, simple
linear regression often statistically provides an adequate fit to untransformed
weight-length data when assessing statistics such as 7*; however, better results can
be obtained with transformation or nonlinear analysis. Thus, it is unadvisable to
fit a linear model to curvilinear data. The logarithmic transformation enhances
the relationship by accounting for more of the variation in weight (demonstrated
by an increased 7*) and minimizing overall model error, or the distance of indi-
vidual points from the regression line. The logarithmic transformation enhances
our ability to predict weight from length and to interpret the slope and intercept
of the relationship. A power function (nonlinear regression or curve fitting) of
the untransformed data provides the same explanatory power as linear regression
of the transformed variables; however, the exponential nature of the relationship
makes interpretation and comparison of weight-length relationships more diffi-
cult (Box 10.1).
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Figure 10.1 Graphical depiction of the curvilinear relationship of (A) untransformed length-
weight data from the low-elevation stream Yellowstone cutthroat trout population described in
Box 10.1 versus (B) the linear nature of the same data after log,, transformation. (C) A typical
diagnostic residual plot clearly illustrates the nonlinearity of the untransformed data, whereas
(D) more evenly distributed residuals exist for the transformed data, a pattern that is indicative
of linear,homoscedastic, and independent data. (E) The funnel-shaped residual pattern from a
separate data set demonstrates unequal variances in the dependent variable (weight), as might
be typical when sexually mature fish are collected in pre- and postspawning condition. (F) The
up and down pattern of residuals when graphed by sampling time indicate that the data may
not be independent but rather influenced by season (1 = prespawn, 2 = postspawn, and 3 = late
summer).Normal probability plots can be built or graphed in several ways; here, (G) a normal
probability plot of the ranked observed residuals (x) versus their paired standardized residual (y;
calculated assuming a normal distribution) demonstrates the linear relationship indicative of
normal weight-length data. A nonlinear relationship would indicate nonnormality or skewness
of the data. Other plots, such as a box-plot, can also be used to check data normality.
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Box 10.1 Transformation and Regression Analyses of Weight-Length Data—
Comparing the Condition of Two Populations

Table Presented are total length (TL; mm), weight (WT;g),and body fat as a percentage of overall
wet weight for samples of Yellowstone cutthroat trout collected in midsummer from three locations
that could influence individual weight at length: a lower-elevation stream (1,810 m elevation), a lower-
elevation lake (1,785 m), and a higher-elevation lake (2,610 m). Fat values were randomly generated
for example only. Fish samples were collected via electroshocking, gill nets, and angling.

Low-elevation stream (A) Low-elevation lake (B) High-elevation lake (C)
TL WT Fat (%) TL WT Fat (%) TL WT Fat (%)
129 20 5.91 254 181 10.59 180 63 8.32
130 25 12.88 262 186 9.08 191 77 4.78
132 22 7.67 272 136 1.38 198 54 0.6
132 24 11.29 274 191 2.64 203 73 2.63
134 20 2.27 282 245 7.32 231 100 0.99
134 25 11.57 287 236 6.68 234 104 1.21
138 26 6.63 290 168 1.39 236 109 5.91
140 28 11.04 297 263 6.81 239 118 2.55
143 28 945 302 290 9.1 239 127 5.37
144 30 9.86 305 290 7.97 241 127 2.87
147 36 8.79 328 327 5.9 244 141 4.97
151 38 13.78 330 354 247 244 141 5.51
163 56 11.69 333 363 5.16 244 154 8.21
171 52 6.46 333 390 9.29 246 141 4.37
182 60 8.83 338 372 3.64 246 150 6.27
182 61 8.93 340 417 12.98 246 168 8.44
184 63 8.97 340 417 9.92 249 145 2.34
190 75 11.71 343 399 5.36 249 145 4.51
191 55 4.73 345 408 5.39 249 154 6.44
192 73 7.35 345 445 10.37 249 159 7.88
197 90 12.88 351 463 10.24 251 145 2.99
206 83 4.52 353 390 5.78 251 145 3.04
215 103 9.1 353 390 1.75 251 145 3.57
220 105 6.41 356 467 8.51 254 150 7.98
237 121 3.06 356 472 8.66 254 150 3.64
238 133 6.52 358 408 1.87 254 154 4.63
240 126 342 361 545 1.99 254 159 295
248 161 9.81 361 472 9.61 254 163 5.94
249 182 12.24 363 481 6.19 257 154 3.73
253 153 7.34 363 508 8.87 257 159 3.11
253 161 11.11 366 481 462 257 168 5.98
254 154 425 368 476 2.69 257 172 7.38
262 213 12.33 373 544 11.45 257 172 7.83
262 215 12.53 378 526 4.29 259 154 1.23
265 234 129 381 535 3.12 259 159 3.93
266 202 10.44 381 535 3.37 259 159 4
268 242 13.04 384 608 9.99 259 172 6.19
269 189 4.27 386 572 5.84 259 181 7.9
270 190 4.29 389 562 7.05 262 181 7.25
273 243 12.66 391 590 4.86 262 181 6.31
279 215 9.63 394 635 3.9 264 159 1.87

(Box continues)
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Box 10.1 (continued)

Table (continued)

Low-elevation stream (A) Low-elevation lake (B) High-elevation lake (C)
TL WT Fat (%) TL WT Fat (%) TL WT Fat (%)
283 228 6.83 396 590 248 267 191 6.74
283 233 8.62 399 581 243 269 136 345
300 270 5.45 401 603 243 272 163 0.73
306 290 7.62 406 703 7.24 282 195 2.28
331 429 11.87 411 703 6.36 284 231 9.7
342 440 10.71 414 676 251 284 245 10.89
349 460 9.82 425 752 4.33 290 231 4.8
354 460 7.63 433 780 3.05 290 231 4.81
360 518 10.77 462 1170 9.99 290 240 5.74
Program

The following SAS program is configured to provide two regression analyses—linear regression of
the weight-length data after log,, transformation on sample data from both the low-elevation
stream (A) and lake (B) Yellowstone cutthroat trout populations and nonlinear regression of the
untransformed data from the stream (A) sample. Only output relevant to the following discussion
is provided. Hereinafter, all references to weight-length data transformations refer to a log,,
transformation.

OPTIONS PS=54 LS=75;

DATA TROUT;

INPUT POP $ TL WT;

LOGTL=LOG10 (TL) ;

LOGWT=LOG10 (WT) ;

CARDS;

A 129 20

B 254 181

[Input complete data set];

PROC SORT; BY POP;

PROC REG; BY POP; MODEL LOGWT=LOGTL/CLB;
PROC NLIN; BY POP; PARMS A=0.000001 B=3; MODEL WT=A* (TL**B) ;
RUN;

Output
Table Linear regression of transformed weight-length data for population A.The dependent

variable is log,,\WT (LOGWT). Abbreviations are sum of squares (SS), coefficient of variation (CV),
mean square error (MSE), and log,,TL (LOGTL).

Analysis of Variance

Source df SS Mean square F-value P>F
Model 1 8.54267 8.54267 4545.72 <0.0001
Error 48 0.09021 0.00188

Corrected total 49 8.63287

r? 0.9896 Root MSE 0.04335

Adjusted r? 0.9893 Dependent mean  2.01073

cv 2.15597
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Parameter Estimates

Parameter
Variable df estimate SE t-value P> |t|
Intercept 1 -5.14432 0.10630 -48.39 <0.0001
LOGTL 1 3.06874 0.04552 67.42 <0.0001
Variable df 95% Confidence limits
Intercept 1 -5.35805 -4.93059
LOGTL 1 2.97722 3.16025

Table Nonlinear regression of weight-length data for population A.The dependent variable is WT,
which is modeled as a constant (A) times TL raised to a power (B). The convergence criterion was
met. An intercept was not specified for this model.

Iteration A B SS

0 1-10° 3.0000 1656903

1 1.832:10° 3.2801 58540.3
2 2.141-10° 3.2545 53615.7
3 2.686:10° 3.2164 49075.3
4 3.413-10° 3.1775 41355.6
5 4911-10° 3.1183 31198.0
6 5.801-10° 3.1049 11611.2
7 5.868:10° 3.1056 11159.7
8 5.869-10° 3.1056 11159.7

Estimation Summary

Method Gauss-Newton
Iterations 8
Subiterations 7
Average Subiterations 0.875
R 2.223-107
PPC(A) 6.674-10°
RPC(A) 0.000045
Object 5.848.10®
Obijective 11159.7
Observations Read 50
Observations Used 50
Observations Missing 0

Regression Model

Approximate

Source df SS Mean square F-value P>F
Regression 2 2001114 1000557 4303.59 <0.0001
Residual 48 11159.7 2325

Uncorrected total 50 2012274

Corrected Total 49 838762

(Box continues)
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Box 10.1 (continued)

Table (continued)

Parameter Estimates

Variable df Approximate SE  Approximate 95% confidence limits
A 5.869:10°¢ 2.215:10° 1.416:10°° 0.000010
B 3.1056 0.0659 2.9731 3.2381

Approximate Correlation Matrix

A B
A 1.0000000 -0.9995920
B -0.9995920 1.0000000

Table Linear regression of transformed weight-length data for population B.The dependent
variable is log;,WT.

Analysis of Variance

Source df SS Mean square F-value P>F
Model 1 1.66271 1.66271 914.86 <0.0001
Error 48 0.08724 0.00182

Corrected total 49 1.74995

r? 0.9501 Root MSE 0.04263

Adjusted r? 0.9491 Dependent mean  2.63145

v 1.62008

Parameter Estimates

Parameter

Variable df estimate SE t-value P> |t|
Intercept 1 -5.36936 0.26459 -20.29 <0.0001
LOGTL 1 3.14307 0.10391 30.25 <0.0001
Variable df 95% confidence limits

Intercept 1 -5.90135 -4.83737

LOGTL 1 2.93413 3.35200
Interpretation

Regression of the transformed weight-length data from sample (A) shows a highly significant
relationship (P < 0.0001) that explains 99% of the variation in weight (r?). Regression of the
transformed data provides a more precise estimation of fish weight than can be obtained by linear
regression of the untransformed data and is a useful tool for inferring changes in overall condition
(weight) temporally within or spatially across populations. Often a linear equation fitted to the
entire range of untransformed data predicts that a fish must be of substantial size before the
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weight exceeds zero, overestimates weights for mid-length fish, and underestimates the weight of
larger fish—thus, the equation is not biologically relevant. Here, the transformed equation (log,,\WT
=-5.144 + 3.069l0g,,TL) estimates that individuals incrementally gain mass once they exceed 1
mm in length and demonstrates a strong linear relationship between weight and length.

The nonlinear regression of the untransformed data (equation [10.1]) provides the power function
WT = 0.000005869(TL)*'*¢ and predicts weights very similar to the linear regression (equation
[10.2]) based on the transformed data (e.g., a 300-mm cutthroat trout is predicted to weigh 287 g
with the transformed equation and 289 g with the power function).In fact, equations (10.1) and
(10.2) are the exact same model (b.qyation 1011 = Pequation 11021 @ND Tequation 101 = 10725 1192) In our
example, the coefficients have slightly different values and they provide slightly different predic-
tions because the power function assumed homoscedastic error variances when, in reality, the
larger fish had more variance in weight than did the smaller ones. Even with these similarities,
interpretation and comparison among populations based on nonlinear regression is intuitively and
statistically more difficult, and transformation to a linear equation is the preferred approach.

Often a primary question is whether differences in condition exist between or within specific
populations or groups of fish across space and time. Comparisons of the regression coefficients
associated with a given set of weight-length data can be used to determine whether a population
(or group) of fish is significantly heavier and, by extension, in better condition at a given length. An
interesting comparison might be whether Yellowstone cutthroat trout from a lake habitat are
better conditioned than are stream-dwelling individuals found at similar elevations because a lake
environment could be perceived as energetically favorable (e.g., no current or warmer). The
estimated slope and intercept for the sample of transformed weight-length data from the stream
population (A) are, respectively, 3.069 and —5.144 compared with 3.143 and -5.369 for the lake
population (B).These equations suggest that average fish of 250 mm and 450 mm in length would
weigh 164 g and 997 g, respectively, in the stream environment and 147 g and 933 g, respectively, in
the lake environment.The regression results seem to indicate that stream fish are heavier at a given
length than are their lake counterparts, at least in the sampled locations. However, in order to make
meaningful statements regarding this relationship, we need to determine whether these popula-
tions are significantly different, given natural variation in weight at length.

Confidence intervals (Cls) around the estimated parameter (slope in this example) can be used as
an initial assessment of differences in condition, if any, between populations. Using equation (10.2)
(or the values provided by the SAS output) one can calculate the Cls around the parameter
estimates. For example, the 95% Cl around the estimated slopes (the actual parameter estimate is
parenthetically enclosed) are 2.977-(3.069)-3.160 for stream fish and 2.934-(3.143)-3.352 for the
lake population.These Cls overlap almost completely, and at least one interval encompasses the
slope estimate of the other (in this case both intervals encompass the other slope estimate—the
slope of the stream fish falls within the Cl for the lake fish, and vice versa), indicating that the slopes
are not significantly different, or that weight gain as the fish grows (body form) is similar between
these two sites. Similar analyses show that the intercepts of these two populations are not signifi-
cantly different. Thus we conclude that although the respective transformed equations predict
different average weights, neither population is significantly heavier or better conditioned than is
the other, contrary to our a prior expectation. If the Cls for the two slope estimates had not
overlapped, it would have been an indication that the two values were indeed significantly
different.

(Box continues)
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Box 10.1

(continued)

A clearer comparison that provides a relevant level of precision, and one that must be performed if
intervals overlap but neither one encloses the slope estimate of the other, is a Cl around the
difference between the slopes. For example suppose there are two populations with slopes 3.6 (SE
=0.2) and 3.0 (SE = 0.15).Based on a sample of 62 (60 df) individuals from each and a 95% confi-
dence level, intervals for these slopes overlap but do not encompass the other slope estimate.The
SE of the difference between these two slope values is

\/SE2 4+ SE2 =4/022 +0.15? =0.25,

and the Cl for the difference is 0.6 + 1.98(0.25), where 0.6 is the difference between the slopes of
the two populations and 1.98 is the t-value for an o = 0.05 with 120 df (equation [10.4]). This
interval does not include zero, which is indicative of significantly different slopes. Completing this
calculation for the Yellowstone cutthroat trout example above reveals that the Cl around the
differences in slopes (0.074 + 2.013[0.113], based on 48 df) includes zero, which indicates that the
slopes are not different (as was previously concluded).

The least-squares regression coefficients estimated from the log-transformed
data can be used to compare relative condition differences among populations
or to assess temporal changes in condition within a population (Cone 1989).
Bolger and Connolly (1989) indicated that the regression coefficients can sug-
gest significant differences among populations but that estimates of intercept
and slope should be considered together to provide a valid interpretation. If
the regression slopes of two populations are similar, a larger intercept could
indicate a population in better overall condition, or at least heavier fish at a
given length. Likewise, a steeper slope would indicate increasingly (with length)
better condition if population intercepts were similar. Intersecting regression
lines (one population having a greater slope but lesser intercept than another)
could indicate general differences in condition among small and large individu-
als. Carlander (1969) suggested that slopes less than 3.0 might indicate popula-
tions in crowded or stunted condition. However, Murphy et al. (1991) cautioned
that coefficient analysis should be used to compare only the general form of
specific populations because it tends to average out differences in condition
between size-classes, an important component of condition analysis if, for ex-
ample, a fisheries scientist were assessing the effect of prey abundance on dif-
ferent size-classes of fish (e.g., Marwitz and Hubert 1997).

Differences in weight-length regression lines can be cursorily assessed by com-
paring confidence interval (CI) overlap around the coefficients generated by the
regression analysis. However, more precise statistical contrast includes determin-
ing the CI around the difference between two like coefficients or conducting
analysis of covariance (ANCOVA). A CI, or the range of values within which the
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regression coefficient is likely to fall over 1 — a percent of all samples from the
population of interest, is calculated by

gE i aon-2® S(g), (10.3)

where gis the coefficient estimate, s(g) is the standard error of g, and tis the
value for a given confidence level (o) and df (n—2). A quick assessment, with no
relevant statistical precision, is to calculate interval overlap. If ClIs around two
linear regression slopes (or some other coefficient) developed from independent
samples do not overlap, then they are significantly different. Furthermore, if the
CI from one slope encloses the estimated value of the other then the two are not
significantly different. A comparison that does provide statistical precision, and
one thatis required if CIs overlap (but neither encloses the estimated slope of the
other), is determination of whether the interval around the difference in slopes
contains zero; if so, the difference between the two estimated coefficients is statis-
tically nonsignificant. The interval around the difference in slopes is given by

(RS, — RSy) £ £, _ o5, ap *y SE} + SE3 (10.4)

where RS, is the first regression slope, RS, is the second regression slope, SE, is
the standard error of the first slope, and SE, is the standard error of the second
slope. The dfis equal to the sum of (n,—2) and (n,—2). Box 10.1 compares CIs of
regression coefficients from samples of lake and stream Yellowstone cutthroat
trout populations, where one might expect differences in population condition
resulting from environmental influences. Interval analyses are relatively simplis-
tic tests of regression line differences but are adequate for contrasting samples
where sample size (n)and distribution (length categories of individuals captured)
are similar, especially if the latter approach of testing the difference between co-
efficients is employed, or for preliminary analyses for general discussion purposes
(interval overlap comparison). When the size-ranges of fish captured become
uneven (e.g., larger fish in one sample but not the other), a test such as ANCOVA
(section 10.2.2) that controls for size differences across time or habitat is more
appropriate.

Analysis of Covariance to Test Differences in Regression Lines

Comparisons of weight-at-length (condition) data across multiple populations are
often an important consideration, but the length range of individuals sampled
often varies in space and time, and different-sized groups of fish may be in better
or worse condition. The ANCOVA can control for the effects of differing size ranges
(Iength as the covariate) and is a more powerful test for homogeneity of regres-
sion coefficients (i.e., test for differences in slopes between two or more lines with
the null hypothesis that coefficients are equal; Zar 1984) where spatial (e.g., el-
evation) or temporal (e.g., season) effects might influence inferences regarding
population wellness, as modeled by weight. Simply because the length variable is
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not statistically significantly different between or among the populations of inter-
est using a means comparison test (#test or analysis of variance [ANOVA]) does
not mean length will not confound a comparison of population condition. Rather
itis the strength of the covariates’ association to both the treatment and response
variables together that determines the covariates’ influence on our inference re-
garding condition. On the other hand, ANCOVA should be used with caution
when length distributions are completely disparate, as interpretation of the re-
sults may become more speculative than meaningful (Agresti and Finlay 1986).

The general assumptions of ANCOVA when applied to weight-length data are
(1) that length measurements are fixed, measured without error, and indepen-
dent of treatments; (2) the regression of weight on length disregarding the treat-
ment is linear (linearity of within-group regressions); (3) there is homogeneity of
within-group regressions, and (4) the residuals are normally and independently
distributed with zero mean and common variance. The ANCOVA is an inappro-
priate tool when heterogeneity of regression coefficients and residual variances
exists. Assumption two is regularly achieved by some sort of data transformation.
Similarly, weight is typically normally distributed and, furthermore, data transfor-
mation has a normalizing effect. Assumption three requires that the regression
lines associated with the treatment groups have a common slope or parallelism;
slope discrepancies will result in a conservative ANCOVA Ftest, for which the
likelihood of type I error (rejecting a true null hypothesis) is actually lower than
the nominal alpha. Heterogeneity of error variances is of most concern when
sample sizes among groups differ and will result in a conservative [“test if the
larger and smaller samples sizes are associated with the larger and smaller vari-
ances, respectively. If the opposite is true, then the test becomes liberal (i.e., the
true alpha is greater than then the nominal alpha) (Vila-Gispert and Moreno-
Amich 2001).

We initially want to determine slope similarity. Building on equation (10.2),
the complete ANCOVA model contains the response variable (weight, W), an
intercept (3,), two independent variables, the covariate (length, L) and a dummy
variable that represents potential effects on weight that are of interest (X; for
example, habitat effects are coded 1 for low-elevation stream and 0 for low-eleva-
tion lake), and an interaction term (length X habitat code, L.X;) in the form

Wi=Bo +BiL; + B X + BsL; X, + &, (10.5)

where weight and length are log,, transformed. The relationship can be modeled
using a general linear model (GLM) approach or using regression. If the two
slopes differ, the interaction term will be significant in the model, indicating that
the regression lines intersect at some point (note that point may be outside the
range of data collected) and the trend lines are different. This type of result
suggests that individual fish in the two populations gain weight at different rates
as they increase in length and may indicate, among other things, resource limita-
tions (or availability) for different size categories within (temporal comparisons) or
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between (spatial comparisons) populations. If the slopes are statistically different
(i.e., we know the lines are different), further testing of intercept differences is
difficult to interpret and often of little interest because magnitude of treatment
effect varies depending on length and the intercept of a weight-length relation-
ship (length = 0) is generally not relevant.

If fish from two populations maintain similar incremental weight gains with
increasing length, then the slopes will not be significantly different; however, one
population could be significantly heavier or better conditioned at a given length
than another. Thus, we generally want to determine the magnitude of the
elevational difference between the lines by assessing the yintercepts. In other
words, are the lines truly the same or are they separated in regression space with
similar slopes? Here equation (10.5) is reduced to the form

Wi= By +BiLi +BoX, + & (10.6)

by removing the interaction term from the analysis. Separate lines or intercept
differences are noted by a significant test of the dummy variable (X) in the model.
In its simplest form, ANCOVA is used, as described above, to control for length
differences between two populations or categories of treatment (e.g., a habitat
treatment of lotic and lentic environments); however, it can be used to assess
multiple populations and multiple treatments by simply adding additional dummy
variables and the associated interaction terms to equation (10.4). In Box 10.2, we
provide an example of ANCOVA based on the two populations of Yellowstone
cutthroat trout analyzed in Box 10.1. Both the CI comparisons in Box 10.1 and
ANCOVA in Box 10.2 provide results that indicate the slopes of the two lines are
notsignificantly different. However, contrary to interval comparison, the ANCOVA
analysis suggests that the intercepts are different. This discrepancy is likely due to
two factors. First, the length distributions of the samples are not similar, an impor-
tant consideration with interval comparison. Second, ANCOVA, which controls
for length, and interval comparison ask slightly different questions—the latter
asks whether the intercepts of two lines are different when the lines are allowed to
float freely or have their own slopes, whereas the ANCOVA test asks whether the
intercepts are different when lines are forced to have a common slope.

Weight-Length Regression Line Residual Analyses

Most commonly weight-length regression coefficients are used to describe the
relationship between length and weight or to compare differences in body form
(condition) at a population level. However, Fechhelm et al. (1995) and Sutton et
al. (2000) used magnitude and sign of the individual residuals as an indicator of
fish condition (a larger negative residual indicated poorer relative condition) to
summarize seasonal and sex-related patterns in condition. This type of analysis is
synonymous with condition indices but can overcome some of the limitations as-
sociated with testing ratio data.
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Box 10.2 Analysis of Covariance (ANCOVA)

The ANCOVA can be used to test for differences between regression parameters (i.e., slopes and
intercepts) and is especially appropriate when the length ranges sampled in the populations to be
compared are generally unequal. Here, the following SAS program provides results for both the
complete (equation [10.5]) and reduced (equation [10.6]) models used to analyze differences in the
log,, transformed weight-length regression equations from the low-elevation stream (A) and low-
elevation lake (B) Yellowstone cutthroat trout populations presented in Box 10.1.

Program

OPTIONS PS=54 LS=75;

DATA TROUT;

INPUT POP $ TL WT;
LOGTL=LOG10 (TL) ;
LOGWT=LOG10 (WT) ;
CARDS;

A 129 20

B 254 181

[Input complete data set];

PROC SORT; BY POP;

PROC GLM; CLASS POP;
PROC GLM; CLASS POP;

RUN;

Output

MODEL

LOGWT=POP | LOGTL/SS3;
MODEL LOGWT=POP LOGTL/SS3 SOLUTION;

Table The ANCOVA to test for slope differences (n = 100). The dependent variable is LOGWT for

the two populations (POP).

Source df SS Mean square F-value P>F
Model 3 19.83785325 6.61261775 3577.54 <0.0001
Error 96 0.17744331 0.00184837

Corrected total 99 20.01529656

R? 0.991135 Root MSE 0.042993

cv 1.852261 LOGWT mean 2.321090

Source df Type llI SS Mean square F-value P>F
POP 1 0.00113727 0.00113727 0.62 0.4347
LOGTL 1 5.47809028 5.47809028 2963.74 <0.0001
LOGTL*POP 1 0.00078440 0.00078440 0.42 0.5163
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Table The ANCOVA to test for intercept differences. The dependent variable is LOGWT (n = 100).

Class Level Information

Class Levels Values

POP 2 AB

Analysis of Covariance

Source df SS Mean square F-value P>F
Model 2 19.83706885 9.91853443 5398.14 <0.0001
Error 97 0.17822771 0.00183740

Corrected total 929 20.01529656

R? 0.991095 Root MSE 0.042865

cv 1.846757 LOGWT mean 2.321090

Source df Type llI SS Mean square F-value P>F
POP 1 0.01778497 0.01778497 9.68 0.0024
LOGTL 1 10.20459461 10.20459461 5553.83 <0.0001

Parameter Estimates

Variable Estimate® SE t-value P>t
Intercept -5.209761011z 0.10539178 -49.43 <0.0001
POP A 0.038319477 z 0.01231671 3.11 0.0024
POP B 0.000000000 z

LOGTL 3.080368006 0.04133391 74.52 <0.0001

2The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations.
Terms whose estimates are followed by the letter z are not uniquely estimable.

Interpretation

For modeling purposes, the dummy variable (treatment variable POP) value for each fish from the
stream and lake samples was 1 and 0, respectively, and the interaction term was calculated as
LOGTL times the dummy variable. Thus the interaction term is equal to LOGTL (dummy code *
LOGTL) for stream fish and zero for the lake samples.The LOGWT was then regressed against all the
independent variables in the complete model (dummy POP, covariate LOGTL, and interaction
LOGTL*POP). Of interest is the significance of the interaction term, which indicates whether or not
the slopes of the two populations, when controlling for length, are significantly different—in this
case they are not (interaction P = 0.516). If the slopes had been different, we would have concluded
that these two populations had different trends in weight (condition) relative to length (i.e.,
incremental weight gain for a given increase in length is different) and we would have stopped
with our analysis. Further, if we had found a difference between slopes, it would be appropriate to
model LOGWT as a function of POP and LOGTL(POP) (length nested in populations).

(Box continues)
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Box 10.2 (continued)

Because the slopes were not different, we remove the interaction term from the model and regress
LOGWT against the remaining independent variables (POP and LOGTL). In this example the
adjustment for the dummy or treatment (POP) variable is significantly different from 0 (P = 0.002),
and we conclude that the intercepts are different. Overall these results suggest that the two
populations gain weight incrementally in a similar fashion, but trout in population A are consis-
tently heavier at a given length than are trout in population B.

In the output from the reduced model (i.e., interaction term removed), the coefficient for the
dummy variable (POP) is 0.0383.This value represents the magnitude of the difference in intercepts
of the linear regressions for the transformed data. Because the lake sample was coded as 0, the
population is represented by slope 3.080 for the parameter estimate for LOGTL and intercept
-5.210 (see reduced model output), whereas the stream population is represented by slope 3.080
and intercept (-5.2097 + 0.0383) or -5.171.

The residualized weights are the error terms associated with equation (10.2)
and can be calculated as the observed transformed weight of an individual fish
minus the predicted transformed weight, or

¢;=log, (W) —log,y(a) — blog,,(L,), (10.7)

where ¢,is the residual value and can be negative; W;is the weight of fish ¢ L;is the
length of fish i; and a and b are the regression parameter values for the equation
developed from the group of fish of interest (population).

Residual condition uses the weight-length relationship of a discrete, sampled
population; thus inferences regarding any individual or group of individuals from
that population are relative only to other individuals within the overall sample
used to develop the weight-length regression. Larger-scale comparisons of popu-
lation level residual condition variation would require a single equation devel-
oped from all populations under consideration, with the assumption that all indi-
vidual population weight-length relationships have similar slopes (Jakob et al.
1996; Sutton et al. 2000).

Residual analysis is very similar to the condition indices discussed in the follow-
ing section (10.3), and the two are often highly correlated, but Fechhelm et al.
(1995) suggested that in some cases residuals can be normally distributed in data
sets in which condition indices are not, or vice versa. Thus, this technique can
provide parametric options that might not otherwise be available with condition
indices. Patterson (1992) suggested that in comparing condition to other vari-
ables itis inappropriate to use the residuals from a weight-length regression as an
index to condition because the residuals are not unbiased estimators of the un-
derlying error of a regression model. Rather, a more complete regression model
including all factors that might affect weight should be fitted prior to analyzing
residuals (see equation [10.12]).
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Raw or standardized residuals can be generated by most statistical software. For
example, SAS (SAS Institute 1998) calculates residuals for regression analysis; these
values are stored in the variable name RESIDUAL and can be treated like any
other SAS variable. Adding the SAS command PLOT RESIDUAL*TL (within the
regression procedure command [PROC REG]) to the weight-length regression
exercise will produce a plot of residuals as a function of total length (TL); an
evident trend in residuals may suggest a lack of fit of the regression model. The
residuals can also be used as variables in other common statistical tests, such as
mean comparisons, to assess condition level and trends.

CONDITION INDICES

Condition indices are widely used to assess many facets of fish populations, in-
cluding the general health of fish stocks, the effects of management actions, com-
munity structure, or environmental influences (Bolger and Connolly 1989; Ney
1993; Neumann and Willis 1995; Ward and Zimmerman 1999; Blackwell et al.
2000). Condition indices are intended to estimate physiological condition (e.g.,
lipid stores) indirectly based on the premise that a fish of a given species and
length should weigh as much as a standard or average for its length, and varia-
tions from the standard are taken as an indication of the relative wellness of an
individual. Measures of fish condition based on a standard weight have been avail-
able since the early 1900s and have undergone an evolution in methodology
(Murphy et al. 1991) as well as rigorous reviews regarding their correlation with
physiological parameters and statistical merit (e.g., Bolger and Connolly 1989;
Patterson 1992; Blackwell et al. 2000; Vila-Gispert and Moreno-Amich 2001;
Brenden et al. 2003). They remain popular tools because they are simplistic and
noninvasive (only weight-length data needed) and are more easily compared than
are the regression parameters in weight-length relationships. Murphy et al. (1990)
indicated that an ideal condition index should be consistent, that is, maintain
similar statistical properties and meaning across length and species; tractable,
that is, analyzable by standard statistics; robust, that is, insensitive to data collec-
tion and analysis variations; and efficient, that is, provide precision from relatively
small sample sizes. Anderson and Neumann (1996) and Blackwell et al. (2000)
provided thorough reviews of the history of condition factors, and here we only
briefly describe their history and development.

Fulton’s Condition Factor

Traditionally, one of the ways to relate fish length to weight was simply to cube the
length of the fish (Spencer 1898; Wootton 1990). However, this basic equation is
imprecise because it fails to account for allometric growth (i.e., b # 3; equation
[10.1]; Fulton 1904; Martin 1949). Nonetheless, this basic physical principle has
been used extensively in fisheries science and is still used today (e.g., Ratz and
Lloret 2003; Stone et al. 2003). For example, Fulton’s condition factor (Anderson
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and Neumann 1996) is calculated as the ratio between observed and expected
weight for a fish of given length:

K = (W/L%) » 100,000, (10.8)

where Wis the weight (g), Lis length (mm), and 100,000 is a scaling constant. In
application, body form changes with length (4> 3) and species (b, # b,), which
results in condition factors that are often length and species dependent (Murphy et
al. 1991; Jakob et al. 1996; Blackwell et al. 2000). Thus K increases with increasing
length, limiting its application to fish of similar length within the same species.

Relative Condition Factor

Le Cren (1951) attempted to solve the deficiencies of Kby comparing the actual
weight to a standard predicted by the weight-length regression based on the popu-
lation from which the fish was sampled. Relative condition is calculated as

K, = (W/W') * 100, (10.9)

where Wis individual fish weight and W’ is the predicted length-specific weight
based on log,, transformed data. Average fish of all lengths and species have an
average K, value of 100; however, because weight-length relationships can vary
among populations and geographic sites, comparisons of K, must be confined to
those populations with homogenous weight-length parameters. Swingle and Shell
(1971) indicated that K, could be useful as an indicator of physiological stress on
a population and expanded the concept by establishing species-specific weight—
length relationships across a broader geographical range, which allowed compari-
sons of condition across populations. This broadened application of condition
analyses from a population level to regional scale; however, regional differences
still existed, making comparison and communication difficult.

Relative Weight

Relative weight (W) was proposed by Wege and Anderson (1978) as a condition
analysis tool for largemouth bass and represents further evolution of the K, con-
cept by allowing comparisons of condition across the geographical occurrence of
a species, as well as among species. The W, index is calculated as

W= (W/W) 100, (10.10)

where Wis individual fish weight and W, is a length-specific standard weight pre-
dicted from a weight-length regression developed to represent the body form of
the species across its geographical range (see Blackwell et al. 2000 for a list of
developed standard weight equations). The W, index uses 100 (or a range, 95—
105) as a benchmark for a fish in good condition—a readily identifiable standard
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for fisheries scientists. Fish greater than the target are considered in relatively
better condition than a standard fish, whereas those less than the target are con-
sidered in worse condition with severity depending on the distance from the bench-
mark. For example, condition values exceeding 105 may indicate abundant prey
and favorable environmental conditions (e.g., Marwitz and Hubert 1997; Porath
and Peters 1997).

The estimation of @ and b in the standard weight equation (note equation

[10.2]),
log (W) = a +b(log,,L), (10.11)

has undergone several iterations and review of statistical validity (see Anderson
and Neumann 1996). The currently accepted technique for development of W,
equations is the 75th regression-line—percentile (RLP) technique proposed by
Murphy et al. (1990), which has consistently provided W, equations with little or
no length-related biases, allowing for comparisons within and across species. Gerow
etal. (2004), however, suggested this bias has been incorrectly assessed in the past
and may be greater than originally reported for most standard W, equations. Be-
cause standard weight equations are developed based on weight-length relation-
ships across the range of the species, comparison and communications of condi-
tion analyses are consistent across the species range. Herein lays the value of W,
relative to other condition indices. Whereas a single W, equation for each species
has generally proven adequate, and is preferred for simplicity, differences in body
forms between broad habitat types (e.g., lotic versus lentic habitats) has required
maintaining multiple standard weight equations or target goals (i.e., something
other than 100) for some species (e.g., burbot, Fisher et al. 1996; inland cutthroat
trout, Kruse and Hubert 1997).

It is logical that both environmental and genetic factors influence body form
and weight, and, by extension, condition as well. Furthermore, it is possible for an
individual to increase energetic fitness without a change in body weight (Booth
and Keast 1986). Thus, questions remain whether W,, or any weight to length
ratio, is both a valid and interpretable indicator of the physiological condition in
fish or a metric sensitive and relevant enough to assess the effects of changed
management or environment on fish condition. Numerous studies have investi-
gated the practical limits in the application of W,. Liao etal. (1995) and Gutreuter
and Childress (1990) found W, a weak indicator of growth, a relationship that
seems intuitive based on the assumption that a fish in better condition can devote
more energy to growth. Conversely, Brown and Murphy (1991) and Neumann
and Murphy (1992) found W, was correlated with fat composition in the body, an
indication that W, can be a relative measure of individual energy stores. Blackwell
etal. (2000) provided excellent discussion regarding the relationships, or in some
cases the lack thereof, between W, and body composition, growth, and reproduc-
tive potential, among other things. Brenden et al. (2003) suggested that the lack
of clear relationships in some studies attempting to relate W, to variables that
seem intuitively related to individual condition might be the result of an index
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that, in most cases, does not satisfy the theoretical assumptions on which the sta-
tistical test is founded.

Most analyses of W are either mean comparisons among different populations
or length categories (e.g., ttest, ANOVA, or nonparametric equivalents) or an
assessment of the correlation and regression relationship among condition and
other independent variables that might influence fitness (e.g., prey density as a
good predictor of condition for a given population or size-class of fish). Sections
10.3.4 and 10.6 describe some of the common statistical procedures used to analyze
and compare individual and population level condition as measured by an index.

Application and Common Statistical Analysis of Relative Weight

Statistical Analysis of Relative Weight Data

The application of W, has increased over the last decade and is now commonly
used as a condition assessment tool in the majority of the USA (Blackwell et al.
2000); thus, we focus our discussion of statistical analyses on W, The appropriate-
ness of W, which is a ratio, as a variable in statistical testing has been the subject of
several reviews. Numerous authors have recommended against the use of ratios to
scale biological data because analyses of ratios may point to treatment effects that
do not exist or they may fail to detect major differences that do exist (e.g., Tanner
1949; Atchley et al. 1976; Anderson and Lydic 1977; Atchley 1978; Atchley and
Anderson 1978; Reist 1985; Packard and Boardman 1988). Bolgor and Connolly
(1989) indicated that the potential for greater variability and nonnormal distribu-
tions of ratio data such as W, might make parametric testing of W, inappropriate.
Furthermore, they indicated that ratio data commonly exhibit heteroscedasticity,
skewness, and leptokurtosis (a taller distribution with fatter tails as compared with
normal), all of which violate the assumptions of common statistical tests (e.g.,
regression and ANOVA) and weaken the power of these comparisons. Thus, Hyatt
and Hubert (2001) concluded that normality for W, data cannot be assumed and
should be assessed before applying parametric tests. Murphy et al. (1990), when
evaluating W, frequencies in walleye populations, suggested that the use of para-
metric tests to compare differences in W, data yields conservative results, which
Blackwell et al. (2000) interpreted as a greater probability of type II error (failure
to reject the null hypothesis when the alternative is true). Contrarily, Bolger and
Connolly (1989) stated that while skewness has minimal effect on significance or
power, significant leptokurtosis could lead to greater nominal significance values.
Sokal and Rohlf (1981) indicated that a nonnormal distribution is only a minor
violation of the assumptions for parametric statistics, thus parametric mean-com-
parison tests are generally robust to departures from normality. If there is con-
cern over violation of assumptions for parametric tests, an alternative is to use a
nonparametric test such as Wilcoxon’s rank-sum test or Kruskal-Wallis test for
comparison.

Patterson (1992) also recognized the problems of skewed distributions of ra-
tios and suggested, as summarized in section 10.2.3, that it is inappropriate to use
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weight-length regression residuals because they are biased estimators of regres-
sion error. Likewise, Jakob et al. (1996) noted that residuals from the residual
index for condition are not comparable across populations. This is germane be-
cause individual values of W, are essentially the de-transformed residuals. As a
solution, Patterson (1992) proposed that all variables assumed to affect weight be
directly included in the analyses at the same time as length and the coefficient of
each parameter used to assess its effect on condition. For example, when testing
for mean monthly differences in condition, include month as a variable in the
model:

log,(W) =B(0) +B(m) +B,[logo(L) ] + e, (10.12)

where (3(0)is the overall intercept and (3 (m) are monthly adjustments to the over-
all intercept. Each parameter coefficient is used to measure the effect on fish
condition. This is essentially an extension of the ANCOVA analysis.

More recently, based on a derivation of the statistical properties of the index,
Brenden et al. (2003) argued that W, data are not independent and identically
distributed, as required by both parametric and nonparametric tests, because the
properties are conditionally dependent on fish length. Conventional tests that
assume independence and identical distributions increase the likelihood of a type
I error (rejecting the null hypothesis when there is no difference) when applied
to W, data. To alleviate this risk, they proposed an R-test as the most appropriate
and conservative way to test relative weight data (see Brenden et al. [2003] for a
more thorough discussion). Of concern is the relative difficulty of computing the
Restatistic and its associated significance value, especially when the improvement
in testing power is moderate. The application of this recently proposed test is
probably greatest for researchers attempting to make definitive conclusions re-
garding patterns in condition but of less utility for management decisions that
might include condition as only one component in a decision-making process.

Given these arguments, it is apparent that care should be taken when statisti-
cally analyzing W, values, and the data should be analyzed to ensure that the as-
sumptions of a chosen statistical test are not violated or that the test is robust
enough to handle a violation of the assumptions. Transformations to normalize
W, data and homogenize the variances (e.g., Box—Cox transformation; Box and
Cox 1964) have generally proven to be oflittle value (Murphy et al. 1990; Brenden
etal. 2003). Alternatively, nonparametric tests can be used if the data will result in
misapplication of parametric tests. However, as mentioned, Brenden et al. (2003)
argue that their R-test is the most appropriate for testing W, data. Undoubtedly
the statistical merit of W, comparisons will continue to be debated, leading to a
better understanding of the statistical properties of this index, as well as a clearer
picture of the potential shortcomings and strengths of using established paramet-
ric and nonparametric tests and alternative tests for comparisons. We suggest that
mean comparisons (+test, ANOVA, Mann—Whitney, and Kruskal-Wallis) and re-
gression relationships can continue to be adequate methods for testing W data, as
long as the discussion of comparative results includes reference to the potential
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shortcomings of the test in relation to the distribution of the data. Results likely
can be clarified and strengthened by comparing the results of multiple tests.

Length-Related Patterns in Relative Weight Data

Because environmentally dependent trends in condition across lengths can be
averaged out, mean population condition should not be compared unless it can
be demonstrated that length-related patterns or differences are absentin the popu-
lation. Plotting individual or length-group mean W, values allows a visual assess-
ment of potential or important patterns such as size-related condition trends re-
sulting from, for example, differences in prey availability, gonad maturity, or
density. Murphy et al. (1991) suggested that condition data should be summa-
rized by length-group based on Gabelhouse’s (1984) five-cell model (stock-, qual-
ity-, preferred-, memorable- and trophy-length fish); others have suggested that
this model may not be ecologically relevant depending on the relationship being
explored and have summarized W, differently (e.g., 50-cm length-groups; Porath
and Peters 1997). Once W, values have been classified in a fashion relevant to the
question of interest (note that this does not preclude the use of individual fish
condition as the unit of interest), individuals or groups can be compared with
each other to determine whether one is poorer conditioned than another or
whether condition as measured by W, (as the dependent variable) is statistically
related to another variable or suite of variables, such as a habitat attribute. Box
10.3 provides examples of tests comparing W, among multiple populations.

Relationship of Relative Weight to Physiological and Environmental Measures

As surrogate indicators of physiological well being, condition index values such as
W, should reflect proximate body composition of individual fish (e.g., lipid con-
tent, protein content, or caloric content; Murphy et al. 1991). Strange and Pelton
(1987) found a weak relationship between mean condition factor (K)and fat per-
centage in composite samples of prey fishes. However, more recent physiological
assessments of W have found correlations between W, and tissue energy content
in walleye (Rose 1989), white crappie (Neumann and Murphy 1991), and striped
bass and hybrid striped bass (Brown and Murphy 1991). Brown and Murphy (1991)
suggested that W, provided a better estimate of reserve energy than did measures
such as the liver-somatic index. Thus, W appears to be a reliable index of energy
reserves in these species and, as such, might be a good indicator of short-term
growth potential or potential for resistance to nutritional stress (Murphy et al.
1991). However, complications such as volume replacement of lipid (fat) reserves
by water may confound the relationship between W, and proximate components
(Novinger and Martinez Del Rio 1999).

On the other hand, assessments of relationships between W, and characteris-
tics that would seem a logical expression of energy use, such as growth, which
represents the ultimate expression of individual fitness (Bolger and Connolly 1989),
have had mixed results. A common notion is that W and other condition indices
can be used as indicators of growth: poor condition indicates poor growth and
vice versa (e.g., Busacker et al. 1990; Ney 1993). Positive correlations between W,
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Box 10.3 Comparisons of Mean Relative Weight

Murphy et al. (1990) provided a formula for computation of the 95% Cl around a mean relative

weight (W.) value:

Cl=W, + t+(SD/¥n), (10.13)

where t is the t-value that corresponds to an a-value (usually 0.05) with n — 1 df and W, is the mean
measure of condition for a specific group (population).The overlap in Cls for mean values from
different populations or length-groups can be compared to determine whether they are statisti-
cally similar or not. For example, a simple mean calculation for the stream population of
Yellowstone cutthroat trout presented in Box 10.1 provides a W, of 94.7 (SD = 9.47), whereas the
low-elevation lake population has a W, of 92.9 (SD = 8.45).Thus, the respective Cls would be 94.7 +
2.69 and 92.9 + 2.32. Both intervals include the mean value of the other population (see discussion
in Box 10.1), indicating that individuals in these two populations are similarly conditioned, but this
tells us little about whether there are length-specific differences between populations.

Mean comparison tests such as the two-sample t-test (or the nonparametric equivalent, Mann-
Whitney test) or multiple-comparison tests such as ANOVA (or the nonparametric Kruskal-Wallis
test) can be used to examine length-related or inter-population trends in W,. Herein, we discuss
how one might test for difference in condition, as indexed by W,,among length-groups from the
same population or among populations. For the Yellowstone cutthroat trout data presented in Box
10.1 the question of interest is whether macro-scale habitat type (stream versus lake and low
versus high elevation) has any significant influence on fish condition.

Relative weights were calculated for the three populations described in Box 10.1 based on the lotic
(log; oW, =-5.189 + 3.099:log,,[TL]) and lentic (log,,W, = -5.192 + 3.086:l0g,, [TL]) standard-weight
equations for cutthroat trout (Kruse and Hubert 1997). An important first step is to assess the
distribution of the W, data to determine whether a parametric or nonparametric test is more
appropriate. This can be completed with typical assessments of normality, such as a histogram or
box-plot of the data (not shown). In this case, the data appears generally normal, but there is some
skewness and outliers for all three populations. It is important to assess whether the outliers (or
individuals with extreme values when compared to the mean) are biologically relevant or errors
due to measurement or data entry. We retained the outliers in this assessment.

Prior to comparing overall population means, it is prudent to check for length-related patterns in
condition within each population (Murphy et al. 1990, 1991; Blackwell et al. 2000). For example,
changes in W, with increasing length for cutthroat trout from the low-elevation stream population
can be assessed by grouping cutthroat trout in 50-mm length categories (e.g., group one is 100
149-mm fish and group five is 300-349-mm fish plus the two largest fish). Another way to group
the fish is to use the five-cell model (Gabelhouse 1984) for stock- to trophy-length fish (see
cutthroat trout length categories in Anderson and Neumann [1996]). The following SAS program
calculates W, values for individual fish and assigns each fish to a length-group for testing differ-
ences in W, among length-groups by means of ANOVA, a test that is robust to small departures
from normality.

(Box continues)
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Program

OPTIONS PS=54 LS=75;
DATA TROUT;

INPUT POP

S TL WT;

LOGTL=LOG10 (TL) ;
LOGWT=LOG10 (WT) ;
WS=10**(-5.189+(3.099*LOGTL) ) ;
WR= (WT/WS) *100;
IF TL>99 AND TL<150 THEN GRP=1;
AND TL<200 THEN GRP=2;
AND TL<250 THEN GRP=3;
AND TL<300 THEN GRP=4;

IF TL>149
IF TL>199
IF TL>249
IF TL>299
CARDS;

A 129
A 130

THEN GRP=5;

20
25

[Input complete data set];

PROC ANOVA;

RUN;

Output

CLASS GRP;

MODEL WR=GRP;

Table The ANOVA procedure for comparing differences in W. among length-groups (GRP) in a
population of low-elevation stream-dwelling Yellowstone cutthroat trout (n = 50).

Class Level Information

Class Levels Values
GRP 5 12345

Analysis of Variance
Source df SS Mean square F-value P>F
Model 4 254.915000 63.728750 0.69 0.6005
Error 45 4136.534097 91.922980
Corrected total 49 4391.449097
R? 0.058048 Root MSE 9.587647
@Y 10.12727 w. 94.67155
Source df SS Mean square F-value P>F
Group 4 254.9150003 63.7287501 0.69 0.6005
Interpretation

It does appear, if one calculates the means of each 50-mm length-group, that there are some

differences in condition. For example, 150-199-mm fish have an average W, value of 97.5, whereas
200-249-mm fish average only 90.3.This might indicate that the smaller fish have a better prey

base than do larger individuals who may be using another food source. However, given the

variability in W, values among individuals within each group, and the differences in sample sizes,
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are these mean values significantly different? The test of equality of W, values in each 50-mm
length-group (i.e., no differences in means among groups would indicate no length-related
patterns) is based on a comparison of two types of variability—within groups (variability of
individuals in each category around the mean for that category) and between groups (variability of
the mean of each category around the overall mean for the population). The F-test value reported
in the SAS output is based on the ratio of the variability between groups to the variability within
groups. Mean W, values among length-groups were not different. Thus, there does not appear to be
an environmental influence such as prey or habitat selection differentially influencing the condi-
tion of Yellowstone cutthroat trout in this population, at least on a length-dependent basis (based
on the length-groups we selected). Thus, it may be appropriate to calculate a population-wide W.
value for this Yellowstone cutthroat trout population.

For comparison sake, and because the data were somewhat nonnormal, we also provide the SAS
program and output for a Kruskal-Wallis test.

Program

OPTIONS PS=54 LS=75;

DATA TROUT;

INPUT POP $ TL WT;
LOGTL=LOG10 (TL) ;
LOGWT=LOG10 (WT) ;

WS=10** (-5.189+ (3.099*LOGTL) ) ;
WR= (WT/WS) *100;

IF TL>99 AND TL<150 THEN GRP=1;
IF TL>149 AND TL<200 THEN GRP=2;
IF TL>199 AND TL<250 THEN GRP=3;
IF TL>249 AND TL<300 THEN GRP=4;
IF TL>299 THEN GRP=5;

CARDS;

A 129 20

A 130 25

[Input complete data set];

PROC NPARIWAY WILCOXON; CLASS GRP; VAR WR;
RUN;

Output

Table The NPARTWAY procedure of SAS for Wilcoxon scores (rank sums) for the variable W,
classified by length-group.

Group N Sum of scores  Expected under H, SD under H, Mean score
1 11 314.0 280.50 42.699532 28.545455
2 10 307.0 255.00 41.231056 30.700000
3 8 142.0 204.00 37.788887 17.750000
4 14 342.0 357.00 46.281746 24.428571

5 7 170.0 178.50 35.766605 24.285714

(Box continues)
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Box 10.3 (continued)

Kruskal-Wallis Test

Chi-square 4.1380
df 4
P > chi-square 0.3877

Interpretation

The Kruskal-Wallis test indicates similar results as the ANOVA.The mean ranks suggest that the
150-199-mm fish are slightly better conditioned than are the other length-categories, and the 200-
249-mm fish are poorer conditioned; however, the test for differences among length categories is
nonsignificant (P = 0.39).

Similar to the stream population, there were no length-related patterns in W, in either of the two
lake Yellowstone cutthroat trout populations (results not shown); thus, we can use an ANOVA to
determine if there are any differences in fish condition among populations.

Program

OPTIONS PS=54 LS=75;

DATA TROUTA;

INPUT POP $ TL WT;
LOGTL=LOG10 (TL) ;
LOGWT=LOG10 (WT) ;
WS=10**(-5.189+(3.099*LOGTL) ) ;
WR= (WT/WS) *100;

CARDS;

A 129 20

A 130 25

[Input complete data set for population A];

DATA TROUTB;

INPUT POP $ TL WT;

LOGTL=LOG10 (TL) ;

LOGWT=LOG10 (WT) ;

WS=10**(-5.192+(3.086*LOGTL) ) ;

WR= (WT/WS) *100;

CARDS;

B 254 181

B 262 186

[ITnput complete data set for populations B and C];

DATA TROUT; SET TROUTA TROUTB;

PROC SORT; BY POP;

PROC ANOVA; CLASS POP; MODEL WR=POP; MEANS POP;
RUN;
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Output

Table The ANOVA procedure to compare W, for three populations of Yellowstone cutthroat trout
(n=150).

Class Level Information

Class Levels Values

POP 3 ABC

Analysis of Variance

Source df SS Mean square F-value P>F
Model 2 276.39380 138.19690 1.75 0.1773
Error 147 11604.08875 78.93938

Corrected total 149 11880.48255

R? 0.023265 Root MSE 8.884784

cv 9.542586 w. 93.10667

Source df SS Mean square F-value P>F
POP 2 276.3938029 138.1969014 1.75 0.1773

Population Estimates

Relative weight

Population N Mean SD

A 50 94.6715459 9.46685852
B 50 93.2871930 8.45707184
C 50 91.3612615 8.69911855

Interpretation

Mean W, values for Yellowstone cutthroat trout in the low-elevation stream population (A), the low-
elevation lake (B), and the high-elevation lake (C) were 94.7,93.3,and 91.4, respectively. Even
though we might have expected differences either on an elevation gradient or by habitat type,
there was no significant difference in W, for these three populations (P = 0.18).Thus, on average an
individual fish of a given length from these three populations appears to be similarly conditioned.
A Kruskal-Wallis test on these data provides similar results (P = 0.35). It is important to note that
this example included fish from only one of each habitat type; thus, it is inappropriate to conclude
that Yellowstone cutthroat trout condition does not vary as a function of elevation or habitat type.
To explore the relationship between condition and elevation or habitat type, a different design is
needed (i.e., samples of fish are required from multiple low-elevation streams, low-elevation lakes,
and high-elevation lakes) because individual water bodies would be the experimental unit of
interest, not individual fish within a water body.
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and growth have been reported for largemouth bass (Wege and Anderson 1978),
northern pike (Willis 1989), yellow perch (Willis et al. 1991), and juvenile striped
bass and hybrid striped bass (Brown and Murphy 1991). However, other evidence
contradicts the notion that W, is consistently correlated with growth (Gutreuter
and Childress 1990; Gabelhouse 1991). Furthermore, Liao et al. (1995) found no
evidence that growth and W, were correlated for pumpkinseed or golden shiner.
Relative weight may reflect growth of some species under certain circumstances,
but uncritical use of W, as a predictor of growth could lead to substantial errors in
population assessments.

Another factor commonly linked with W, is prey availability (Anderson and
Gutreuter 1983; Busacker et al. 1990; Flickinger and Bulow 1993; Ney 1993). Poor
condition is assumed to reflect prey scarcity, whereas good condition is assumed
to reflect an abundance of prey, and both these patterns can be found among
size-classes of fish within the same population. Kohler and Kelly (1991) indicated
that a quick and cost-effective method for evaluating prey supply was to assess
condition of their predators. Porath and Peters (1997) believed that walleye W,
values from standardized fall surveys offer a cost-effective method of detecting
prey deficiencies in reservoirs. Small W, values were reported for lake trout in
oligotrophic Wyoming lakes with sparse zooplankton; larger W, values were found
for lake trout in two Wyoming mesotrophic lakes, and the largest W, values were
reported from Flaming Gorge Reservoir, the most productive reservoir in the study
(Hubert et al. 1994). Prey availability and W, values were correlated for pumpkin-
seed but not for golden shiner; differences in these two species may be related to
differences in food habits, with golden shiner having a more flexible and omnivo-
rous diet (Liao et al. 1995). Relative weight may be a good predictor of prey avail-
ability especially for species with relatively narrow or specialized diets.

Most of these relationships have been examined through the use of group
mean comparisons, bivariate correlations, or linear regression analyses. In Box
10.4 some of these common techniques are applied to the relationship between
Yellowstone cutthroat trout W, and whole-body fat composition.

PHYSIOLOGICAL MEASURES OF CONDITION

Whereas condition indices attempt to approximate indirectly energetic well-being
based on individual whole-body mass, other measures of condition relate directly
to the physiological composition of body tissues, thereby providing a more precise
measure of actual fitness in terms of stored energy. Physiological measures of
condition have used either an index (ratio) of tissue weights or direct measures of
tissues such as lipid or protein content. These include the liver-somatic index
(hepatosomatic index or ratio of liver weight to body weight minus gonads),
body water content, visceral-somatic index, percent composition of body tissues
(e.g., percent lipid or fat), and RNA/DNA ratios (Elliott 1976; Heidinger and
Crawford 1977; Jensen 1979; Bulow et al. 1981; Adams and McLean 1985; Hikanson
1989; Shackley et al. 1994). These types of measures are typically invasive, lethal,
and more costly and time consuming than are indices based on weight-length
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information, which has typically been the impetus for developing indexes such as
W, Statistical procedures and limitations associated with the use of physiological
measures of condition are similar to those described above for weight-length rela-
tionships and W,. Physiological information summarized in ratio form (e.g., liver—
somatic index) has the same problems of nonnormality, nonindependence, and
heteroscedasticity as does W. Measures of tissues composition based on percentage
body weight vary in synchrony (colinearity or highly related independent variables)
by their very nature. For example, if the percentage of fat based on overall body
weight increases, than the percentage of another tissue component (e.g., protein
or water) must decrease because the total cannot exceed 100%.

Many fisheries scientists simply use these measures in a graphical form to de-
scribe the trend in fish condition as measured by tissue weight or composition
over time. Others have used simple correlation analysis to relate one measure to
another or to some environmental variable. Adams and McLean (1985) used the
liver—somatic index as a variable in a regression analysis to predict largemouth
bass growth, whereas Delahunty and de Vlaming (1980) determined the organ
weight-body weight relationship of goldfish by means of linear regression, tested
the seasonal variation of the relationship using ANCOVA, and used ANOVA to
determine if lipid values varied by month (see Box 10.4).

ADDITIONAL MORPHOMETRIC MEASURES OF CONDITION

Morphometric assessments of condition estimate individual fitness based on mea-
surement of body form. Condition indices are a type of morphometric index that
measure body form along a single axis, which is used to calculate an average or
standard weight for a given length. Instead of the progression of condition indi-
ces from K to K, to W, as described in section 10.3, Jones et al. (1999) proposed
an alternative condition factor (B) based on two dimensions of fish body form,
length and height, in association with weight (building on equation [10.8]) in an
attempt to eliminate some of the length and species-related biases associated with
Fulton’s condition factor (K):

B=M/(He 12, (10.14)

where M is body mass or weight, H represents body height, and L is body length.
The premise is that mass is related to body density and form in three dimensions
(Iength, height, and thickness). Jones et al. (1999) suggested that the third di-
mension, thickness or girth, could be reasonably approximated by length (i.e.,
thickness is linearly related to length) and reduce regression variability while elimi-
nating substantial handling and measurement time required to assess girth or
thickness. Richter et al. (2000) argued that the assumption of a linear relation-
ship between thickness and length was false in most cases and that the effects of
allometric growth could be better minimized by the equation

B'=M/(H?e ). (10.15)
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Box 10.4 Analysis of Fat Composition Data

In Box 10.3, we tested for differences in W, within and among populations. Here we examine
whether those W, values are related to whole-body fat content in individual fish and then test
whether population mean fat content differs among populations. Fat composition, a direct
measure of individual wellness or energy stores, was estimated for the Yellowstone cutthroat trout
sampled in stream and lake habitats (see Box 10.1 for data). We compared fat composition to W, by
means of correlation and regression analyses. The question of interest is whether W, is a good
indicator of individual physiological fitness as referenced by tissue fat content. Additionally, we
want to know if using fat as the indicator of individual fitness results in a different conclusion
regarding the population-level effects that elevation (a surrogate for environmental conditions
such as temperature, growing season, and food supply) might have on fish condition. Please note
that in this example we did not check for length-related biases (e.g., potential differences among
length categories) within each population.The following SAS program regresses wet weight fat
percentage against individual W, (all populations combined into one data set) and compares mean
percent fat composition among the three Yellowstone cutthroat trout populations by means of
ANOVA.

Program

OPTIONS PS=54 LS=75;

DATA TROUTA;

INPUT POP $ TL WT FAT;

LOGTL=LOG10 (TL) ;

LOGWT=LOG10 (WT) ;

WS=10** (-5.189+ (3.099*LOGTL) ) ;

WR= (WT/WS) *100;

CARDS;

A 129 20 5.91

A 130 25 12.88

[Input complete data set for population A];
DATA TROUTB;

INPUT POP $ TL WT FAT;

LOGTL=LOG10 (TL) ;

LOGWT=LOG10 (WT) ;

WS=10** (-5.192+(3.086*LOGTL) ) ;

WR= (WT/WS) *100;

CARDS;

B 254 181 10.59

B 262 186 9.08

[ITnput complete data set for populations B and C];
DATA TROUT; SET TROUTA TROUTB;

PROC SORT; BY POP;

PROC REG; MODEL FAT=WR;

PROC ANOVA; CLASS POP; MODEL FAT=POP; MEANS POP/TUKEY;
RUN;



Condition 453

Output

Table Linear regression of wet weight fat percentage against individual W, .

Analysis of Variance

Source df SS Mean square F-value P>F
Model 1 857.46498 857.46498 158.72 <0.0001
Error 148 799.53931 5.40229

Corrected total 149 1657.00428

r? 0.5175 Root MSE 2.32428

Adjusted r? 0.5142 Dependent mean 6.57033

v 35.37542

Parameter Estimates

Variable df Parameter estimate SE t-value P> |t|
Intercept 1 -18.44302 1.99447 -9.25 <0.0001
Relative weight 1 0.26865 0.02132 12.60 <0.0001
Interpretation

Fat composition and W, are significantly correlated with each other (r=0.719,P < 0.001) and the
regression F-test (P < 0.0001) indicates that the slope (0.27) of the relationship between these
variables is significantly greater than zero.Thus, it is apparent that W, does reflect whole-body fat
content (as a percentage of whole body weight) in individual fish to some degree. However, the
coefficient of determination (r?), or the proportion of the variability in percent fat explained by the
linear relationship with W,, is 0.52, suggesting only moderate explanatory power and providing
evidence that other factors are influencing the weight and ultimately W, of individual Yellowstone
cutthroat trout.

Additional Output
Table Comparison of percent fat among populations (n = 150). The Tukey’s studentized range

(HSD) test controls the type | experimentwise error rate, but it generally has a higher type Il error
rate than the Ryan-Einot-Gabriel-Welsch multiple-range test.

Class Level Information

Class Levels Values

POP 3 ABC

Analysis of Variance

Source df SS Mean square F-value P>F
Model 2 414.859585 207.429793 24.55 <0.0001
Error 147 1242.144698 8.449964

Corrected total 149 1657.004283

R? 0.250367 Root MSE 2.906882

v 44.24254 Fat mean 6570333 (Box continues)
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Box 10.4 (continued)

Source df SS Mean square F-value P>F

POP 2 414.8595853 207.4297927 24.55 <0.0001

Tukey’s Studentized Range (HSD) Test for Fat

Alpha 0.05

Error df 147

Error mean square 8.449964

Critical value of studentized range 3.34848

Minimum significant difference 1.3765

Tukey grouping® Mean fat N Population
A 8.8376 50 A

B 5.9782 50 B

B 4.8952 50 C

2 Means with the same letter are not significantly different.

Interpretation

When comparing percent fat scores among populations, the F-test for the ANOVA was significant
(P <0.0001),indicating that at least one of the populations had significantly different overall mean
percent fat. However, the ANOVA does not provide information regarding which or how many
populations are significantly different; thus, a post hoc multiple-comparisons test is needed. There
are several post hoc multiple comparisons that can be used to determine which group mean(s) are
statistically different, such as Tukey’s studentized range test, Duncan’s multiple-range test, least
significant differences, and Scheffé’s statistic. Carmer and Swanson (1973) provide a good decision
tree regarding which multiple-comparison test is most appropriate.

In this case, we used Tukey’s test to determine which populations were different. The Tukey'’s
grouping shows that Yellowstone cutthroat trout in both lake populations (B and C) had signifi-
cantly lower percent body fat than did Yellowstone cutthroat trout in the low-elevation stream
population (A). Further, percent body fat for Yellowstone cutthroat trout in the two lakes are not
significantly different from each other (either there are no real differences or there was enough
uncertainty or variance in the percent fat values that the multiple-comparison test could not
differentiate B from C).These results seem different than those of the similar ANOVA we ran in Box
10.3, which indicated that mean population condition as measured by W, was not statistically
different among populations. However, we must remember that W, estimates were calculated using
different W, equations, which were designed to account for general body-form differences between
cutthroat trout in lotic and lentic systems. Even so, there is some question, as illustrated by both the
linear regression relationship between W, and fat in this example and the ANOVA in the previous
example (Box 10.3), as to whether W, provides a true reflection of fish condition in these
Yellowstone cutthroat trout populations, at least as measured by fat reserves in the body.
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Both Band B’ provide improvement over Kwhen comparing the regression rela-
tionship between actual body mass and the body mass back-calculated from the
condition factors (Jones et al. 1999; Richter etal. 2000). These are an appropriate
modification to the condition factor concept, allowing broader condition com-
parisons across size ranges and populations, especially for those species for which
W, equations have not been developed. Statistical tests similar to those discussed
for condition indices in section 10.3 can be applied to Bor B’ to provide rigorous
comparisons.

Similarly, measurements of body form dimensions other than length, such as
distances between anatomical landmarks, can be used in lieu of weight to assess
condition. This approach may be especially useful when individual measurements
of weight are highly imprecise, such as with small fish. Box 10.5 describes an ex-
ample of condition assessment in juvenile largemouth bass based on body depth
(height) and length in an ANCOVA. The use of one or two anatomical distances
to assess condition is a simplistic form of truss analysis.

Truss analysis has been in use for several decades (Humphries et al. 1981; Strauss
and Bookstein 1982) but primarily for morphometric comparisons of differences
in body form among different types or stocks of fish. This type of analysis involves
systematic measurement between multiple pairs of landmarks across the body in
order to differentiate body shapes computationally. These measurements, often
based on discrete juxtapositions such as fin insertion points (Fitzgerald etal. 2002),
form polygons across the body, which give rise to the term truss analysis. Fitzgerald
etal. (2002) applied truss analysis to quantify changes in fish condition by using a
10-point truss system to assess the effect of differing feed rations. Eigenvector
coefficients from principle component analysis (PCA), a multivariate data reduc-
tion technique, were successful in demonstrating that key truss measurements
change as condition changes and can be used to describe differences in body
form between groups of better- and lesser-conditioned fish. The PCA approach is
a common analytical tool for truss comparisons (Toline and Baker 1993; Moore
and Bronte 2001).

Truss analysis can be used to compare the condition of fish among groups
(populations), habitats, or sampling time. Fitzgerald et al. (2002) argued that
although truss measurements may currently be more time and cost consuming
than traditional condition indices, they provide a much clearer picture of the
effect condition, or lack thereof, has on body form and allow for precise compari-
sons over time. Truss comparisons may prove to be more ecologically, morpho-
logically, genetically, and physiologically revealing than are more popular and
traditional numerical constructs of fish condition. As digital imaging techniques
and computer analytical software continue to evolve and advance, truss analysis
likely will become a common technique for analyzing fish condition.

FACTORS AFFECTING CONDITION DATA

Seasonal changes occur in fish condition due to changes in fish behavior and
physiology that are influenced by many factors (e.g., changes in temperature,
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Box 10.5 Morphological Assessment of Juvenile Condition

The following data are used to assess effects of starvation on body condition of largemouth bass
juveniles. For most fishes, standard condition indices (e.g., W,) are applicable to only adults and
large juveniles because weight measurements are imprecise for small fish. A controlled experiment
was conducted to determine if simple morphological measurements could be used to determine
condition of juvenile largemouth bass (partial data set from Smith et al.[2005]). Hatchery-reared
largemouth bass were raised until completion of fin development and then divided into two
experimental groups of fed and unfed fish. Differences in body morphology existed after only 3 d
of food deprivation, and a simple bivariate ratio of body depth at the anus to standard length was
almost as efficient and robust at classifying fed and unfed largemouth bass as a multivariate index
based on 23 morphometric characters. Here we provide an assessment of differences in the body
depth after 6 d of food deprivation.

Table Standard length (SL; mm) and body depth (BD; mm) of juvenile largemouth bass. Fed
largemouth bass were provided brine shrimp; unfed largemouth bass were deprived food for 6 d.

Fed Unfed
SL BD SL BD
9.237 1.706 11.934 2427
9.267 1.730 10.482 2.164
9.500 1.895 10.605 1.907
9.291 1.811 10.604 1.903
9.291 1.814 13.024 2.811
12.296 2.680 12.215 2.390
12.575 2.585 12.660 2.324
12.296 2.388 12.984 2419
12.707 2.495 11.047 1.875
11.329 2.328 11.853 2.259
12.659 2.489 11.531 2.296
9.842 2.148 12.136 2.390
10.237 1.981 11.651 2.196
8.818 1.791 11.167 2.032
8.500 1.707 12.216 2.358
10.105 2.129 12.054 2.229
11.344 2.530 12.821 2.290
8.053 1.454 12.581 2.194
8.474 1.621 11.653 1.969
9.503 2.105 12.342 2.196
10.422 2.127 11.540 2.103
9.212 1.961 13.638 2.583
10.848 2425 11.168 1.872
8.369 1.537 11.490 2.003
10.925 2316 11.651 1.907

12.448 2.674 11.697 2.097
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Program
The following SAS program tests for differences among the body depth of fed and unfed large-
mouth bass by means of ANCOVA to remove the confounding effect of fish size.

OPTIONS PS=54 LS=75;

DATA LMB; INPUT FOOD $ SL BD @@;CARDS;

F 9.237 1.706 U11.9342.427

F 9.267 1.730 U10.4822.164

[Input complete data set];

PROC SORT; BY FOOD;

PROC GLM; CLASS FOOD; MODEL BD:FOOD|SL/SS3;PROC GLM; CLASS FOOD; MODEL
BD=FOOD SL/SS3 SOLUTION;RUN;

Output

Table An ANCOVA to test for slope differences in body depth (BD) of fed and unfed fish (n = 52).

Source df SS Mean square F-value P>F

Model 3 4.06177300 1.35392433 73.52 <0.0001
Error 48 0.88395183 0.01841566

Corrected total 51 4.94572483

R? 0.821270 Root MSE 0.135704

cv 6.321951 BD mean 2.146558

Source df Type Il SS Mean square F-value P>F

FOOD 1 0.00498644 0.00498644 0.27 0.6052
SL 1 2.64331777 2.64331777 143.54 <0.0001
SL*FOOD 1 0.00007687 0.00007687 0.00 0.9488

Table An ANCOVA to test for intercept differences in BD of fed and unfed fish (n = 52).

Class Level Information

Class Levels Values

Food 2 FU

Analysis of Variance

Source df SS Mean square F-value P>F
Model 2 4.06169612 2.03084806 112.57 <0.0001
Error 49 0.88402870 0.01804140

Corrected total 51 4.94572483

R? 0.821254 Root MSE 0.134318

cv 6.257381 BD mean 2.146558

(Box continues)
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Box 10.5 (continued)

Source df Type llI SS Mean square F-value P>F
FOOD 1 0.61792239 0.61792239 34.25 <0.0001
SL 1 3.91445980 3.91445980 216.97 <0.0001

Parameter Estimates

Variable Estimate? SE t-value P> |t|
Intercept -0.5671680765 z 0.18968254 -2.99 0.0044
FOOD-FED 0.2627719497 z 0.04490009 5.85 <0.0001
FOOD-UNFED 0.0000000000 z

SL 0.2330097751 0.01581879 14.73 <0.0001

2The X'X matrix has been found to be singular,and a generalized inverse was used to solve the normal equations.
Terms whose estimates are followed by the letter z are not uniquely estimable.

Interpretation

Differences existed in the body depth between fed and unfed largemouth bass (slopes were not
different [P = 0.95]; intercepts were different [P < 0.0001]; see discussion in Box 10.2), with greater
body depth for fed fish (see figure below). Thus, body morphology is related to nutritional status in
juvenile largemouth bass. Therefore, distances between anatomical landmarks or trusses (see
Strauss and Bookstein [1982] for a discussion of trusses) may be used in some instances to quantify
fish condition. This approach may be especially useful for assessing condition of larval and juvenile
fishes; however, careful consideration must be given to ontogenetic stage, size, and species
(Suthers 1992; Ferron and Leggett 1994). In addition, changes in fish condition in response to
changes in food availability is likely greatest at intermediate abundances of prey (Ferron and
Leggett 1994).That is, no change in condition will occur with an increase in prey abundance if a
larval fish is already consuming the biological maximum amount of food (i.e., food intake is limited
by handling and digestion). Likewise, little change in condition is expected for a starved larval fish
that is provided a small amount of food, especially if the fish is near the threshold for irreversible
starvation (also called the point-of-no-return). Thus, our statistical ability to detect differences in
fish condition will vary as a function of food abundance and period of assessment.

turbidity, food supplies, and photoperiod; Pope and Willis 1996). Condition is a
short-term indicator of fish health status and is primarily influenced by resource
availability and gonadal growth. Typically with spring spawners, fish condition is
greatest in the spring just before spawning, declines immediately after spawning,
and then increases through the summer and into the fall. Obviously, the seasonal
trend in condition for fish species that spawn in the summer (e.g., bluegill) or
fall (e.g., brook and brown trout) should be different than spring spawners. Fur-
thermore, differences in gonadal development between males and females may
show gender differences in seasonal condition trends. Finally, fish size may also
affect the seasonal trend in fish condition (see Pope and Willis 1996 for detailed
examples of related studies). Le Cren (1951) noted that seasonal changes in
condition of mature fish are often due to changes in gonad weight. However,
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Figure Body depth (mm) as a function of size (standard length; mm) for fed (solid circles) and
unfed (open circles) juvenile largemouth bass.

seasonal changes in the condition of immature fish may be attributable to feeding
conditions throughout the winter and spring. For example, Brown (1993) reported
that smaller (125-300-mm TL) largemouth bass in Aquilla Lake, Texas, came out
of the winter with alow W, (i.e., 85), and condition remained low until late spring—
early summer, when W, increased (i.e., 105). Gabelhouse (1991) found that small
white crappies (130-199-mm TL) in Melvern Reservoir, Kansas, exhibited the great-
est W,in July and that W, continued to decline throughout the fall and winter. He
speculated that the summer peak condition of small white crappies reflected the
feeding conditions associated with peak spawning of gizzard shad in mid to late
May. Thus, it is inappropriate to combine condition data across seasons. Further-
more, condition data should be reported separately for mature and immature
fish and may need to be separated by gender for mature individuals. Generally, W,
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equations are reported for combined sexes; however, Neumann and Willis (1994)
provided separate W, equations for male and female muskellunge (slopes of these
two equations were different).

Although general seasonal trends in condition of fish are observed, more spe-
cific spatial and temporal patterns of variation in W, also exist. For example, Liao
etal. (1995) observed spatial and temporal differences among lakes for pumpkin-
seed and golden shiner. Temporal variations in condition have been reported for
black crappie (Gabelhouse 1991; Guy and Willis 1991), burbot (Pulliainen and
Korhonen 1990), northern pike (Guy and Willis 1991), walleye (Guy and Willis
1991), and yellow perch (Le Cren 1951; Guy and Willis 1991). Many of these
studies have resulted in the common practice of sampling during “standard” peri-
ods for assessing condition of fishes. However, the temporal asynchrony of pump-
kinseed and golden shiner W, suggests that standard sampling periods might not
be as comparable among lakes or among years as previously believed (Liao et al.
1995). This temporal asynchrony illustrates some of the biotic and abiotic vari-
ability that fisheries scientists must deal with when assessing fisheries.

Fisheries scientists primarily use condition assessments as a measure of the
quality of fish populations, ideally with respect to local environmental and cli-
matic conditions and species potential, and as a means of measuring changes in
population quality resulting from management practices (Childress 1991). Thus,
comparisons of condition are made on many different scales. Comparisons can
be made within populations to assess differences across length-groups or to con-
duct spatiotemporal comparisons. Theoretically, data on the condition of various
sizes of fish within a population can be accumulated over many years to establish
a norm for a specific water body. Any deviation from the norm would indicate
some fluctuation within the population or some physical or chemical condition
interacting with a segment of the population (Swingle and Shell 1971). Compari-
sons can also be made among populations to evaluate temporal and spatial differ-
ences or to evaluate influences of factors (such as parasites) that affect portions of
populations (in effect, creating two populations: a population of affected indi-
viduals and a population of unaffected individuals; Box 10.6). Prentice (1987)
used ANCOVA to test differences in species-specific weight-length relations among
river systems and ecological regions within the state of Texas. He found differ-
ences among river systems and ecological regions for all species assessed. He also
found differences between genders for many of the species he assessed. If a com-
mon currency is used to assess condition (such as W,), comparisons can also be
made among species. Condition indices can also indicate changes in environ-
ment and ecological processes (e.g., Gabelhouse 1991; Hubert et al. 1994; Liao et
al. 1995). Finally, condition assessments are often important in manipulative stud-
ies to determine if treatments affect condition.

CONCLUSION

Condition data have been and will continue to be an important component of
ecological assessment in aquatic systems. When combined with other information
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Box 10.6 Use of Fulton’s Condition to Assess the Effects of Parasites

Parasites may negatively affect the condition of fish. Here we determine if condition of Arkansas
River shiners (29-60 mm TL) is reduced when fish are parasitized by anchor worm, a cosmopolitan
cyclopoid copepod. Arkansas River shiners were captured with a seine (see Hayes et al.[1996] for a
discussion of this gear), measured (TL; mm), weighed (0.1 g), and inspected to determine the
presence of the parasite (partial data set from Durham et al. 2002). Differences in condition among
fish with and without the parasite were assessed using ANOVA to test differences in Fulton’s
condition (K), an appropriate assessment metric as the fish are from a single population over
identical size ranges. Individual fish from this experiment were treated as the experimental unit
because our research question asked if differences in condition existed between two populations
of Arkansas River shiners (population PRESENT contained parasites and population ABSENT
contained no parasites).

Table Total length (TL; mm) and weight (WT; g) of Arkansas River shiners with and without
anchor worm.

With parasite Without parasite

TL WT TL WT TL WT TL WT

29 0.210 46 0.707 29 0.175 45 0.654
29 0.187 46 0.656 31 0.254 45 0.710
34 0.286 47 0.810 31 0.228 46 0.757
35 0.356 48 0.813 31 0.201 46 0.828
38 0.420 48 0.697 31 0.219 47 0.788
38 0.460 48 0.624 32 0.269 47 0.833
39 0.448 49 0.962 33 0.278 48 0.940
39 0.252 49 0.778 35 0.356 49 0.986
40 0.514 51 1.136 36 0.356 51 1.097
42 0.555 52 1.216 39 0.478 51 1.105
43 0.412 53 0.903 39 0.505 51 1.063
44 0.589 53 1.388 40 0.505 52 1.158
44 0.664 55 0.996 40 0.604 52 1.273
45 0.739 56 1.065 41 0.535 57 1.573
45 0.646 60 1.081 43 0.610 60 1.686

Program
The following SAS program provides output to compute length and weight summary statistics.
Differences in condition were tested using ANOVA to test differences in Fulton’s condition (K).

OPTIONS PS=54 LS=75;
PROC FORMAT;
VALUE PARACODE 0='ABSENT’ 1='PRESENT’;
DATA PARASITE;
INPUT TL WT PARASITE @@;
LOGTL=LOG10 (TL) ;
LOGWT=LOG10 (WT) ;
K= (WT/ (TL*TL*TL) ) *100000;
FORMAT PARASITE PARACODE. ;
CARDS;
(Box continues)
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29
29

(continued)

0.21 1
0.187 1

290.175 0
310.254 0

[Input complete data set];

PROC
PROC
PROC
PROC
PROC
PROC
RUN;

Output

SORT; BY PARASITE;
MEANS MEAN STDERR;
REG; BY PARASITE;

BY PARASITE;

VAR TL WT K;

MODEL LOGWT=LOGTL;

ANOVA; CLASS PARASITE;
ANOVA; CLASS PARASITE;
ANOVA; CLASS PARASITE;

MODEL TL=PARASITE;
MODEL WT=PARASITE;
MODEL K=PARASITE;

Table Descriptive statistics.

Parasite absent

Parasite present

Variable Mean SE Mean SE

TL 42.6000000 1.5585139 44.8333333 1.3838837
WT 0.7008000 0.0747452 0.6857133 0.0566121
K 0.8020460 0.0102421 0.7195553 0.0220817

Table Regression analysis of log,, transformed weight (LOGWT) on log,, transformed length
(LOGTL) in the absence of parasite.

Analysis of Variance

Source df SS Mean square F-value P>F
Model 1 2.27177 227177 2782.11 <0.0001
Error 28 0.02286 0.00081656
Corrected total 29 2.29463
r? 0.9900 Root MSE 0.02858
Adjusted r? 0.9897 Dependent mean -0.23476
cv -12.17232

Parameter Estimates
Variable df Parameter estimate SE t-value P> |t|
Intercept 1 -5.30889 0.09634 -55.11 <0.0001
LOGTL 1 3.13084 0.05936 52.75 <0.0001
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Table Regression analysis of LOGWT on LOGTL in the presence of parasite.
Analysis of Variance

Source df SS Mean square F-value P>F
Model 1 1.29852 1.29852 215.29 <0.0001
Error 28 0.16888 0.00603
Corrected total 29 1.46740
r? 0.8849 Root MSE 0.07766
Adjusted r? 0.8808 Dependent mean -0.21406
cv -36.28050

Parameter Estimates
Variable df Parameter estimate SE t-value P> |t|
Intercept 1 -4.69465 0.30570 -15.36 <0.0001
LOGTL 1 2.72350 0.18562 14.67 <0.0001
Table An ANOVA to test for differences in TL, WT, and K in the presence versus absence of the
parasite (n = 60).

Class Level Information
Class Levels Values
PARASITE 2 ABSENT PRESENT
ANOVA for Total Length

Source df SS Mean square F-value P>F
Model 1 74.816667 74.816667 1.15 0.2884
Error 58 3779.366667 65.161494
Corrected total 59 3854.183333
R? 0.019412 Root MSE 8.072267
cv 18.46496 TL mean 43.71667
Source df SS Mean square F-value P>F
Parasite 1 74.81666667 74.81666667 1.15 0.2884

(Box continues)
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Box 10.6 (continued)

ANOVA for Weight
Source df SS Mean square F-value P>F
Model 1 0.00341411 0.00341411 0.03 0.8727
Error 58 7.64884655 0.13187666
Corrected total 59 7.65226067
R? 0.000446 Root MSE 0.363148
cv 52.38295 WT mean 0.693257
Source df SS Mean square F-value P>F
Parasite 1 0.00341411 0.00341411 0.03 0.8727

ANOVA for K

Source df SS Mean square F-value P>F
Model 1 0.10207080 0.10207080 11.48 0.0013
Error 58 0.51547644 0.00888752
Corrected total 59 0.61754724
R? 0.165284 Root MSE 0.094274
cv 12.39138 K mean 0.760801
Source df SS Mean square F-value P>F
Parasite 1 0.10207080 0.10207080 11.48 0.0013

Interpretation

Mean + SE TL, WT, and K values for Arkansas River shiners (20-60 mm TL) not parasitized were 42.6 +
1.6,0.70 £ 0.07,and 0.80 + 0.01, respectively. Mean + SE total TL, WT, and K values for Arkansas River
shiners (20-60 mm TL) parasitized by anchor worm were 44.8 + 1.4,0.69 + 0.06,and 0.72 £ 0.02,
respectively. When analyzed separately (ANOVA), no differences were found in length (P = 0.29) or
weight (P = 0.87) of Arkansas River shiners with and without anchor worm (P > 0.28). However,
differences (P = 0.001) were noted when K was assessed.Thus, it appears that parasitism by anchor
worm causes condition to decrease in Arkansas River shiners. Note that visual examination of data
(see figure below) suggests that about one-third of Arkansas River shiners parasitized by anchor
worm have suppressed condition values, suggesting to us that about one-third of the Arkansas
River shiners collected with anchor worm had been parasitized for a relatively long period (long
enough to decrease condition), whereas the other two-thirds had been recently parasitized. This
interpretation is not possible from the statistical assessment and illustrates the need to examine
data visually.
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Figure Graphical depiction of relationship between weight and length (top panel), log,, trans-
formed weight and log,,transformed length (middle panel), and Fulton’s condition (K) and length
(bottom panel) for Arkansas River shiners with and without anchor worm Lernaea cyprinacea.
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(e.g., density, prey availability, size structure, community composition, and exploi-
tation), condition data provide fisheries scientists a more complete understand-
ing of population dynamics (recruitment, growth, and mortality) and environ-
mental influences. Several techniques have been used to assess fish condition,
and it is clear that there is much debate regarding the most appropriate way to
analyze and present condition data, mostly centered on statistical shortcomings
of analysis techniques. Appropriately, analytical techniques continue to evolve, as
demonstrated by the most recent critique of W, provided by Brenden etal. (2003).

Because of the relative ease of computation and use, the popularity of condi-
tion indices will continue to increase. Condition indices offer fisheries scientists a
tool to evaluate effects of various management strategies and, indirectly, ecologi-
cal interactions in fish populations and communities (Murphy and Willis 1991).
More research is necessary to determine both the statistical appropriateness and
relativity (to proximate factors and other expressions of fitness) of the condition
measure. However, it is apparent that condition indices are useful for assessing
fish condition (Blackwell et al. 2000).

Given the limitations discussed herein, controversy about assessment of condi-
tion will likely continue as fisheries scientists attempt to separate effects of fish
condition from effects of fish size. Detailed assessments of various measures of
fish condition that are tested with multiple statistical analyses will provide a clearer
picture of relationships among measures of condition and help clarify the useful-
ness and shortcomings of various techniques. In the meantime, morphometric
assessments of condition can be assessed appropriately using graphical display of
data in a bivariate plot and ANCOVA with length as a covariate. Further, ratios can
be used for descriptive purposes.
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