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Global warming is a major driver of range expansion and 
distributional shifts in fl ora and fauna throughout the world 
(Lenoir and Svenning 2015, Pauchard et al. 2016) and it may 
impact changes in local, seasonal temperatures and contrib-
ute to an increase in the frequency of extreme weather events 
(IPCC 2014). Changes in local climatic characteristics (e.g., 
seasonal temperature extremes) may prove conducive or det-
rimental to different species (Ummenhofer and Meehl, 2017). 
The abilities of non-native species to tolerate changing condi-
tions, including changes in extreme seasonal temperatures, 
can increase or decrease their invasive potential and manage-
ment effectiveness in preventing, eradicating, or controlling 
them (Hellmann et al. 2008, Mainka and Howard 2010, 
Canning-Clode et al. 2011, Gallardo and Aldridge 2013). 

Thermal tolerance, or the range of temperatures a spe-
cies can survive without mortality, constrains the fundamen-
tal and realized geographic ranges of terrestrial and aquatic 
species (Brett 1956). Thermal tolerance also limits the depths 
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at which some aquatic species operate within the water col-
umn. Identifying the thermal limits of aquatic invasive spe-
cies is important for both managing and preventing their 
introduction, establishment, and spread (Rahel and Olden 
2008, Gallardo and Aldridge 2013, Kelley 2014). Once identi-
fi ed, the upper and lower thermal tolerance temperatures can 
be used to inform the development and refi nement of inva-
sive species distribution models (Uden et al. 2015), which can 
be used to explain variability and predict changes in invasive 
species’ geographic distributions. 

The Chinese mystery snail, Bellamya chinensis (Gray, 1834) 
is native to freshwater systems of eastern Asia (Jokinen 1982), 
and is a popular food item in the local Chinese markets of 
North America (Mills et al. 1993). First known introductions 
of B. chinensis to North America were in the early 1890s 
(Clench and Fuller 1965, Clarke 1981, Jokinen 1982). Since, 
its North American range spans from the east to west coasts, 
extending as far north as southern Canada (Jokinen 1982, 
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Therriault and Kott 2002, Karatayev et al. 2009). Like many 
aquatic species the primary vector for the spread of B. chinen-
sis in North America is direct or indirect introduction by 
humans (Jokinen 1982, Mackie and Claudi 2009). Although 
considered an invasive species in North America, the ecologi-
cal impacts of B. chinensis on native species and ecosystems 
are not well-understood (Solomon et al. 2010). 

Unlike other poikilotherms, gastropods are less able to 
behaviorally adapt to changing temperatures, thus, primarily 
rely on periods of slow acclimation (Segal 1961). However, 
Bellamya chinensis might escape potentially lethal weather by 
retreating to deeper water. As such, extreme temperature events 
may not be a reliable predictor of die off of B. chinensis in lakes 
and ponds. Management techniques with potential to infl uence 
the probability of survival and spread of this species include 
drawdowns of water bodies, and the cleaning, draining and dry-
ing of watercrafts and related equipment. Identifying the ther-
mal tolerance limits and capacity to withstand desiccation is 
required to determine the effi cacy of using these temperature-
dependent management techniques for controlling B. chinensis.

Based on published observations and information we 
hypothesize the lower and upper thermal limits of Bellamya 
chinensis are approximately 1 °C (Soes et al. 2011) and 24 °C 
(benthic) to 30 °C (surface water), respectively (Wolfert and 
Hiltunen 1968). Testing the conservativeness of these estimates 
is critical in identifying the realized thermal tolerance limits 
of B. chinensis. In this study, we use wild-caught B. chinensis 
to form a baseline range of temperatures to hypothesize the 
limits of their temperature tolerances and discuss the impli-
cations of these tolerances for managing and predicting the 
ultimate distribution of B. chinensis in North America.

MATERIALS AND METHODS

Capture, maintenance, acclimation, and marking of snails
To identify the thermal tolerance limits of Bellamya chi-

nensis we subjected wild-caught snails to ambient tempera-
ture manipulation in a laboratory setting. We collected adult 
snails with shell length > 30 mm from Wild Plum Lake in 
Southeast Nebraska (40° 36' 52" N, 96° 54' 09" W) during the 
summer of 2012. We housed live specimens in a 1500 L 
aquarium fi lled with aerated, de-chlorinated tap water, main-
tained at an ambient temperature of approximately 22 °C. 
Water exchange occurred weekly at a rate of 25%. We fed 
snails a diet of romaine lettuce, TetraVeggie algae wafers, and 
goldfi sh fl ake food en masse three times a week. 

Prior to experimentation, snails were acclimated inside 
one of two 80 L aquariums for a period of 14 days at one of 
two temperatures: 18 °C or 25 °C. We used an infrared ther-
mometer to quickly obtain water temperatures. After the accli-
mation period, each individual was removed from its aquarium 

and marked with a unique number using Rust-oleumTM 
industrial appliance touch-up paint (Wong et al. 2013), dur-
ing which time each snail was exposed to room temperature 
(approximately 22 °C) for less than one hour. After marking 
and prior to experimentation, snails were given a period of 
48 hours to recover from handling. Specimens were handled 
using the Guidelines for Use of Fishes in Research (Use of 
Fishes in Research Committee 2004). 

Study design
Our original study design was a critical thermal minimum 

and maximum approach (see Fry 1947, Beitinger et al. 2000), 
with the use of small pilot studies to hone in on the tempera-
tures that should be assessed. During those pilot studies, we 
determined that (1) snails became unresponsive at tempera-
tures above 40 °C and (2) more than 50% of snails were able 
to withstand temperatures down to 0 °C. Given results of these 
pilot studies and our desire to better understand Bellamya 
chinensis thermal tolerance from an ecological perspective, 
we modifi ed our approach and used two experimental designs 
to provide new insights about the thermal tolerances of 
B. chinensis. Thus, we attempted to determine the approximate 
upper temperature at which B. chinensis can survive using 
critical thermal maximum (CTM; Huntsman and Sparks 
1924, Beitinger et al. 2000), and the approximate time that 
B. chinensis can survive in 0 °C water using the incipient lower 
lethal temperature (ILLT; Fry 1947, Beitinger et al. 2000) 
technique for snails acclimated to 18 °C or 25 °C (Fig. 1).

Critical Thermal Maximum (CTM)
To estimate the warmest water temperatures at which 

either 18 °C or 25 °C - acclimated Bellamya chinensis can sur-
vive, we randomly placed snails into one of 10, 80-L glass 
aquaria located in one of two thermal chambers (i.e., accli-
mation group) resulting in 20 snails in each observation 
group (Fig. 1). Pilot studies revealed death did not occur 
when temperature was cooler than 40 °C (Wong, unpub-
lished). As such, we began observations for mortality at this 
temperature and made additional observations at 5 °C inter-
vals until water temperature reached 60 °C. Temperatures in 
aquaria were raised at a rate of 1 °C · hour-1. When water 
heated to the predetermined observation temperature (e.g., 
45 °C), a randomly selected aquarium was removed from the 
thermal chamber and allowed to equilibrate to room tem-
perature (approximately 22 °C), and sat for a recovery period 
of 48 hours that began once water temperature equilibrated 
with room temperature. We assessed snails for mortality at 
the end of this recovery period. 

Incipient Lower Lethal Temperature (ILLT)
To estimate the duration that Bellamya chinensis accli-

mated to either 18 °C or 25 °C can survive in water that is 
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0 °C, we randomly placed snails into one of eight 19-L plastic 
aquaria located in the respective thermal chamber (i.e., accli-
mation group) such that there were 20 snails in each aquarium. 
Water was cooled at a rate of 1 °C · hour-1 until water tem-
perature was 0 °C. To ensure complete freezing of the water, 
the ambient temperature in the chamber was maintained at 
-1 °C. After the pre-determined exposure period to 0 °C 
(0 hours, 23 hours, 28 hours, or 33 hours), a randomly selected 
aquarium was removed from the thermal chamber, allowed 
to equilibrate to room temperature (approximately 22 °C), 
and sat for a recovery period of 48 hours that began once 
water temperature equilibrated with room temperature. 
We assessed snails for mortality at the end of this recovery 
period. 

Determining death of individuals
Observing mortality in the Bellamya chinensis is diffi cult; 

dormancy (retracted into shell with operculum closed) is a 
common reaction of B. chinensis when exposed to stress. 
Thus, after each trial, snails were given a recovery period to 
resume normal activity. For each test, we assumed mortality 
if the snail met one or more of the following criteria: snail 
mantle body mass had blue coloration; corporal mass sepa-
rated from the snail shell; the snail did not move during the 
recovery period (we used photographs to assess displacement 

of an individual over the 48 hours) and the snail was unre-
sponsive to gentle prodding. For the ILLT experiment, we 
also assumed a lack of net movement of individual snails to 
be indicative of death.

RESULTS

Critical Thermal Maximum (CTM)
We observed slight differences among survival of each of 

the acclimation groups at each temperature increment. All 
snails (N = 20) in the cooler (18 °C) acclimation group sur-
vived and 75% (15 of 20 individuals) in the warmer (25 °C) 
acclimation survived the 40 °C treatment. Most snails (95%) 
in the cooler acclimation group, and only 10% in the warmer 
group died by the 45 °C measurement. No snails survived 
temperatures at or above 50 °C.

Incipient Lower Lethal Temperature (ILLT)
We observed slight differences among survival of each of 

the acclimation groups at each duration increment. We 
observed no mortality of snails belonging to the 18 °C accli-
mation group. Within the 25 °C acclimation group snails, we 
observed 30% mortality at the fi rst observation (0 hours at 
0 °C), 5% mortality at the second (23 hours at 0 °C), and no 
mortality at or beyond 28 hours at 0 °C.

DISCUSSION

Our study identifi ed the upper thermal tolerance of 
Bellamya chinensis as approximately 45 °C, but did not iden-
tify a lower lethal limit, which suggests the lethal limit is < 0 °C. 
Our estimates are based on slow exposures to low and high 
temperatures for 24-hour and up to 33-hour periods, respec-
tively. Based on observational studies of wild B. chinensis, 
we hypothesized the lower and upper limits to be 1 °C and 
between 24 and 30 °C, respectively (Soes et al. 2011, Karatayev 
et al. 2009, Wolfert and Hiltunen 1968). This study expanded 
the published estimates, exceeding also our expectations. In 
the experimental setting B. chinensis withstood temperatures 
much greater than the estimated 26 – 30 °C and did not expe-
rience die off during exposure to freezing water. We deter-
mined that B. chinensis is a relatively temperature-hardy 
species; it is therefore unlikely that benthic temperatures in 
most water bodies of the United States of America and 
Canada will exceed the upper or lower tolerance limits of 
B. chinensis (Wetzel 2001). Inverse stratifi cation in the winter 
precludes the event of benthic temperatures reaching less 
than 0 °C in most temperate lakes (Wetzel 2001). Additionally, 
B. chinensis has been observed to burrow under adverse con-
ditions (Unstad et al. 2013), perhaps isolating the animal 

Figure 1. Collection, acclimation, and experimental treatment selec-
tion scheme for experimental estimation of Critical Thermal Maxi-
mum (CTM) and Incipient Lower Lethal Temperature (ILLT) for 
wild-caught Bellamya chinensis (Chinese mystery snail). 
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from extreme temperatures. Based on the current evidence 
and current climatic conditions of the United States and 
Canada, we suggest that B. chinensis will not be limited geo-
spatially on the basis of current climatic patterns alone. 

Drawdowns are a common management technique uti-
lized for kill-off of undesirable aquatic animals (Verill and 
Berry 1995, Cheng and LeClair 2011). Although desiccation is 
a primary source of mortality in animals during drawdowns, 
it is an improbable method for inducing Bellamya chinensis 
mass mortality. Bellamya chinensis are capable of closing their 
operculum extended periods both in and out of water, sup-
porting the ability to withstand dry and hot conditions for at 
least 8 weeks (Havel 2011, Unstad et al. 2013). Additionally, 
this study identifi ed an in-water, upper temperature limit 
of approximately 45 °C. Schmidt-Nielson et al. (1971) found 
that the somatic tissue temperature of the land snail 
Sphincterochila boissieri reached approximately 50 °C during 
a day with a maximum air temperature of 43 °C. Thus, the air 
temperature required to achieve mortality of B. chinensis via 
desiccation may be less than the in-water upper temperature 
limit we identifi ed. To be effective, drawdowns would likely 
need to last for months under extremely high, sustained air 
temperatures. 

Techniques for preventing the spread of aquatic invasive 
species include the cleaning, draining and drying of water-
crafts and equipment between launches. Adult and larval 
aquatic invasive species can be present in live wells, bilges, 
bait buckets and engines (Johnson et al. 2001) and entrained 
on boat propellers and trailers (Rothlisberger et al. 2010). 
High-pressure washing, low-pressure washing and hand 
removal are three forms, with varying successes, of cleaning 
boats and equipment of aquatic invasive species (Rothlisberger 
et al. 2010). Current practices primarily involve high-pressure 
washing with 60 °C water for a minimum of 10 seconds 
to decontaminate watercrafts and equipment from aquatic 
invasive species. According to our study, Bellamya chinensis 
is intolerant of temperatures above 50 °C; however, we did 
not test their tolerance to very hot temperatures (>50 °C) for 
substantially shorter periods (i.e., <60 seconds). Future 
studies that focus on B. chinensis mortality caused by very 
hot water for short periods could be used to evaluate the effi -
cacy of watercraft decontamination procedures in prevent-
ing the spread of B. chinensis. Additionally, the effects of 
B. chinensis exposure to chemicals commonly used to decon-
taminate watercrafts and equipment (i.e. quaternary ammo-
nium compounds, vinegar, bleach, etc.) could be evaluated, 
though expectations are low; neither rotenone nor copper 
sulfate effectively killed adult Chinese mystery snails in labo-
ratory experiments (Haak et al. 2014). Identifying thermal 
limits of Bellamya chinensis may inform our understand-
ing of best practices for managing invasive populations of 
B. chinensis.
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