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Abstract Anadromous fishes serve as vectors of

marine-derived nutrients into freshwaters that are

incorporated into aquatic and terrestrial food webs.

Pacific salmonines Oncorhynchus spp. exemplify the

importance of migratory fish as links between marine

and freshwater systems; however, little attention has

been given to sea lamprey (Petromyzon marinus

Linnaeus, 1758) in Atlantic coastal systems. A first

step to understanding the role of sea lamprey in

freshwater food webs is to characterize the

composition and rate of nutrient inputs. We conducted

laboratory and field studies characterizing the ele-

mental composition and the decay rates and subse-

quent water enriching effects of sea lamprey carcasses.

Proximate tissue analysis demonstrated lamprey car-

cass nitrogen:phosphorus ratios of 20.2:1 (±1.18 SE).

In the laboratory, carcass decay resulted in liberation

of phosphorus within 1 week and nitrogen within

3 weeks. Nutrient liberation was accelerated at higher

temperatures. In a natural stream, carcass decompo-

sition resulted in an exponential decline in biomass,

and after 24 days, the proportion of initial biomass

remaining was 27% (±3.0% SE). We provide quan-

titative results as to the temporal dynamics of sea

lamprey carcass decomposition and subsequent nutri-

ent liberation. These nutrient subsidies may arrive at a

critical time to maximize enrichment of stream food

webs.

Keywords Petromyzon marinus � Sea lamprey �
Anadromous � Temperature � Streams � Marine-

derived nutrients

Introduction

Historically, many freshwaters were linked to the

marine environment by spawning migrations of adult

anadromous fishes and subsequent seaward migration

of juveniles. Adult fish were important vectors for

marine-derived nutrients transported into oligotrophic
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freshwater systems and subsequently incorporated

into stream and lake food webs. However, populations

of many species declined or collapsed due to wide-

spread damming, the loss of spawning habitat, and

overfishing (Sheer & Steel, 2006; Saunders et al.,

2006; Limburg & Waldman, 2009; Hall et al., 2011).

Productivity and stream food web structure and

function in resource limited aquatic systems may

depend upon this annual influx of carbon, nitrogen,

and phosphorus (Polis et al., 1997; Wipfli & Baxter,

2010).

Research from the Pacific Northwest is replete with

examples documenting the influence of anadromous

salmonines in driving nutrient and energy flows

among marine and freshwater ecosystems (Cederholm

et al., 1999; Gende et al., 2002). Nutrients provided by

decomposing salmon carcasses have been shown to

increase: (1) concentrations of nutrients in stream

water (Jauquet et al., 2003; Mitchell & Lamberti,

2005; Claeson et al., 2006); (2) algal biomass (Claeson

et al., 2006; Kohler et al., 2008), and conversely

ecosystem respiration (Holtgrieve & Schindler, 2011;

Levi et al., 2013); (3) macroinvertebrate production

and density (Lessard & Merritt, 2006); (4) fish growth

(Bilby et al., 1996;Wipfli et al., 2003); and (5) riparian

vegetation growth (Naiman et al., 2002). These

subsidies may alleviate nutrient limitations (Ruegg

et al., 2011). The understanding of the role of Atlantic

coast anadromous fish assemblages in altering nutrient

dynamics of freshwater systems is limited, but

discernible linkages between marine and freshwater

systems have been established (Durbin et al., 1979;

Garman & Macko, 1998; Walters et al., 2009). Food

web response to nutrient subsidies in Atlantic coast

systems may differ from what is observed in Pacific

coast systems.

Pacific and Atlantic coast streams in North America

exhibit differences that may affect the dynamics and

efficacy of nutrient subsidies from anadromous fish.

Pacific coast streams are generally high-gradient

oligotrophic systems originating from the Rocky

Mountains and Sierra Nevadas. In contrast Atlantic

coast streams are generally low-gradient oligotrophic

and mesotrophic systems originating from the lower-

lying Appalachian Mountains. These ecoregions are

characterized by distinct climates, soils, nutrient

limitations, and surface land geomorphology (Omer-

nik, 1977; Smith et al., 2003). Nutrient subsidy

responses vary between ecoregions and are further

influenced by land use patterns (Tank & Dodds, 2003;

Johnson et al., 2009). Whereas dams have impacted

systems on both coasts, Atlantic coast systems are

disproportionately impacted by historic and ongoing

timber harvesting practices and acid rain pollution that

have further increased environmental stress and

reduced productivity, resilience, and biodiversity

(Driscoll et al., 2001; Sweeney et al., 2004). There-

fore, land use and watershed integrity in Atlantic coast

systems are largely perturbed from intact conditions

relative to Pacific coast systems and may respond to

nutrient subsidies differently.

Atlantic and Pacific coast streams comprised

unique anadromous fish assemblages that likely vary

in net nutrient additions to freshwater systems (Nislow

& Kynard, 2009; Pess et al., 2014; Weitkamp et al.,

2014). Fish assemblages in Pacific coast streams

largely comprised five species of semelparous

salmonines Oncorhynchus spp. However, Atlantic

coast anadromous fish assemblages contain more

diverse life histories, comprised ubiquitous popula-

tions of iteroparous alosines Alosa spp., and striped

bass (Morone saxatilisWalbaum, 1792), with relative-

ly smaller spawning populations of iteroparous At-

lantic salmon (Salmo salar Linnaeus, 1758), and

rainbow smelt (Osmerus mordax Mitchill, 1814), and

semelparous sea lamprey (Petromyzon marinus Lin-

naeus, 1758). Iteroparous species primarily supply

metabolic waste and gametes to freshwater systems,

but carcasses can contribute nutrients, whereas semel-

parous species primarily contribute relatively larger

amounts of nutrients from dead spawners (Nislow &

Kynard, 2009). The contrasting composition of these

fish assemblages, and associated life history expres-

sions likely influence the timing and magnitude of

nutrients delivered to freshwater systems, and may

preclude the direct application of trends from Pacific

coast streams to Atlantic coast streams.

Sea lamprey and Pacific salmonines share traits of

anadromy and semelparity, but the seasonal timing of

migration suggests disparate carcass nutrient effects

on stream food webs (Guyette et al., 2013). Sea

lamprey spawn from spring to early summer (Beam-

ish, 1980) compared to the majority of salmonines that

spawn from fall to winter (Sumner, 1953; Quinn,

2005). Thus, sea lamprey arrival in freshwaters

provides nutrient subsidies at a critical time when

rising water temperatures and increasing photoperiod

stimulates primary productivity and increases the
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metabolic demand of consumers (Lovern, 1938; Hall,

1972, Cummins, 1974). Additionally, this coincides

with the emergence of young-of-the-year fish (e.g.,

Atlantic salmon fry), and macroinvertebrates (Gus-

tafson-Greenwood & Moring, 1990; Merritt et al.,

2008; Nislow & Kynard, 2009), which may benefit

from these nutrient subsidies.

Our objective was to characterize the temporal

nutrient dynamics of decomposing sea lamprey car-

casses as a first step in revealing subsidy pulses to

stream ecosystems. To address our objective we

sought to (1) analyze whole adult sea lamprey

carcasses for elemental composition; (2) quantify

temperature-dependence of concentrations of nutri-

ents liberated from carcasses in the laboratory; and (3)

quantify the decay rates (i.e., loss of biomass) of

carcasses in a natural stream.

Methods

Fish collection

For the laboratory component of this study investigat-

ing elemental composition and temperature effects on

nutrient liberation (Objectives 1 and 2), we collected

pre-spawn sea lamprey during May 2010 and 2013

from Veazie Dam, the first barrier encountered by

anadromous fishes migrating upstream the Penobscot

River, Maine, at river kilometer (rkm) 40.0 in

Penobscot County, Maine (note: Veazie Dam was

removed in summer 2013; Penobscot River Restora-

tion Trust, 2015). Collection took place during

migration before sea lamprey commenced nest build-

ing and spawning activities. For the field component

investigating in-stream decomposition rates (Objec-

tive 3), we collected post-spawn sea lamprey from

Sedgeunkedunk Stream, a 3rd order tributary flowing

into the Penobscot River at rkm 36.5 during June 2010.

All collected fish were sexed and measured for mass

(±0.1 g) and total length (±1 mm), then stored frozen

at -10�C until experimental deployment.

Elemental composition analysis

Whole pre-spawn sea lamprey carcasses (7 males, 3

females, n = 10) were processed for elemental com-

position. Individual carcasses were homogenized with

water in a tissue grinder and oven dried at 68�C for

48 h. Samples were pulverized with a mortar and

pestle then weighed out into two equivalent replicate

samples. Samples were analyzed for total carbon and

nitrogen by dry combustion (Leco CN-2000, St.

Joseph, Michigan, U.S.A.), and for Ca, K, Mg, P, Al,

Fe, Mn, Na, Zn, and Cu by dry ash mineral analysis

with inductively coupled plasma optical electron

spectroscopy (Thermo-Jarrell Ash ICP spectrometer,

Model 975, Franklin, Massachusetts, U.S.A.) by the

University of Maine Analytical Laboratory and Soil

Testing Service. Results for total carbon and nitrogen

were reported as a percent of dry weight and elements

were reported in mg kg-1 of dry weight.

Laboratory carcass decomposition and nutrient

dynamics

In the laboratory, we assigned sea lamprey carcasses

(9 females, 3 males; n = 12) randomly as one of four

replicates to one of three temperature treatments: 15,

20, and 25�C. Carcasses were placed into individual

15 l tanks irrigated with well water brought to each

temperature using isolated heated or chilled water

baths connected by a recirculating pump. A header

tank for each treatment provided constant groundwa-

ter inflow at approximately 80 ml min-1; a complete

water turnover within each tank occurred every 3 h.

Air stones were placed inside tanks to circulate water

and promote mixing. Temperature loggers (Onset,

Hobo Pendant UA-001-08, Cape Cod, Massachusetts,

U.S.A.) were placed inside the tanks of two replicates

of each treatment and recorded temperature at one-

hour intervals. During the course of this study the

laboratory received no sunlight, and fluorescent lights

operated on a timer lighting the room between 0700

and 1900 h. At the end of the experiment carcasses

were re-measured for wet mass (±0.1 g).

We sampled water from the outflow of each tank

prior to the addition of carcasses, at day 1, 2, and 3,

then every 3 days for 45 days. Approximately 60 ml

of water was filtered through 25-mm, 0.45-lm mixed

cellulose ester membranes (Millipore Corp., Billerica,

Massachusetts, U.S.A.) with a filter holder and syringe

into an acid washed bottle. In addition, a filtered 60 ml

sample of deionized water, serving as a blank, was

collected during each sampling occasion. After col-

lection, samples were stored frozen until analysis.

Samples were analyzed for dissolved inorganic nitro-

gen as ammonium (NH4) and nitrate (NO3) by flow
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injection analysis (O.I. ALPKEM Flow Solution

FS3000, College Station, Texas, U.S.A.), and total

soluble phosphorus by inductively coupled plasma

optical emission spectrometry (Thermo iCAP 6000,

Thermo Fisher Scientific, Marietta, OH, U.S.A) by the

University of Maine Analytical Laboratory and Soil

Testing Service. Detection limits for ammonium and

nitrate were 0.03 and 0.01 mg l-1, respectively, and

0.1 mg l-1 for total soluble phosphorus.

Natural stream carcass decomposition

Sea lamprey carcasses (n = 24) collected from

Sedgeunkedunk Stream were reintroduced on June

24 2010 consistent with the peak in post-spawning

mortality we have observed in previous years. Car-

casses were placed in mesh bags, caged in �’’ mesh

hardware cloth (to discourage scavengers), and dis-

tributed evenly among three 25-m reaches in the

stream. Cages were anchored to secure carcasses to the

substrate and prevent removal by terrestrial scav-

engers. Temperature loggers were placed in the stream

reaches to record temperature at one-hour intervals.

We sampled carcasses at days 14–17, 21, 24, 29, 32,

37, and 46. Carcasses were lifted gently from the

stream with a dip-net, and debris was removed and

excess water was allowed to drain, while attempting to

minimize handling. Mass was measured with a

hanging scale to the nearest 0.1 g. During sampling

periods, carcasses that declined to B 15% original

body mass were removed from the stream as they

largely comprised a notochord and oral disk.

Statistical analysis

Due to low sample sizes, we used a series of

nonparametric Wilcoxon Rank-Sum tests (Sokal &

Rolf, 2012) to analyze for differences in elemental

composition between males and females. Coefficients

of variation (CV = SD/mean x 100; Zar, 1999) were

calculated from replicate samples. Ammonium, ni-

trate, and total soluble phosphorus concentrations

from the laboratory decomposition experiment were

analyzed in a linear mixed effects model (JMP Pro

version 11.0, SAS, Inc., Cary, North Carolina).

Residuals did not conform to a normal distribution

(Shapiro–Wilk W test: P\ 0.05; Zar, 1999); there-

fore, a log transformation was applied to the nutrient

concentrations to satisfy normality assumptions. We

modeled nutrient concentration as a function of

temperature, day, and the interaction as fixed effects,

and replicate as a random effect. Finally, results from

our natural stream carcass decomposition experiment

were plotted as a mean proportion of initial carcass

weight and tested as an exponentially declining

function of time with a Kolmogorov–Smirnov good-

ness-of-fit test (Zar, 1999).

Results

Elemental composition

Our elemental composition analysis demonstrated

several differences among male and female sea

lamprey (Table 1). Wilcoxon rank-sum tests identified

higher calcium and aluminum concentrations and

lower iron concentrations in females versus males

Table 1 Mean (±SE) sea lamprey length, weight, elemental

concentration (% or mg kg-1), and N:P and C:N ratios from

elemental composition analysis

Variable Males Females

Mean (SE) Mean (SE)

Metric

Length (mm) 654.1 (20.3) 568.0 (43.9)

Mass (g) 629.4 (82.2) 449.7 (97.8)

Element (%)

N 11.1 (0.5) 11.3 (0.3)

C 55.2 (1.0) 53.6 (1.4)

Element (mg�kg-1)

N 110,714 (14,863) 112,667 (3384)

Ca 262 (18) 597 (126)

K 8641 (432) 3826 (2261)

Mg 598 (26) 479 (111)

P 5830 (256) 5340 (1179)

Al 54 (7) 198 (41)

Fe 280 (22) 181 (20)

Mn – –

Na 3497 (277) 1662 (874)

Zn 61 (4) 81 (5)

Cu 14.5 (1.4) 12.9 (0.5)

N:P 19.0 (0.2) 22.8 (3.9)

C:N 5.1 (0.4) 4.8 (0.3)

Manganese concentrations were below detection limits

(\2.0 mg l-1). Bolded parameters indicate significant

differences from Wilcoxon rank-sum tests (P\ 0.05)

Hydrobiologia

123



(P\ 0.05). Conversely, we observed no differences in

potassium, magnesium, phosphorus, and sodium con-

centrations, nor percent carbon and nitrogen. Nitrogen

to phosphorus ratios (mean ± SE) among all indi-

viduals were 20.2:1 (±1.18); 19.0:1 (±0.17) for males

and 22.8:1 (±3.93) for females, however, this was not

significantly different. Concentrations of manganese

were below detection limits (1.0 mg kg-1), in many

instances reported as\2.0 mg kg-1, and therefore

were excluded from analysis. Coefficients of variation

between replicate samples were generally low

(B2.0%) with the exception of aluminum that ranged

2–88%.

Laboratory carcass decomposition and nutrient

dynamics

During the laboratory experiment, temperatures in the

three treatments (mean ± SD) averaged 15.0 ± 1.3,

19.6 ± 0.6, and 25.5 ± 0.8�C, respectively. After

45 days, mean proportion of initial body mass de-

creased to 0.75 at 15�C, to 0.74 at 20�C, and to 0.48 at
25�C (Table 2). Our linear mixed effects model

revealed a significant interaction between Day and

Temperature among all nutrients (P\ 0.001; Fig. 1).

For the main effects, Day was significant among all

nutrients, and Temperature was significant for nitrate

and phosphorus, but not ammonium.

Our experiment demonstrated varying liberation

rates and temperature dependencies among nutrients

(Fig. 1). Mean background nutrient concentrations

(day 0; mean ± SD) among all tanks were 2.4 ±

0.002 mg l-1 for nitrate, 0.027 ± 0.003 mg l-1 for

ammonium, and 0.042 ± 0.0006 mg l-1 for phospho-

rus. Nutrient concentrations were the most variable

among temperatures from day 1–9. During this period

ammonium concentrations (mean ± SD) were 2.5 ±

1.1 mg l-1 at 15�C, 4.4 ± 0.8 mg l-1 at 20�C, and
9.8 ± 3.4 mg l-1 at 25�C. From day 12–21, ammo-

nium concentrations were relatively consistent for

15�C (4.2 ± 1.1 mg l-1), but lower for 20�C (3.9 ±

1.7 mg l-1) and 25�C (2.8 ± 1.7 mg l-1). Ammoni-

um concentrations continued to decline after day 21,

approaching background concentrations among all

treatments. Nitrate concentrations responded to tem-

perature differently than ammonium during the first

nine days and were 2.1 ± 0.2 mg l-1 at 15�C,
1.7 ± 0.4 mg l-1 at 20�C, and 0.8 ± 0.5 mg l-1 at

25�C. After three weeks, nitrate concentrations were

relatively consistent among temperatures. Total sol-

uble phosphorus demonstrated a similar pattern among

temperatures. During days 1–9 total soluble phospho-

rus concentrations were 0.8 ± 0.7 mg l-1 at 15�C,
1.0 ± 0.7 mg l-1 at 20�C, and 1.1 ± 0.9 mg l-1 at

25�C. The highest concentrations among all tem-

peratures occurred at day 1 and returned to back-

ground concentrations after day 21.

Natural stream carcass decomposition

Mean daily temperatures on Sedgeunkedunk Stream

were 21.8 (±0.24�C SE) during our field decomposi-

tion experiment. Carcasses reintroduced into the

stream averaged 0.56 ± 0.03 kg SE prior to decom-

position. Surveys of carcasses after two weeks

revealed a decrease in mean proportion of initial body

mass to 0.85 ± 0.13 SE (Fig. 2). Between days 15 and

17 mean carcass proportions declined to 0.47 ± 0.08

SE, and by day 24 mean carcass proportions were

0.27 ± 0.03 SE. By day 32 (July 23, 2010) we had

removed 9 carcasses from the stream (\15% initial

body mass), and by day 46 (August 6, 2010) only 2

Table 2 Comparisons of sea lamprey carcass mean (±SE) length and mass before and after 45 days, and average mass loss and

proportion of initial mass remaining among temperature treatments

Treatment (�C) Before After

Length (mm) Mass (g) Mass (g) Mass loss (g) Proportion of

initial mass

15 691.3 (16.7) 758.4 (39.0) 567.0 (70.4) 191.4 0.75

20 680.0 (22.4) 786.7 (110.6) 581.2 (131.2) 205.5 0.74

25 680.3 (15.3) 772.5 (54.8) 368.5 (30.6) 404.0 0.48
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carcasses remained above our threshold. The Kol-

mogorov–Smirnov goodness-of-fit test determined

that the proportion of initial body mass over time

among sampled carcasses followed an exponential

decay (D = 0.292; P = 0.25).

Discussion

We sought to quantify elemental composition, decay

rates, and temperature effects on nutrient liberation

from anadromous sea lamprey carcasses. In the

(a)

(b)

(c)

Fig. 1 Ammonium, nitrate,

and total soluble phosphorus

concentrations

(mean ± SE) over 45 days

among 15, 20, and 25�C
temperature treatments

(n = 12). F and P statistics

are presented for a linear

mixed effects model testing

for the effects of time and

temperature (see text for

explanation)

Fig. 2 Proportion of mean

carcass mass (kg ± SE)

remaining of initial carcass

mass over 46 days (n = 24),

mean daily temperature

(degrees Celsius; solid line)

and minimum and

maximum daily

temperatures (dotted lines)

in Sedgeunkedunk Stream

during June–August 2010.

Numbers next to each mean

indicate the number of

carcasses remaining in the

stream
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laboratory, nutrient liberation from carcasses was

faster at higher temperatures and the majority of

phosphorus and ammonium leached within one and

three weeks, respectively. In a natural stream, car-

casses decomposed to\30% of their original mass in

24 days. Our results suggest that conclusions drawn

about changes in nutrient dynamics from anadromous

fish assemblages based on studies of Pacific Northwest

streams may not apply to Atlantic coast streams.

Elemental composition

Nitrogen to phosphorus ratios of sea lamprey averaged

20.2:1 (±1.2 SE), whereas N:P ratios measured in

salmonines vary from 5:1 to 17:1 (Stansby & Hall,

1965; Lyle & Elliott, 1998; Johnston et al., 2004;

Pearsons et al., 2007; Guyette et al., 2014). Whole-

body elemental composition varies among species and

arises from differences in morphology, anatomy,

physiology, and life history strategies (Elser et al.,

1996; Tanner et al., 2000; Dantas & Attayde, 2007).

Differences in N:P ratios between salmonines and sea

lamprey may be due to contrasting anatomical struc-

tures. Unlike salmonines, sea lamprey lack recalcitrant

scales and bone, which are sources of phosphorus that

likely increase whole-body N:P ratios (Bowen, 1966;

Parmenter & Lamarra, 1991). Stoichiometric differ-

ences between salmonines and sea lamprey subsidies

may result in disparate available nutrient pools,

leading to differences in primary productivity, con-

sumer-regulated nutrient cycling, and community

structure (Kitchell et al., 1979; Tilman, 1982; Elser

et al., 1996). Expressed effects of these stoichiometric

differences are context-dependent, according to bio-

logical (i.e., community structure), physical, and

geological characteristics that vary between Pacific

coastal streams and Atlantic coastal streams.

The individuals collected for elemental analysis

were in the process of migrating up the Penobscot

River and likely had not begun any spawning activity.

We may expect differences in whole-body calcium,

nitrogen, and phosphorous concentrations between

males and females due to the synthesis of vitellogenin,

a female-specific yolk precursor protein in oviparous

vertebrates during maturation. Increases in plasma

calcium concentrations and phosphoprotein phospho-

rus are associated with vitellogenesis and, for exam-

ple, have been observed among female spawning cod

Gadus spp., and rainbow trout Oncorhynchus mykiss,

Walbaum 1792 (Woodhead, 1968; Whitehead et al.,

1978; Nagler et al., 1987). We observed higher

calcium concentrations in females compared to males.

However, we did not detect lower N:P ratios in

females from phosphoprotein phosphorus production,

compared to males, which may be due to low sample

sizes (7 males, 3 females).

Carcass decomposition and nutrient dynamics

We observed higher carcass decomposition rates in

Sedgeunkedunk Stream compared to the laboratory. In

the lab, carcasses decreased to 0.48–0.75 of initial body

mass at the end of 45 days, whereas in the stream all

carcasses decreased to\0.15 of initial body mass or

had previously decreased below that proportion over

the same time period. In streams, carcasses likely break

down at much faster rates due to higher stream flows

and associated shear stress, and abrasion and direct

consumption by organisms (e.g., macroinvertebrates;

Minakawa & Gara, 1999; Chaloner et al., 2002;

Fenoglio et al., 2010). During our natural stream

measurements of carcass decomposition (Fig. 2), there

were two instances at day 16–17 and day 32–37 where

we measured higher mean carcass mass remaining

from a preceding measurement. We attribute these

increases in mean mass to variation introduced from

debris, and excess water retained by the carcasses as

they were lifted out of the water. We wished to

minimize handling disturbance to keep carcasses

intact, therefore, we incurred this error.

The decomposition rates and enrichment effects of

sea lamprey and salmon carcasses may be influenced

by the seasonal timing of migration and spawning as

well as biophysical processes in streams. Organic

matter decomposition is faster at higher temperatures

due to increased microbial and invertebrate metabo-

lism (Cummins, 1974; Minshall et al., 1991; Young

et al., 2008). The decomposition of sea lamprey

carcasses during early summer is likely accelerated by

higher temperatures compared to decomposition of

salmon during the fall and winter. Wipfli et al., (1998)

observed salmon carcasses decompose to 60% of their

original mass over a three month period in average

temperatures of 7.5�C, with much of that decompo-

sition occurring initially during higher temperatures

immediately post-spawn. In contrast, our study

demonstrated that sea lamprey carcasses lost over

60% of initial mass in less than a month (Fig. 2). We
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observed a slower decomposition rate during the first

two weeks at a mean stream temperature of 20.6�C.
This was followed by an accelerated decomposition

rate, characteristic of exponential decay, at a mean

stream temperature of 23.8�C. The abrupt increase in
mean stream temperature and corresponding decrease

in proportion of initial weight are a plausible expla-

nation for the patterns we observed. Furthermore, the

disparate trends in decomposition between salmon and

sea lamprey may be due to differences in skeletal

structure. As decomposition occurs, a large proportion

of initial salmon carcass weight remains in the stream

in the form of recalcitrant bone and scales comprising

phosphorus and calcium (Parmenter & Lamarra,

1991), in contrast to sea lamprey that leave behind a

relatively lighter cartilaginous notochord and kerati-

nized mouth parts.

The influence of nutrient subsidies from sea lam-

prey carcasses likely depends upon carcass retention

within the stream. Although we did not measure

carcass retention within streams, literature examining

the fate of post-spawning salmonines has demonstrat-

ed that a majority of carcasses are retained within

streams or adjacent forests (carried by scavengers;

Cederholm et al., 1989), while a proportion may be

displaced downstream and accumulate in areas of slow

moving water (Williams et al., 2010). To our knowl-

edge a formalized study has not been conducted

examining sea lamprey carcass retention within lotic

systems; however, we suspect that downstream dis-

placement and scavenger removal play a role. We

have observed snapping turtle (Chelydra serpentina

Linnaeus, 1758) consuming moribund sea lamprey in

Sedgeunkedunk Stream; other likely scavengers

would include raccoon (Procyon lotor Linnaeus,

1758) and crayfish (e.g., Cambaridae).

The enriching effects of carcasses on nutrient

concentrations in ambient water we observed were

over periods of days, in contrast to studies of

salmonids in which elevated stream water nutrient

concentrations persisted for several weeks or more

(Minakawa&Gara, 1999; Claeson et al., 2006; Kohler

et al., 2008). Wipfli et al., (2010) observed relatively

high phosphorus and ammonium concentrations in

stream water, persisting for four and six weeks,

respectively, after salmon carcass addition compared

to control reaches during the fall over temperatures

that ranged 6.2–9.3�C. Water temperatures of small

streams within the Penobscot Watershed may average

20�C or more during the spring at the time of sea

lamprey spawner death, which correspond to ammo-

nium and phosphorus liberation rates that persist for

just one to three weeks (Fig. 1). Thus, the timing of sea

lamprey migration affects the magnitude and persis-

tence of nutrient subsidies available to stream food

webs.

The patterns of nitrate and ammonium from the

carcasses we observed may be explained by microor-

ganisms present on the carcasses. Denitrification and

dissimilatory nitrate reduction to ammonium (DNRA)

by heterotrophic bacteria may be two plausible

hypotheses explaining the trends we observed.

Denitrification reduces nitrate to dinitrogen gas (N2),

while DNRA reduces nitrate to ammonium (MacFar-

lane and Herbert 1984; Kelso et al., 1997). These

processes occur under anaerobic conditions, likely

occurring within carcasses and may explain the

decrease in nitrate and corresponding increase in

ammonium during the first three weeks of decompo-

sition (Fig. 1). Ammonium, nitrate, and soluble phos-

phorus become available nutrients for other biological

processes, uptake, and recycling in lotic systems.

Anadromous fish are important vectors of marine-

derived nutrients to freshwater ecosystems (Gende

et al., 2002; Lamberti et al., 2010). The spring timing

of sea lamprey spawning is such that nutrient subsidies

may arrive at a critical period of increased metabolic

demand and declining primary productivity (Hall,

1972; Cummins, 1974). Thus, bioenergetic limitations

of stream organisms may be alleviated at this time.

Furthermore, these nutrient subsidies may increase the

success of juvenile migratory and resident fishes (e.g.,

Atlantic salmon; Nislow et al., 1998; Nislow &

Kynard, 2009; Guyette et al., 2014). In areas where

sea lamprey populations are intact, these fish are likely

important drivers of nutrient dynamics and an integral

component of the structure and function of stream

food webs.
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