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Age and Growth of a Native, Lightly Exploited Population of 
Coregonus clupeaformis (Lake Whitefish) in a Small Natural 

Lake in Maine

Daniel M. Weaver1,*, Silas K. Ratten1, Stephen M. Coghlan Jr.1, 
Graham D. Sherwood2, and Joseph D. Zydlewski3,1

Abstract - We assessed annual growth of Coregonus clupeaformis (Lake Whitefish) from 
a natural, lightly exploited population in a small lake in northern Maine using observed 
and back-calculated length-at-age data. We sampled Lake Whitefish from Clear Lake, ME, 
with gill nets and extracted otoliths from 57 fish. We incorporated age-at-length data into 
a von Bertalanffy growth function, which we employed to model growth trajectories from 
individual fish. We used these estimates to evaluate length-at-age variability within this 
population. Ages for Lake Whitefish varied from 8 y to 30 y. Among all fish, we character-
ized incremental growth by an average-growth coefficient of K = 0.156 and an estimated 
L∞ of 484 mm. The oldest individuals demonstrated the slowest incremental growth (K = 
0.106) when compared to younger cohorts (K = 0.218). We observed an inverse relationship 
between L∞ and K and the estimated age-at-capture (R2 = 0.178 and 0.723, respectively), 
which suggests relatively slow growth and a smaller maximum size for the longest living 
members of the population. Our estimated parameters serve as a reference to inform man-
agement of populations of Lake Whitefish.

Introduction

 Fish growth rates and trajectories are important correlates of survival, size, 
age at maturity, and longevity, and may indicate surplus energy allocated towards 
somatic growth or reproduction (Beverton and Holt 1959, Charnov 1993, Ware 
1980). Furthermore, age and growth data are critical components used to inform 
management and conservation planning for monitoring populations and shaping 
harvest strategies for commercial or recreational fisheries (Hilborn and Walters 
1992, Isely and Grabowski 2007). Many of the world’s fisheries are overexploited 
(FAO 2016), but describing a species’ growth parameters in the absence of strong 
fishery pressure allows for greater predictive power to estimate changes in popula-
tion dynamics from management strategies, recruitment success, and effects from 
environmental factors.
 In North America, Coregonus clupeaformis (Lake Whitefish) is distributed from 
northern Maine to the Great Lakes’ region, northwest into interior Canada and 
Alaska, and eastward into Labrador (Evans et al. 1988). Lake Whitefish support 
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commercial, recreational, and subsistence fisheries, and are a valuable economic 
resource in the Great Lakes (Fleischer 1992, Spangler 1970) and throughout much 
of Canada (Scott and Crossman 1973). Overexploitation (Mohr and Ebener 2005, 
Rennie et al. 2009), the introduction of nonnative species (DeBruyne et al. 2008, 
Herbst et al. 2013, Hoyle 2005), and habitat destruction (Bronte et al. 2003) have 
caused declines in many populations, although some recent evidence hints at local 
recovery (e.g., in the Chaumont Bay area of Lake Ontario; McKenna and Johnson 
2009). A thorough understanding of growth and age structure of Lake Whitefish is 
necessary to guide conservation and management of the fishery.
 In contrast to populations in the Great Lakes’ region, Lake Whitefish in Maine 
are found in small natural lakes and are not subject to commercial harvest. These 
populations experience minimal impact from recreational fisheries, although 
historically, their exploitation for subsistence has waxed and waned with human 
settlement and establishment of logging camps (Basley 2001, Wood 2016). Despite 
presumably low levels of fishing mortality, populations of Lake Whitefish in Maine 
have still suffered declines and extirpation, perhaps due to habitat degradation 
and interactions with invasive Osmerus mordax (Mitchill) (Rainbow Smelt) and 
landlocked Salmo salar L. (Atlantic Salmon) (Basley 2001, Gorsky and Zydlewski 
2013). The characterization of unexploited populations of Lake Whitefish in these 
small lakes, however, may reveal novel dynamics that provide fisheries managers 
with benchmark data to inform existing management strategies (Hilborn and Wal-
ters 1992). We determined the age and size structure of a natural, lightly exploited 
population of Lake Whitefish in a small lake in Maine.

Field-Site Description

 We studied a population of Lake Whitefish in Clear Lake (253 ha) located in the 
unorganized township T10 R11 WELS, Piscataquis County, ME (46◦31'16.02''N, 
69◦7'33.97''W; Fig. 1). Clear Lake is an oligotrophic lake with a mean depth of 
8.8 m and a maximum depth of 26.2 m (Lake Stewards of Maine 2011). The fish 
assemblage of Clear Lake consists of 13 game and nongame species (Table 1). The 
assemblage is characteristic of other natural lakes in the region, though Rainbow 
Smelt are a recent nonnative addition.

Methods

 We sampled fish during the summer of 2011with 3 identical 122-m experimen-
tal gill nets (3.8–8.9-cm mesh size). We euthanized all fish with buffered tricaine 
methanesulfonate (Institutional Animal Care and Use Committee protocol number 
A2011-06-02). For all captured Lake Whitefish, we measured total length to the 
nearest mm and mass to the nearest 0.1 g, determined sex, and removed sagittal 
otoliths. We included a total of 57 otoliths for age and growth analysis.

Otolith removal and preparation
 We employed sagittal otoliths to examine fish age (Herbst and Marsden 2011). 
We wiped clean, air dried, and stored all otoliths, after using foceps to remove 
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them from the fish. To facilitate sectioning, we embedded the otoliths in Epothin 
epoxy resin (Electron Microscopy Sciences, Hatfield, PA) and sectioned them with 
an IsoMet low-speed saw (Buehler, Lake Bluff, IL). We cut 1-mm–thick sections 
transversely through the otolith core, positioned sections on glass microscope 

Figure 1. Map of Maine. Inset indicates location of Clear Lake. 

Table 1. Fish species present in Clear Lake, ME.

Common name Scientific name

Blacknose Dace Rhinichthys atratulus (Hermann)
Brook Trout Salvelinus fontinalis (Mitchill)
Brown Bullhead Ameiurus nebulosus (Lesueur)
Burbot Lota lota (L.)
Creek Chub Semotilus atromaculatus (Mitchill)
Lake Chub Couesius plumbeus (Agassiz)
Lake Trout Salvelinus namaycush (Walbaum in Artedi)
Lake Whitefish Coregonus clupeaformis (Mitchill)
Northern Red Belly Dace Phoxinus eos (Cope)
Rainbow Smelt Osmerus mordax (Mitchill)
Slimy Sculpin Cottus cognatus Richardson
Three Spine Stickleback Gasterosteus aculeatus L.
White Sucker Catostomus commersonii (Lacepède)
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slides with Crystalbond adhesive (SPI Supplies, West Chester, PA), and sanded and 
polished them lightly to improve visual clarity.

Otolith analysis
 We imaged otoliths with a Nikon Digital Sight DS-5M digital camera (Nikon 
Inc., Melville, NY) interfaced with a dissecting microscope (Nikon SMZ800). 
Images were captured using incident (fluorescent) lighting and analyzed with Ali-
cona–TEX–Basic imaging software (version 1.4.2; Alicona Corporation, Bartlett, 
IL). We used as a training data-set otoliths from known-age hatchery-stocked Lake 
Whitefish from St. Froid Lake, ME, and followed the methods reported by Mills 
and Chalanchuk (2004). Staff from the Michigan Department of Natural Resources, 
Charlevoix Research Station (Charlevoix, MI) externally validated a subset of aged 
otoliths from Clear Lake.
 We employed Image J software (version 1.8.0; Research Services Branch, 
National Institute of Health, Bethesda, MD; Abramoff et al. 2004) to obtain 
measurements of annular increments. We created growth transects at a ~45-degree 
angle towards the dorsal surface of the otolith. Each pair of light (hyaline) and dark 
(opaque) growth zones visible with transmitted light constituted 1 y of fish growth. 
We measured the distance between opaque zones (annulus to annulus) as an indica-
tor of annual growth in body length. We followed Fraser–Lee methods (including a 
standard intercept-correction factor) to back-calculate lengths-at-age for individual 
fish, and provide individual growth trajectories throughout the lifetime of the fish 
(Isely and Grabowski 2007).

Growth model
 We performed retrospective increment-analysis on otoliths to reconstruct growth 
histories of individual Lake Whitefish and used the von Bertalanffy growth function 
(VBGF; von Bertalanffy 1938) to describe patterns in lifetime growth:
 Lt = L∞(1 - e-K[t - t0]), 
where Lt is the mean length of fish at time t (years), L∞ is the theoretical maximum 
mean asymptotic length at age, K is the Brody growth coefficient that describes the 
decline in the growth rate as an individual approaches L∞, and t0 is the theoretical 
age at which body length is zero (Isley and Grabowski 2007). We incorporated 
back-calculated lengths at age of individual fish into a VBGF. We used nonlinear 
least squares to estimate parameters for individual fish. We initialized starting val-
ues of the parameters of the model by designating L∞ as the maximum total length 
in the observed data, K = 0.2, and t0 = 0. We averaged parameter values across all 
fish to arrive at a model describing the average growth pattern.
 To better account for the variation in growth trajectories and compare VBGF 
parameters among old and young individuals and also to reduce the effect of indi-
vidual variability described above, we grouped fish into 3 arbitrary age categories 
(8–10 y, 11–15 y, and >15 y) to depict young, middle-aged, and older fish. We also 
based categories on sufficient sample size for each age category to obtain a precise 
mean value sufficient for comparison. We conducted a 1-way analysis of variance 
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(ANOVA) to assess differences in mean growth parameters L∞ and K among the 3 
age categories. We also analyzed the relationship between those 2 growth param-
eters and the estimated age at capture of all fish with least squares linear regression. 
We conducted all parameter estimations and statistical tests in the statistical pack-
age RStudio (version 1.1.447, RStudio, Boston, MA). For all tests, we set P < 0.05 
as the threshold for statistical significance. We conducted a Tukey post hoc test with 
adjusted family-wise error rates to further examine ANOVA tests with a significant 
age-category effect.

Results

Fish capture
 Lake Whitefish varied in age from 8 y to 30 y and in total length at capture 
from 370 mm to 514 mm (Fig. 2, Table 2). All ages <8 y and several intermediate 
age classes were not represented in the sample. Few (6) old-age fish (>20 y old) 
were captured, and this age class comprised a small component of the wild popu-
lation we studied. Back-calculation methods provided 822 lengths-at-ages for 
analysis (Fig. 2). 

Individual growth trajectory
 Our inspection of growth trajectories of individual fish within each sample 
revealed substantial variation among curvature (K) and/or asymptotic length (L∞) 

Figure 2. Number sampled (n), estimated capture age, and back-calculated size-at-age of 
Lake Whitefish from Clear Lake, ME. Bolded values indicate the mean measured captured 
length (mm) of fish (n) sampled for estimated capture age.
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values among young and old fish (Fig. 3A). We observed that back-calculated 
lengths-at-age varied nearly 100 mm in age-1 total length. Variability in length-
at-age increased with increasing age. Back-calculated lengths-at-age demonstrated 
that older fish were also the slowest growing individuals, exhibiting smaller 
lengths-at-age in comparison to younger cohorts. This finding may result in an 
underestimate of mean K and/or an overestimate of mean length-at-age (Lt), which 
are otherwise useful in describing the average growth pattern of a population.

Table 2. Mean total length and mass, numbers of males and females, and mean (± SD) L∞ and K growth 
parameters of 3 age groups among Lake Whitefish sampled in Clear Lake, ME. Superscripted letters 
identify significantly different L∞ and K parameters among age groups from a Tukey post-hoc test.

	 Average	
	 total	 Average	 # of	 # of
Age group 	 length (mm)	 mass (g)	 males	 females	 L∞ ± SD (mm)	 K ± SD

8–10	 400.2	 678.8	 11	 9	 457 ± 36A	 0.218 ± 0.038A

11–15	 453.0	 1048.5	 5	 10	 496 ± 36B	 0.146 ± 0.019B

>15	 446.5	 988.7	 14	 8	 501 ± 27B	 0.106 ± 0.032C

All individuals	 433.6	 905.5	 30	 27	 484 ± 38	 0.156 ± 0.058

Figure 3. Sampled 
Lake Whitefish 
from Clear Lake, 
M E ,  d e p i c t i n g 
(A) length-at-age 
growth trajectories 
using Fraser–Lee 
back calculation 
and (B) back-cal-
culated lengths-at-
age and von Ber-
talanffy growth 
curve describing 
the average growth 
(all sampled fish) 
with associated 
parameters.
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Growth model
 The predicted total length (mm) was described by the VBGF as 
 Lt = 484(1 - e-0.156[t - 1.98]).
When we plotted back-calculated lengths-at-age along with the VBGF curves, the 
influence of older and slower-growing fish was evident (Fig. 3B).
 Mean L∞ and K parameters differed across the 3 age categories (P < 0.05; 
Table 2). Tukey post hoc comparisons of the 3 categories indicated that the 8–10 
y-old group (L∞ = 457 ± 36 mm) had a lower asymptotic length when compared to 
the 11–15-y-old group (L∞ = 496 ± 36 mm) and the >15-y-old group (L∞ = 501 ± 
29 mm). Tukey post hoc comparisons indicated that all age groups differed from 
one another in growth coefficients (Table 2). We also observed a strong negative 
relationship between K and estimated age-at-capture (n = 57, R2 = 0.723, P < 0.05; 
Fig. 4). Conversely, we observed a modest positive relationship between L∞ and 
estimated age-at-capture (n = 57, R2 = 0.178, P < 0.05; Fig. 4).

Discussion

 Few studies have examined unexploited or lightly exploited populations of Lake 
Whitefish in their native range (see Healey 1975, Johnson 1976, Mills et al. 2004 
as examples). We examined the age and growth of Lake Whitefish in a small oligo-
trophic lake in northern Maine by estimating growth parameters for a population 
experiencing relatively little exploitation and perturbation. Our results can inform 
management agencies regarding the growth dynamics of Lake Whitefish to aid in 

Figure 4. Linear regres-
sions with associated 
equations and R2 com-
paring L∞ and K von 
Bertalanffy growth pa-
rameters with the es-
timated age-at-capture 
for all sampled Lake 
Whitefish in Clear Lake, 
ME. P < 0.05 for both 
regression analyses, 
which indicated a non-
zero correlation.
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developing fisheries-management plans by serving as a reference for commercially 
exploited stocks.
 Our VBGM demonstrated a general pattern seen in many fish populations, 
whereby rapid growth in early life stages resulted in earlier maturity, faster de-
cline in growth rate (high K), and decreased life span compared to slower-growing 
individuals (Alm 1959, Beverton and Holt 1959, Hutchings 1993). Our estimates 
of average L∞ and K values (484 mm and 0.156 respectively) were consistent with 
reported values for a nonnative unexploited population of Lake Whitefish (L∞ = 
~500 mm; K = 0.14–0.15; Hosack and Hansen 2014) and observed growth patterns 
for native unexploited populations (Healey 1975, Mills et al. 2004) as well as ex-
ploited populations or stocks that are commercially fished (L∞ = ~500–800 mm, K = 
0.12–0.84; Bronte et al. 2003, Chu and Koops 2007, Cook et al. 2005, Zhu et al. 
2016). In theory, estimates of K among exploited populations may be higher than 
for unexploited populations because larger, older fish are generally harvested first.
 We observed a maximum age of 30 y, which is consistent with other observa-
tions of longevity in this species (Barnes and Power 1984, Herbst et al. 2011, Mills 
et al. 2004). In contrast, studies of commercially exploited populations in the Great 
Lakes generally estimated lower maximum ages varying from 5 y to 10 y (Cook et 
al. 2005, DeBruyne et al. 2008, Healey 1978); however, older fish (17–20 y old) 
are occasionally harvested (Bronte et al. 2003, Schorfhaar and Schneeberger 1997). 
Harvest has the potential to shape the size structure and sustainability of a fishery 
(Post et al. 2002). Lake Whitefish from Clear Lake may mature later, live longer, 
and defer growth at older ages, compared to exploited populations that may grow 
quickly and reach sexual maturity earlier at a smaller size (sensu Healey 1975).
 We observed substantial variation in length-at-age among individual fish, dem-
onstrated by a wide age-distribution and growth trajectories of individuals that 
diverged with increasing time at large (Table 2, Fig. 3A). Based on our VBGF 
trajectories, size estimates for early age classes (i.e., 1–5 y) derived from older 
fish at capture were markedly smaller (and had a lower growth coefficient; K) than 
those derived from fish captured at a younger age. Although this finding suggests 
differences in the growth trajectories of fish based on longevity, it is important to 
consider the possibility of this difference being an artifact of our sampling. Similar 
observations a have been attributed to Lee’s phenomenon, a pattern in which back-
calculated lengths are smaller than actual lengths, caused by increased error in older 
fish age (Duncan 1980, Schirripa 2002). Thus, our estimated growth trajectories 
for older fish may need to be interpreted with caution. Cautions withstanding, our 
regression analyses revealed a marked decrease in K with age-at-capture and an 
increase in L∞. Such observations were congruent with the hypothesis that longer-
lived individuals grew slower and may have an increase in maximum size (Alm 
1959, Beverton and Holt 1959, Hutchings 1993). 
 Invasive species may compete with native species. Research from Lake Erie 
suggests Rainbow Smelt reduced abundance and growth of Lake Whitefish through 
predation and competition for resources (Oldenburg et al. 2007). In Europe, species 
of native Coregonus lavaretus (L.) (European Whitefish) have depressed growth 
and reduced abundance due to the introduction of other congener species such as 
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Rutilus rutilus (L.) (Roach; Raitaniemi et al. 1999) and Coregonus albula (L.) (Ven-
dace; Bhat et al. 2014). Clear Lake has an established population of Rainbow Smelt; 
however, the effects that population may have on recruitment and growth of Lake 
Whitefish is unknown. Other work has demonstrated positive relationships among 
prey density, growth, and survival of larval and adult Lake Whitefish (Brown and 
Taylor 1992, Lumb et al. 2007), which may be reduced in the presence of competing 
invasive species.
 Size and age structure are critical components used to make informed decisions 
regarding fisheries management (Pope et al. 2010). Our study described the age and 
growth of a lightly exploited population of Lake Whitefish in a small Maine lake. 
Our work complements existing studies that examined lightly exploited or unex-
ploited populations (e.g., Healey 1975, Hosack and Hansen 2014, Johnson 1976, 
Mills et al. 2004). In addition, our work directly allows comparisons to populations 
that are exploited commercially (e.g., the Great Lakes; DeBruyne et al. 2008, Ren-
nie et al. 2009, Wang et al. 2008), or in the process of recovery (Herbst et al. 2011). 
Quantifying age and growth parameters for Lake Whitefish can aid with the devel-
opment of informed strategies for the conservation and management of populations 
and stocks.
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