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Network analysis is used to address diverse ecological, social, economic, and epidemiological questions,
but few efforts have been made to combine these field-specific analyses into interdisciplinary approaches
that effectively address how complex systems are interdependent and connected to one another. Iden-
tifying and understanding these cross-boundary connections improves natural resource management
and promotes proactive, rather than reactive, decisions. This research had two main objectives; first,
adapt the framework and approach of infectious disease network modeling so that it may be applied to
the socio-ecological problem of spreading aquatic invasive species, and second, use this new coupled
model to simulate the spread of the invasive Chinese mystery snail (Bellamya chinensis) in a reservoir
network in Southeastern Nebraska, USA. The coupled model integrates an existing social network model
of how anglers move on the landscape with new reservoir-specific ecological network models. This
approach allowed us to identify 1) how angler movement among reservoirs aids in the spread of B.
chinensis, 2) how B. chinensis alters energy flows within individual-reservoir food webs, and 3) a new
method for assessing the spread of any number of non-native or invasive species within complex, social-

Aquatic invasive species ecological systems.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Ecologists and conservationists are challenged by the increasing,
unintentional spread of species from one location to another. One
method to quantify how a species interacts with and influences its
environment is ecological network analysis (ENA). This method is
particularly helpful for investigating potential effects before a
species has been introduced, allowing managers to be proactive
rather than reactive, and it acknowledges that ecosystems consist
of complex networks of interactions and allows for a holistic ex-
amination of the system in question; we can use ENA to assess how
energy flows throughout an entire food web are directly and indi-
rectly affected (Fath et al., 2007). Ecosystem resilience can be
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assessed by adding or removing nodes and observing how the
system reacts in a simulated future (Janssen et al., 2006), and the
strong human component embedded in the problem of spreading
aquatic invasive species naturally leads to a direct link with social
network analysis.

Parallels exist between modeling the spread of invasive species
and modeling the spread of infectious diseases (Byers, 2009; Floerl
et al., 2009; Meentemeyer et al., 2011). Infectious diseases spread
through networks via physical contact of individuals (Meyers et al.,
2005). The transmissibility of a disease is the average probability of
an infected person transmitting the disease to a susceptible person
through physical contact (Meyers et al., 2005). Network analysis
allows scientists to calculate how many secondary cases are likely
to occur as a result of contact with the primary host (Meyers et al.,
2005), as well as the average number of connections an infected
host has (Hethcote, 2000). Using this same framework, we calcu-
lated the probability of a species (the freshwater, non-native Chi-
nese mystery snail Bellamya chinensis [Reeve 1863]) from an
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“infected and contagious” primary host reservoir being “trans-
mitted” (introduced) to a new reservoir as a result of human
movement. Once B. chinensis “infected” a new lake, we then
calculated how long it took for the population to become abundant
enough so that the reservoir became “contagious” and was capable
of acting as a source population. We also monitored how the
introduction of B. chinensis affected biomass and energy flows
among groups in the altered ecosystem.

Bellamya chinensis is native to Asia and was first recorded in
North America in 1892 as an imported live food source (Wood,
1892). The species has since spread to numerous lakes and slow-
moving rivers throughout the USA, as well as southern Canada
(Olden et al., 2013).

This prosobranch, freshwater species is large, reaching shell
lengths up to 70 mm, lives 4—5 years (Jokinen, 1982), has an annual
fecundity of 30 juveniles/female (Stephen et al., 2013), and can
reach high population densities (Chaine et al., 2012) that fluctuate
with environmental conditions (Haak et al., 2013).

All Chinese mystery snails graze on algae and periphyton, but
adults >43 mm are also capable of suspension feeding (Olden et al.,
2013). When present alone, B. chinensis does not appear to reduce
native snail abundance (Solomon et al.,, 2010); however, when
present with the invasive rusty crayfish Orconectes rusticus [Girard
1852], native snail biomass decreases (Johnson et al., 2009).

1.1. Objectives

A geographically focused case study is used to demonstrate how
social and ecological models can be used together to answer social-
ecological questions. The objectives of this research study were
twofold: 1) couple a social network depicting human movement
among regional reservoirs with each reservoir's individual
ecosystem network model to assess how perturbations influence
biomass and energy flows throughout the entire network, and 2)
assess the specific impacts the non-native Bellamya chinensis could
have on the region and estimate its introduction probability to in-
dividual reservoirs based on human activity.

2. Materials and methods
2.1. Study area

The Salt Valley region of southeastern Nebraska, USA comprises
19 reservoirs (near the City of Lincoln (40.8258 N, 96.6852 W)
(Fig. 1). Reservoirs range from 0.048 to 7.28 km? in surface area and
have variable fish communities and stocking regimes. Each reser-
voir has different established aquatic invasive species (Table 1). Salt
Creek runs through the Salt Valley region and empties into the
Platte River near Ashland, Nebraska (41.0393 N, 96.3683 W)
(Martin, 2013).

Five of the 19 Salt Valley reservoirs (Branched Oak, Pawnee,
Wild Plum, Wagon Train, and Holmes) have established B. chinensis
populations; however, no research has examined how the snails
affect energy flows within these flood-control reservoirs. Despite
some species causing extensive damage to their novel ecosystems,
it is estimated that 90% of non-native species have minimal effects
in their introduced ranges (Williamson, 1996). The current lack of
information on B. chinensis prompted its use in this research, as
state resource managers are interested in learning more about its
potential impact on local ecosystems.

2.2. Social network development

The Nebraska Game and Parks Commission (NGPC) and
Nebraska Cooperative Fish and Wildlife Research Unit (NCFWRU)

conducted in-person and mail-return angler surveys during
2009—2012. Data on number of anglers, angling methods, species
sought, use of other Salt Valley reservoirs and demographics were
collected and compiled, providing raw data for the social compo-
nent of the current research project (Martin, 2013). Experimental
design, data collection and results are well-documented (Chizinski
et al., 2014; Martin et al., 2014).

Data on reservoir substitutability and angler preferences on
where and how to fish were obtained from the in-person angler
interviews and analyzed using the iGraph package in R v3.1.1 (R
Development Core Team, 2014). Anglers were asked to identify a
specific water body they would go to if their current reservoir was
closed. Directed connections between nodes (reservoirs) were
normalized to correct for different survey sizes and then weighted
to depict the number of anglers who moved between two partic-
ular nodes. This provided a social network of how often anglers
moved between and among reservoirs in the region. Boat anglers
were also asked where they last fished (with their boat), enabling
us to create a network depicting where anglers were coming from,
including reservoirs and lakes outside of the current study area, a
critical piece of information when studying aquatic invasive species
that may be passively transported by humans.

The commonly used centrality measures of betweenness,
closeness, and degree were calculated for each node in the network
(Table 2). Betweenness is a measure of how a node lies on paths
linking other reservoirs, closeness is the shortest path between two
reservoirs, and degree is the total number of other nodes an indi-
vidual node is connected to (Daly and Haahr, 2007). Additionally,
connectance index, transfer efficiency, system omnivory index, and
Finn's Cycling Index values were also calculated (described in
Christensen et al., 2005).

2.3. Ecological network development

If a snail is successfully transported from an infected reservoir to
a susceptible reservoir, then what will happen to the newly infected
ecosystem? Answering this question required developing
ecosystem network models for each of the 19 study reservoirs.
Using the dominant fish community as the basis for each network
(Table 1), we were able to identify and compartmentalize species or
functional groups critical to the trophic web of each reservoir.

Models were developed using the software Ecopath with Ecosim
v6.4.2 (EWE) (Polovina, 1984; Christensen and Pauly, 1995). The first
step was creating a static mass-balanced model of each reservoir in
Ecopath, based on the ecosystem's current community composi-
tion, using previously identified inputs (Allen, 1971; Walters et al.,
1997). These values, combined with the fishing pressure on spe-
cies within each reservoir (from the NGPC and NCFWRU project),
were used to develop a mass-balanced model based on Equation

(1)

Bi X (P/B), X EE,‘ = Yi"‘iBj X (Q/B)J X DCji (l)
j=1

where: B;is the biomass of group i; (P/B); is the production/biomass
ratio of group i; EE; is ecotrophic efficiency of group i; Y; is the yield
of group i, i.e., (Y; = F; x B;), where F; is mortality due to fishing; Bj is
the biomass of consumers or predators; (Q/B); is food consumption
per unit of biomass of predator j; and D j; is the proportion of prey i
in the diet of predator j. Details on the development of this equation
can be found in Christensen and Pauly (19923, b).

Input data were collected from empirical studies on specific
reservoirs when available; however, because much of this infor-
mation has never been measured for these reservoirs, reported
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Fig. 1. Reservoir locations in the Salt Valley region of southeastern Nebraska.

Table 1
Name, area, fish community, and established aquatic invasive species of each Salt Valley reservoir. Fish with (*) are species stocked at least once since January 2010.

Reservoir (year of last Area (km?) Dominant fish community Established aquatic

renovation) non-native species

Bluestem 132 Lepomis macrochirus, Micropterus salmoides, Sander vitreus, Pomoxis spp.,

Pylodictis olivaris, Ictalurus punctatus, Cyprinus carpio carpio

Bowling (2007) 0.05 L. macrochirus, M. salmoides®, I. punctatus *, Oncorhynchus mykiss*

Branched Oak 7.28 L. macrochirus, M. salmoides®, S. vitreus*, Pomoxis spp., P. olivaris, I. Corbicula fluminea, Bellamya
punctatus®, Ictalurus furcatus, C. carpio carpio, Morone chrysops x Morone chinensis, M. americana
saxatilis*, Morone americana

Conestoga 0.93 L. macrochirus, M. salmoides, S. vitreus*, Pomoxis spp., P. olivaris, I.
punctatus, C. carpio carpio, M. chrysops x M. saxatilis, Aplodinotus
grunniens

Cottontail (2006) 0.12 L. macrochirus, M. salmoides®, I. punctatus®, Lepomis cyanellus

East/West Twin 1.09 L. macrochirus, M. salmoides, S. vitreus*, Esox masquinongy, Pomoxis spp.,

I. punctatus*, Ameiurus spp., C. carpio carpio

Holmes (2004) 0.40 L. macrochirus, M. salmoides, S. vitreus®, I. punctatus®, O. mykiss* B. chinensis

Killdeer 0.08 L. macrochirus, M. salmoides*, Pomoxis spp., I. punctatus®, Ameiurus spp.

Meadowlark (2007) 0.22 L. macrochirus, M. salmoides, Pomoxis spp., . punctatus*

Merganser 0.17 L. macrochirus, M. salmoides, I. punctatus*, Ameiurus spp.

Olive Creek 0.71 L. macrochirus, M. salmoides, I. punctatus™*

Pawnee 3.00 L. macrochirus, M. salmoides*, Sander canadensis, S. vitreus®, Morone B. chinensis, M. americana
chrysops, Pomoxis spp., P. olivaris, I. punctatus, C. carpio carpio, A.
grunniens, M. americana

Red Cedar 0.20 L. macrochirus, M. salmoides, Pomoxis spp., P. olivaris, I. punctatus

Stagecoach 0.79 L. macrochirus, M. salmoides, S. vitreus*, Pomoxis spp., I. punctatus, C.
carpio carpio, M. chrysops x M. saxatilis*

Timber Point (2005) 0.11 L. macrochirus, M. salmoides, E. masquinongy*, Pomoxis spp., . punctatus™

Wagon Train 1.27 L. macrochirus, Lepomis microlophus, M. salmoides, S. vitreus®, E. B. chinensis
masquinongy”, I. punctatus™

Wild Plum 0.06 L. macrochirus, M. salmoides, I. punctatus B. chinensis

Wildwood (2003) 0.42 L. macrochirus, M. salmoides, S. vitreus®, I. punctatus™

Yankee Hill (2007) 0.84 L. macrochirus, M. salmoides, S. vitreus™, I. punctatus™




246 D.M. Haak et al. / Journal of Environmental Management 190 (2017) 243—251

Table 2
Betweenness, closeness, and degree values for each reservoir in the reservoir substitutability network and boater movement network.
Reservoir Betweenness Closeness Degree
Reservoir suitability Boater movement Reservoir suitability Boater movement Reservoir suitability Boater movement

Bluestem 37 0 0.83 0.02 19 15
Bowling 0 0 0.00 0.00 6 4
Branched Oak 8 36 0.72 0.04 25 26
Conestoga 23 20 0.89 0.03 22 21
Cottontail 15 8 0.60 0.03 19 13
East West Twin 0 0 0.00 0.00 11 8
Holmes 14 5 0.61 0.03 23 20
Killdeer 63 0 0.96 0.01 13 4
Meadowlark 21 0 0.63 0.03 15 12
Merganser 13 0 0.74 0.01 12 7
Olive Creek 21 46 0.64 0.03 27 26
Pawnee 20 17 0.48 0.04 21 19
Red Cedar 3 0 0.68 0.00 7 2
Stagecoach 3 18 0.55 0.04 23 25
Timber Point 36 29 0.68 0.03 12 18
Wagon Train 16 25 0.68 0.04 28 30
Wild Plum 93 0 0.98 0.02 15 9
Wildwood 42 28 0.79 0.04 31 27
Yankee Hill 14 28 0.59 0.04 25 25

values were collected from the literature, using values from similar
aquatic ecosystems when possible (i.e., reservoirs or small lakes in
the Midwestern USA). After inputs were entered, models did not
always mass-balance immediately. To manually balance each
model, the diet composition matrix was adjusted (never exceeding
+10% of the initial value). If necessary, small adjustments were
made to input variables for which we had the least confidence (also
never exceeding +10% of the initial value) until balanced models
were achieved for each reservoir.

Once mass-balanced models were developed, Ecosim was used
to create dynamic models by re-expressing Equation (1) as a set of
differential equations as illustrated by Equation (2).

dB; 3
T;:f(B) — MoB; — F;B; — > (B, B)) 2)
=

where: f{B) is a function of B; if i is a primary producer or

f(B) =g jLici x (B, Bj) if i is a consumer (Walters et al,
1997).

Ecosim reflects prey vulnerability when developing dynamic
models, and adjusting vulnerability estimates dictates whether the
model is donor-controlled or “joint limited.” In donor-controlled
models, consumer abundance is ignored when calculating flow
from source (i) to receiver (j), and in joint-limited models, flows are
adjusted based on prey and predator biomasses (Walters et al.,
1997). Low vulnerability values create donor-controlled models,
whereas high vulnerability values create joint-limited or “top-
down” models with trophic cascades (Carpenter and Kitchell,
1993). In the current research, we discuss results based on donor-
controlled models only.

Dynamic models were developed under two scenarios: 1) Bel-
lamya chinensis were introduced at a density of 0.0003 t km—2 and
projected without biomass forcing or 2) Bellamya chinensis were
introduced at a density of 0.0003 t km~2 and a biomass forcing
function was loaded to simulate effects resulting from snail bio-
masses determined by logistic growth (de Vladar, 2006) from the
introduced density up to the carrying capacity. Carrying capacity
was calculated for each reservoir (described in Langseth et al.,
2012), using a conservative value of 10% (3.838 t km~2) of the
empirically calculated post-drought biomass of the B. chinensis

population in Wild Plum of 38.58 t km~2 (Haak et al., 2013).

2.4. Coupling social and ecological network models

Within the framework for infectious disease modeling, we
linked individual ecological reservoir models through the existing
social network. We calculated the probability of B. chinensis from an
“infected and contagious” primary host reservoir being “trans-
mitted” (introduced) to a new “susceptible” reservoir as a result of
human movement. Once B. chinensis “infected” a new lake, we then
calculated how long it took for the population to become abundant
enough so that the reservoir became “contagious” and was capable
of acting as a source population. Once population size reached 10%
of the estimated carrying capacity, it became a source population
and the reservoir was categorized as “contagious” (Fogarty et al.,
2011). Finally, we combined this information to project an inva-
sion timeline within this group of reservoirs while also evaluating
how a system's structure (biomass values) and function (energy
flows) were affected by the introduction of B. chinensis. Mass-
balanced models were extracted at 10, 15, and 20 years after the
simulated invasion. Variations in how a system responded to the
disturbance of an added species in the network enabled us to es-
timate how resilient an individual reservoir is to stressors on the
system.

We estimated that the maximum percentage of live snails that
could successfully be introduced to a new lake via hitchhiking on
macrophytes attached to boat trailers as 0.12% (i.e., infection rate)
(Johnson et al., 2001). This value gives us the propagule frequency
but not the propagule size (Wittmann et al., 2014); propagule size is
difficult to estimate. Bellamya chinensis females give live birth, and
they may be carrying a number of viable juveniles at any given time
(Jokinen, 1982; Stephen et al., 2013). Thus, we assume the intro-
duction of a single individual is adequate to establish a new pop-
ulation. Finally, we assumed angler movement, fishing pressure,
and fish stocking were all constant over time.

3. Results
3.1. Social network analysis

Of the 4601 anglers interviewed, 3746 (81%) stated they would
move to another reservoir within the Salt Valley region (Fig. 2a).
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Fig. 2. a. Reservoir substitutability of anglers and b. movement of anglers using boats in Salt Valley, Nebraska. Nodes represent individual reservoirs and weighted, directed edges
depict the human movement between reservoirs. Reservoir codes: Bluestem (BL), Branched Oak (BO), Bowling (BW), Conestoga (CN), Cottontail (CT), East & West Twin (ET), Holmes
(HO), Killdeer (KD), Meadowlark (ML), Merganser (MG), Olive Creek (OC), Pawnee (PA), Red Cedar (RC), Stagecoach (SC), Timber Point (TP), Wagon Train (WT), Wild Plum (WP),

Wildwood (WW), Yankee Hill (YH).

Betweenness values for East and West Twin Lake and Bowling Lake
are zero because no in-person interviews were collected from these
two reservoirs. Additionally, though there are only 19 reservoirs,
the highest possible degree is 38 due to the directed nature of the
network. Boat anglers were asked an additional question about
which water body they last fished with their boat; 2582 responses
were recorded. Of these, 1908 (74%) had last fished at a Salt Valley
reservoir (Fig. 2b).

3.2. Ecological network analysis

When no biomass forcing function was used, B. chinensis pop-
ulations stayed equal to their initial density or even decreased.
There were no significant differences among comparable flow
values at model years 0, 10, 15, or 20 (ANOVA, P > 0.5). When
forcing biomass using a logistic growth model, mean flow values for
consumption (P = 0.0009), exports (P = 0.001), respiration
(P = 0.00003), production (P = 0.0001), flows to detritus
(P = 0.002), and total system throughput (P = 0.0002) at
simulation-year 20 were significantly greater than those of simu-
lation year 0 (ANOVA followed by Tukey HSD, P<(0.01 for each)).
Despite having significantly higher flows at simulation-year 20,
there were no significant changes in network metrics of con-
nectance index, transfer efficiency, or system omnivory index, even
with biomass forcing (ANOVA, P > 0.05), though total system
biomass (excluding detritus) significantly increased at year 20
(ANOVA, P = 0.006). In general, mid-trophic level fishes, such as
Pomoxis spp.[Lesueur 1829, crappie], Ictalurus punctatus [Rafin-
esque 1818, channel catfish], and Pylodictis olivaris [Rafinesque
1818, flathead catfish] were negatively affected by the introduction
of B. chinensis and showed reduced biomass values (Table 3).
Piscivorous fish and terrestrial predators increased in biomass after
an introduction, as did zooplankton and autotrophs.

3.3. Coupled social and ecological network models

Using the infection rate of 0.12% (Johnson et al., 2001), the lag
time was calculated for each reservoir, and a map of projected in-
vasion over the next 25 years was developed. Through this method,
primary host reservoirs critical to the spread of B. chinensis were
identified. Wagon Train, Branched Oak and Pawnee reservoirs are

Table 3

After the simulated introduction, a group's biomass within a lake increased,
decreased, or had no change (column values are number of reservoirs that displayed
each category).

Species/functional group Increase Decrease No change

Ameiurus spp.

Aplodinotus grunniens
Autotrophs

Benthic macroinvertebrates
Cyprinus carpio carpio
Detritus

Esox masquinongy

Ictalurus punctatus

Lepomis macrochirus
Lepomis microlophus
Micropterus salmoides
Morone chrysops

Morone chrysops x Morone saxatilis
Oncorhynchus mykiss
Pomoxis spp.

Predatory birds

Pylodictus olivaris

Sander vitreus

Zooplankton

N

'—‘-b'—‘LDWO'—‘O;ObU‘IMOONM'—‘O—*

N
ONNONOOON—_RWNOOOMO=N

NOOU = = 0O0O—=00NOOONOWWNOO

the top three reservoirs in which managers should prevent the snail
from being transported out. Wildwood and Stagecoach are the two
most important reservoirs in which managers should prevent the
snail from being introduced. Wildwood and Stagecoach act as
secondary hubs and aid the snail's spread to peripheral, less-visited
reservoirs in the network (Fig. 3). At the end of the 25-year simu-
lation, seven additional reservoirs were infected and contagious,
and an additional three were infected.

4. Discussion

Using ENA models to analyze the effects of invasive species is
still a relatively new idea under development (Pinnegar et al.,
2014). Miehls et al. (2009a, b) used ENA to compare ecosystems
before and after a zebra mussel invasion, but because they had time
series data spanning from pre-to post-invasion, they developed
two static, mass-balanced models in Ecopath and compared the
outputs. In contrast, Langseth et al. (2012) used EwE to develop
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Fig. 3. Simulated invasion of Bellamya chinensis in the Salt Valley, Nebraska reservoirs. Consecutive years when no changes take place are grouped together.
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models that mirror species invasions in Great Lakes Michigan and
Huron. They too had time-series data from pre- and post-invasions;
however, they tested four different methods to determine which
introduction method is best when employing Ecosim to model a
species' introduction to a new ecosystem. Based on the quality of
the data available to us, we followed their recommendation to use
biomass forcing to assess hypothetical impacts of an invasive spe-
cies introduction (Langseth et al., 2012). This group also tried
introducing the invasive species at a low biomass, but found they
had to control the species’ dynamics with an artificial fishery,
which may also explain why we did not see major changes to the
system when we introduced B. chinensis at low biomasses without
the use of biomass forcing.

Though the mean flow values of total system consumption,
exports, respiration, production, flows to detritus, and total system
throughput were significantly higher in simulation year 20, none of
the connectivity metrics commonly used to compare ecosystems
were significantly different. Additionally, certain fish species were
more susceptible to population declines after the introduction of
the snail, though not all fish within a calculated trophic level were
negatively affected. It appears B. chinensis causes changes to the
distribution of the community's biomass, but overall function re-
mains relatively constant despite these changes.

Previous applications of epidemiological models to ecological
research have been discussed in the literature. Mack et al. (2000)
discussed the theoretical similarities between epidemiological
models and invasive species models. Floerl et al. (2009) modeled
the spread of a hypothetical invader by hull fouling on recreational
yachts in New Zealand; though this study was based on a social
network of boat movement, it did not incorporate ecological net-
works into the analysis. Meentemeyer et al. (2011) used spatio-
temporal, stochastic epidemiological modeling and geographical
modeling to predict the invasion of a forest pathogen. Ferrari et al.,
2014 also used epidemiology network theory to develop dynamic
network models to simulate the spread of a terrestrial forest
pathogen, though the pathogens in each of these examples spread
independently and did not require a human network component
for analyzing changes in distributions. To our knowledge, the pre-
sent study is the first to apply the epidemiological model frame-
work to an analysis including coupled social and ecological network
models.

4.1. Network development

Ecopath with Ecosim has been consistently updated over the
past 25—30 years and used in >150 peer-reviewed publications
(Christensen and Walters, 2004); however, as with any model,
some limitations exist. Ecopath provides a static “snapshot” of a
mass-balanced system; it does not necessarily represent equilib-
rium conditions. Ideally, long-term time series data are used to fit
parameters, but such data did not exist in our case. Our models
represent starting points based on best current information and can
be adjusted as additional empirical data become available. In fact,
these models can be used to identify where the largest gaps in
critical data exist. For example, there were few published reports or
available data with macroinvertebrate abundance or biomass. Thus,
we selected macroinvertebrates most commonly reported in the
limited fish-diet data that exist and used biomass estimates from
similar Midwestern reservoirs with published data. As a result, the
macroinvertebrate species or functional groups included are taxo-
nomically broad and biased toward species that are consumed by
fish species receiving study and analysis. Future research would
benefit from individual lake assessments, but this would increase
the amount of data necessary for this approach to work.

Diet composition matrices are extremely important inputs for

the development of Ecopath models, yet these proportions are es-
timates based on the species and functional groups included in the
model. Including age stanzas to account for ontological diet
changes would be beneficial but could not be included due to the
uncertainty of the input data. This is another example of an existing
information gap where future research could be focused to improve
the current model.

In Ecosim, the vulnerability values are critical to how the model
is structured. Lower vulnerability values simulate a network based
on bottom-up control, and higher vulnerability values simulate a
network based on top-down control (Christensen and Pauly, 1998;
Ahrens et al., 2012). The vulnerability values used in the present
study were estimated by the software and provide results of a
donor-controlled model. Converting the Ecopath models to dy-
namic models in Ecosim is also complicated by temporal variation.
Most likely, actual values of input parameters change over the
course of a year, especially in temperate climates, but for simplicity
a single value is entered for a period of one year.

The developers of EWE have actively identified strengths and
weaknesses of the software as it continues to be developed
(Walters et al., 1997; Pauly et al., 2000; Christensen and Walters,
2004), and reviews on the strengths and weaknesses of EwWE, as
well as comparisons with other ecological network models, have
been published by other groups. The major strength of ecosystem
network modeling, in general, is the ability to look at the system as
a whole rather than limiting investigation to single-species effects;
however, some caveats have been provided. When using EwE,
accepting the default values provided by the software should be
discretionary, and users should not use the software as a “black-
box” modeling tool, especially when confidence in the data is
limited (Plaganyi and Butterworth, 2004). Link et al. (2008)
compared Ecopath with another software, EcoNetwrk, and found
the results to be similar despite the differences underlying the
models. Fath et al., 2013 compared Ecopath with the software NEA
(Fath and Borrett, 2006) and found discrepancies in results be-
tween the two models, particularly with the calculated Finn's
Cycling Index. In the current study, we heeded these warnings as
much as possible (for example, by not including Finn's Cycling In-
dex in the analyses).

The 25-year simulations that did not force B. chinensis biomass
resulted in the snail either staying at a very low biomass or dis-
appearing all together. One possibility is that we did not include all
of the vital compartments specific to the functioning of that
reservoir in the analysis. Nutrient concentrations and the microbial
community were both excluded due to extremely low confidence in
available data. Little (if any) data exist on macroinvertebrate
biomass, and we could not conduct individual lake surveys for each
species. This affects our ecological models because we had less
confidence in biomass estimates for the lower trophic levels.
However, it may also be that the reservoirs had enough functional
redundancy allowing changes to ecosystem structure without
changing ecosystem function.

4.2. Coupled social and ecological network models

To couple the social and ecological models, a number of as-
sumptions were required. First, we assumed the transmission rate
of 0.12% from Johnson et al. (2001) applied to B. chinensis move-
ment on macrophytes attached to boat trailers. Aquatic invasive
species are commonly moved by commercial and recreational
boating (Schneider et al., 1998; Muirhead and Macisaac 2005). This
estimate is conservative because it does not take into account other
means of introduction, such as movement on wildlife or fishing
gear, and it does not include intentional aquarium dumping (Padilla
and Williams, 2004) or “merit releases” by people who wish to
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establish a harvestable population as a food source (Vidthayanon,
2005).

Using this transmission rate, it is assumed snails will be intro-
duced at boat landings, and subsequent populations will be found
around these points in a reservoir (Rothlisberger et al., 2010). Once
a lake is infected, there is a lag time before the population density is
large enough to begin acting as a contagious source population.

Admittedly, this coupled approach is difficult to implement due
to the data-intensive nature of the method. Collecting long-term
data available on the movement of humans within a region and
on the biotic community composition is a difficult task, particularly
in an era of budget cuts and limited resources. In the present study,
the survey data used to develop the social networks and the data on
fishing pressure were collected over a four-year period as part of a
PhD thesis (Martin, 2013), and not all lakes were included in each
aspect of data collection, providing some limitations in the analysis.
Stocking records were collected from the NGPC online database.
Input data for the ecological networks were collected from
empirical research on specific reservoirs, when possible, but many
of the inputs were collected from research on other Midwestern
USA reservoirs reported in the literature. Site-specific input data for
each reservoir simply do not exist, but we tried to include values
from as ecologically similar systems as possible. The resulting
models are believed to be as accurate as possible with the con-
straints of current data availability.

4.3. Conclusions and management implications

We demonstrated that network coupling is possible and allows
for the assessment of ecological resilience at a regional scale, as
recommended by Pope et al. (2014). Our coupled social and
ecological network approach enabled us to rank reservoirs in order
of prioritization, both in terms of where invasive species manage-
ment should focus on preventing individuals from leaving and
where management should focus on preventing individuals from
being introduced.

Based on simulations, three of the reservoirs that currently have
B. chinensis populations and high levels of boating traffic, Wagon
Train, Branched Oak, and Pawnee, are the most important source
populations; preventing outgoing snails from these reservoirs will
greatly limit, or at least slow, the spread of B. chinensis in the region.
In contrast, despite having the largest population of B. chinensis,
Wild Plum's population is of little importance in the spreading of
snails through the network. If B. chinensis spreads in the manner
suggested by simulations, then two reservoirs, Wildwood and
Stagecoach, are the two invasion hubs, connecting peripheral, less-
visited reservoirs to the infected and contagious reservoirs. This is
indicated by their high betweenness and degree values, both for
reservoir substitutability and boater movement. Additionally, these
two reservoirs have high fishing pressure and close proximity to
source populations. In the current model, anglers from Branched
Oak infect Wildwood and anglers from Wagon Train infect Stage-
coach, both in simulation year two. This is a tangible output
agencies can use to ensure their efforts are as effective as possible.

This framework was implemented using B. chinensis as a study
species, but it has the potential to be applied to other aquatic
invasive species that spread via anthropogenic movement. It also
helps managers identify how humans may be affecting the land-
scape by creating a visual representation of connection patterns
that may not otherwise be apparent. Finally, this approach may be
useful in determining regional effects of intentional (e.g., stocking)
and unintentional (e.g., invasive species, natural disasters)
disturbances.
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