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As outlined in our original proposal, this project is comprised of 4 subprojects on desert bighorn 

sheep, American pronghorn, Rio Grande cutthroat trout, and scaled quail.  Since receiving 

funding in August 2013, all of the subprojects have been initiated.  Following are summaries of 

research activities for each of the subprojects that have occurred to date. 

 

Influence of Extreme Climatic Variability and Drought on Habitat and Forage Selection of 

Desert Bighorn Sheep 

James W. Cain III, USGS CRU New Mexico Cooperative Fish and Wildlife Research Unit 

Jay V. Gedir, Department of Fish, Wildlife and Conservation Ecology, New Mexico State 

University 

 

Problem statement and implications:  We were studying the impacts of drought on desert 

bighorn sheep on the Cabeza Prieta National Wildlife Refuge in southwestern Arizona from 

2002-2005. This period spanned the range of variability in the climatic conditions in the Sonoran 

Desert from the worst drought on record for the area, through periods of average precipitation 

and ending during a wet period. This fortuitous timing, allowed us to collect GPS collar data 

from over 30 female desert bighorn sheep, data on the seasonal nutritional content of key forage 

plants, availability of key forage plants obtained from vegetation surveys in foraging areas, and 

fecal samples from which we were able to determine diet.  

 

Goals and objectives:  We are using this data to assess the responses of desert bighorn sheep to 

the severe drought observed in 2002. The specific objectives are to investigate: 1) seasonal 

habitat selection patterns across widely differing climatic periods to determine if desert bighorn 

use certain habitat features and or behavioral mechanisms to cope with extreme drought; 2) 

changes in diet selection across climatic periods to determine which forage species are used as 

buffer resources to maintain populations during droughts; 3) nutritional intake resulting from 

dietary shifts across climatic periods; and 4) use of vegetation metrics derived from remote 

sensing data (e.g., NDVI, LAI, EVI) as an index for nutritional quality and abundance of key 

forage species for desert bighorn sheep. These analyses provide a unique opportunity to assess 

multiple behavioral responses (e.g., forage selection, habitat selection) of desert bighorn sheep to 

severe drought through which we hope to identify habitat conditions and key forage species that 

might buffer desert bighorn populations during future droughts.  

 

We have made significant progress towards objective 2. Primary results are described below.  

The remaining objectives for the desert bighorn sheep portion of this study will be addressed in 

FY15. A peer-reviewed publication based on these results will be submitted by 31 January 2015. 

 

Approach: Objective 2. 

 We sampled 10 forage plots per range per season from 2002 through 2005; plots were 

sampled during a 4–5 day period during the middle of each season (i.e., February, May, August 

and November). We used a modified line-intercept method to estimate percent cover of each 

plant species in the foraging areas using 2 60-m perpendicular line transects intersecting in the 

center.  

 We collected ≥100 g of 16 forage species which constituted 73-98% (x̄ = 85.4% ± 7.9% SD) 

of the seasonal diets of desert bighorn sheep in the Sierra Pinta and Cabeza Prieta Mountains in 
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2002–2005 (J.W. Cain, unpublished data). We classified each forage species as grass, forbs, 

succulent, shrub or tree to assess differences in forage moisture and nutritional content related to 

plant type.  

We dried plant samples at 50° C in a drying oven to a constant weight and determined 

moisture content. We determined nitrogen (N) content using a TC400 N analyzer and neutral 

detergent fiber (NDF) and acid detergent fiber (ADF) following the Van Soest method (Van 

Soest 1994). We analyzed acid detergent lignin (ADL) using the Van Soest ADL assay (Van 

Soest and Robertson 1980) modified for use with the Ankom fiber bags.  

Because we were unable to conduct laboratory analysis for in vitro dry matter digestibility, 

we used dry matter digestibility (DMD) as calculated by Mould and Robbins (1982) for white-

tailed deer (Odocoileus virginianus) as: 

 

DMD = (1.06MDS – 18.06) + NDF [(16.39–36.95lnX)/100], 

 

where NDS is neutral detergent solubles, 100-NDF(%), and X is lignin and cutin (ADL). 

Therefore, we used 3 metrics of forage nutritional content in our assessment of the impact of 

climatic conditions on forage quality and the influence of these metrics on diet selection across 

widely varying climatic periods: N content, DMD, and moisture content. 

 

Diet Diversity, Breadth, and Forage Selection 

We collected 10–20 pellet groups per season per mountain range from female desert bighorn 

sheep to estimate diet composition using microhistological analysis. Characteristics of the 

epidermis and cuticle were used to identify plant species. We determined frequency, particle 

density, and percent composition for each species.  

We calculated diet diversity using the Shannon Weiner index (H´) and calculated diet breadth 

using Levins Niche Breadth (B; Levins 1968). To account for individual level variation in diet 

composition, we calculated these indices for each independent pellet group separately, then 

summarized this data by season and climatic period. 

We estimated sheep forage selection in relation to forage availability using Jacobs’ modified 

electivity D index (Jacobs’ D; Jacobs 1974). This is a modification of Ivlev’s electivity index E 

(Ivlev 1961) that is less sensitive to sampling errors for rare species (Lechowicz 1982). 

 

           

Here Di is the Jacobs’ D index value for forage species i, ri is the proportion of forage species i in 

sheep pellets (i.e., diet), and pi is the proportion of forage species i in the environment (i.e., 

availability). Jacobs’ D values range from -1 to 1, where negative and positive values indicate 

species avoidance and preference, respectively.  

 

Climatic Periods 

We used the Standardized Precipitation Index (SPI; McKee et al. 1993, Guttman 1999) to define 

the climatic periods during our study. The SPI is the number of standard deviations that observed 

cumulative precipitation deviates from the long-term average. We defined a drought event as the 

period when the SPI was consistently negative and reached ≤-1.0 with the drought event 

beginning when the SPI fell below 0, and ending when the SPI became positive (McKee et al. 

1993). We similarly defined wet periods as when the SPI was continuously positive and reached 
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a ≥1.0 and periods near average when the SPI fluctuated near 0, not becoming consistently 

positive or negative. We used long-term (1969–2005) precipitation data from the weather station 

nearest our study area (Tacna, Arizona, approx. 64 km north; Western Regional Climate Data 

Center 2005) to calculate the 3-month SPI for each month from 2002–2005 (Fig. 1). Each 

sampling period was assigned to 1 of 3 climatic periods based on the 3-month SPI for the month 

immediately preceding forage sample collection (i.e., SPI was lagged by approximately 2 weeks) 

and classified as: drought (May, Aug & Nov 2002; Feb2003; Aug 2004), average (May. Aug, & 

Nov 2003; Feb & May 2004; May & Aug 2005), and wet (Nov 2004, Feb 2005; Fig 1). Our data 

span a period of exceptional drought (January through October 2002 being the driest period on 

record), transitioning through a period with near average precipitation and ending during an 

abnormally wet period (National Oceanic and Atmospheric Administration 2002, 2005). 

 

Statistical Analysis 

We used general linear models to assess differences in nutritional quality in relation to climatic 

period (drought, average, and wet conditions), season (winter, early summer, late summer, and 

autumn), plant type (succulent, grass, shrub, tree, and forbs), and topographic position. We 

conducted a separate analysis for N, DMD, and moisture content. Each metric of nutritional 

quality was entered as the response variable, climatic period, season, and plant type were entered 

as factors, and topographic position (drainage, slope, and ridgeline) was entered as a blocking 

factor. We transformed all response variables before analyses using the logit transformation, 

however estimated marginal means and 95% confidence limits were back transformed for 

presentation. 

We used general linear models to determine changes in diet diversity and diet breadth across 

seasons and climatic periods. We used the Shannon-Wiener diversity index and Levins’ niche 

breadth as the response variables and season and climatic period were entered as factors. 

We assessed the relationships between forage selection (i.e., Jacob’s D), nutritional content, 

and climatic periods using generalized linear models. Jacob’s D was entered as the response 

variable, with N, DMD, and moisture content as continuous predictor variables; climatic period 

was entered as a categorical predictor variable with the wet period set as the reference level. We 

then ran models for each plant type independently. 

To account for the potentially conflicting limitations in desert bighorn sheep diets (e.g., 

protein vs. water), we developed an initial set of 21 a priori models (Table 1). Model structures 

were designed to assess the influence of each forage quality metric individually and in 

combination with other metrics. We designed some additive models with a common slope but 

different intercept for each climatic period, and some multiplicative models within interaction 

terms between forage quality metrics and climatic periods. In addition, to assess the potential for 

a nonlinear relationship between diet selection and N content, and diet selection and moisture 

content, we included a quadratic term for these predictor variables. 

We employed an information-theoretic approach to assess support for our a priori models 

using Akaike’s Information Criterion (AICc) corrected for small sample sizes (Burnham and 

Anderson 2002). We considered models with ∆AICc values <2.0 to be competing models, but 

models with ∆AICc values <7 were considered to have some support. However, when competing 

models (i.e., ∆AICc <2.0) differed from the highest ranking model by the addition of a single 

predictor variable to the model structure of the highest ranking model, we considered the more 

complex model to contain an uninformative parameter (Arnold 2010), thus we excluded these 

models from the AICc tables. We calculated model-averaged parameter estimates (+ SE) and 
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90% confidence intervals for variables in highest ranking models using multi-model averaging 

(Burnham and Anderson 2002) across all a priori models except for those excluded due to 

uninformative parameters.  

We ran pairwise correlations between N, DMD, and moisture content within each plant type 

to assess the potential for multicollinearity. Nitrogen and moisture content were highly correlated 

(r > 0.6) for forbs, shrubs and grasses, and DMD and moisture content were correlated (r = 0.69) 

for succulents; none of the predictor variables were correlated for trees. We therefore never 

included correlated variables in the same model; however, we retained models with individual 

correlated variables.  

RESULTS 

Forage Quality 
Mean percent N differed by climatic period (F2, 1103

 
=16.63, P<0.0001), season (F3, 1103

 
= 6.367, 

P<0.0001), and plant type (F4, 1103
 
= 74.38, P<0.001). Differences in N content between climatic 

periods depended on season (climatic period × season interaction; F4, 1103
 
= 3.34, P = 0.010). 

After accounting for plant type, N content did not differ between seasons during the drought 

period, but was higher during the winter and autumn of the average and wet periods (Fig. 2). 

Winter N content during the wet period was 25% and 36% higher than during average and 

drought conditions, respectively (Fig. 2). Winter N content was 52-61% higher during the wet 

period than during early summer, late summer, and autumn in drought, and 40-46% higher than 

during early and late summer with average precipitation (Fig. 2). Autumn N content was similar 

during periods with average and wet precipitation, but was 19-42% higher during the wet period 

than during drought in all seasons and 26-29% higher than early and late summer with average 

precipitation (Fig. 3).  

Differences in N content between climatic periods also depended on plant type (climatic 

period × plant type interaction; F8, 1103
 
= 3.90, P<0.0001). After accounting for season, N content 

of succulents and trees did not differ across climatic periods and N content of grasses and forbs 

were similar between periods with drought and average conditions (Fig. 3). Nitrogen content was 

42-55% higher in grasses and 60-104% higher in forbs during the wet period than when 

precipitation was average or during drought, but was consistently lower than for shrubs, trees and 

forbs. Nitrogen content of shrubs increased with increasing precipitation and was 14% higher 

with average precipitation than during drought and was 30% higher in the wet period than during 

the period with average rainfall (Fig. 3).  

The DMD differed between climatic periods (F2, 1108
 
= 7.49, P = 0.001) and plant type (F4, 

1108
 
= 16.25, P<0.0001). Differences in DMD between climatic periods depended on season 

(climatic period × season; F4, 1108
 
= 3.34, P = 0.010), plant type (climatic period × plant type; F8, 

1108
 
= 5.54, P<0.0001); and season and plant type (climatic period × season × plant type; F16, 1108

 

= 2.76, P<0.0001). The DMD tended to be highest and relatively consistent in succulents, trees 

and shrubs across all seasons and climatic periods except during the wet period when DMD 

decreased in grasses (Fig. 4). Grasses had lowest DMD during early and late summer during 

drought (Fig. 4) and DMD did not differ across climatic periods during winter and autumn for 

succulents, shrubs, trees, and forbs, but decreased in grasses by 57% during winter in the wet 

period. Succulent DMD was relatively consistent across seasons and climatic periods with the 

exception of early summer during drought when it was highest. During the early and late 

summer, DMD of grasses, shrubs and trees did not differ during drought and average periods. 

Plant moisture content differed between climatic periods (F2, 1106
 
= 38.21, P<0.0001), season 

(F3, 1106
 
= 4.44, P = 0.004), and plant type (F4, 1106

 
= 160.19, P<0.0001). Differences in plant 
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moisture content between climatic periods depended on season (climatic period × season; F4, 1106
 

= 8.55, P<0.0001), plant type (climatic period × plant type; F8, 1106
 
= 11.50, P<0.0001), and 

season and plant type (climatic period × season × plant type; F28, 1106
 
= 3.54, P<0.0001). During 

winter, moisture content increased 17% for succulents, 176% for grasses, 45% for shrubs, and 

72% for forbs from the average period to the wet period; winter moisture content of trees did not 

differ between climatic periods (Fig. 5). During early and late summer, only shrubs showed an 

increase in moisture content, increasing 26% in both seasons during the average period compared 

with the drought. In autumn, succulent moisture content was 36% higher during the wet period 

than during drought (Fig. 5). Moisture content of grass during autumn was 256% higher during 

the average period than during the drought; grass moisture content did not differ between the 

average and wet periods. Shrub moisture content did not differ during autumn between the 

average and wet periods however shrub moisture content was 11% higher during the average 

period and 79% higher during wet period than during the drought. Moisture content of forbs did 

not differ in autumn between the average and wet periods, but was 104% higher during the 

average period and 140% higher during the wet period over the drought periods. Moisture 

content of trees did not differ during autumn between any of the climatic periods (Fig. 5). 

 

Diet Diversity, Breadth, and Forage Selection 
Differences in diet diversity and diet breadth across seasons depended on climatic period (H´: 

climatic period × season; F4, 349
 
= 23.55, P<0.0001; B: climatic period × season; F4, 349

 
= 223.12, 

P<0.0001). Both diet diversity and diet breadth followed similar seasonal patterns across climatic 

periods with a contraction in diversity and breadth during the drought period.  Mean diversity 

was lowest during winter and early summer of the drought period and diet breadth was smallest 

across all seasons of the drought period with the exception of autumn. The average precipitation 

period generally had intermediate levels of diversity and diet breadth, increasing during the wet 

period. 

The most supported model (Akaike weight wi = 0.543) for the selection of forbs included 

DMD with a common slope but separate intercepts for climatic periods (Table 2). Contrary to 

our expectation, selection of forbs was negatively associated with DMD, the intercept was lowest 

for the drought, intermediate for average period and highest during for the wet period. 

 For the selection of grasses, the highest ranking model (wi = 0.647) included N content with a 

common slope but separate intercepts for climatic periods (Table 2). Selection of grasses was 

negatively associated with N content. The intercept was highest for the wet period, intermediate 

for drought and lowest for the normal period. 

The highest ranking (wi = 0.385) model for the selection of shrubs included N content, the 

quadratic term for N content, and a common slope but separate intercepts for climatic periods 

(Table 2). Selection of shrubs was associated with N content in a quadratic fashion, with 

selection peaking at intermediate levels of N content. Selection was highest for shrubs at 

intermediate N levels for the wet period, lower for normal rainfall, and lowest for drought (Table 

3). 

Selection of succulents by desert bighorn sheep was best described by the model which 

included DMD with common slope but separate intercepts for climatic periods (wi = 0.675; Table 

2). Selection of succulents declined with increasing DMD and moisture content (Table 3).The 

intercept was highest for the wet period, lowest for drought and intermediate for normal period. 

The most supported model for the selection of tree species included N and moisture content, 

with common slope but separate intercepts for climatic periods (wi = 0.562; Table 2). Selection 
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of trees was positively associated with N content and moisture (Table 3). The intercept was 

highest for the wet period, lowest for drought and intermediate for normal period. 

 

Table 1.  A priori models for predicting forage selection by desert bighorn sheep as a function of 

nutritional quality metrics and rainfall conditions. 

Model no. Model Structure
a 

1 Null (intercept only) 

2 N + Climate 

3 N + N
2 

+ Climate 

4 Moist + Climate 

5 Moist + Moist
2 
+ Climate 

6 N + Moist + Moist
2
 + Climate 

7 N + N
2 

+ Moist + Climate 

8 N + Moist + Climate 

9 N + N
2 

+ Moist+ Moist
2 
+Climate 

10 DMD + Climate 

11 DMD + N+ Climate 

12 DMD + Moist + Climate 

13 DMD + N + Moist + Climate 

14 DMD + N + N
2 

+Climate 

15 DMD + Moist + Moist
2 

+ Climate 

16 DMD + N + N
2 

+ Moist + Moist
2 

+
 
Climate 

17 N + Climate + N × Climate 

18 Moist + Climate + Moist x Climate 

19 DMD + N + Climate + N × Climate + DMD × Climate 

20 DMD + Moist + Climate + Moist × Climate + DMD × Climate 

21 DMD + N + Moist + Climate + N × Climate + DMD × Climate + Moist × Climate 
a 
Variable notation: N = forage nitrogen content, Climate = climatic period (drought, normal, 

wet), Moist = forage moisture content, DMD = dry matter digestibility as calculated by Mould 

and Robbins (1982). 
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Table 2. Five highest ranking a priori models assessing the relationship between forage selection by desert bighorn sheep, nutritional 

quality and climatic period.  

Model K AICc ΔAICc wi 

Forbs     

DMD + Climate 4 56.33 0.0 0.543 

Null 1 58.05 1.72 0.229 

DMD + Moist + Climate 5 59.62 3.29 0.105 

DMD + N+ N
2 

+ Climate 6 61.42 5.09 0.043 

Moist + Climate 4 62.85 6.52 0.021 

Grass     

N + Climate 4 49.22 0.0 0.647 

DMD + N+ Climate 5 52.60 3.38 0.119 

N + Climate + N × Climate 6 53.75 4.53 0.067 

Moist + Moist
2 
+ Climate 5 53.84 4.62 0.064 

Null 1 54.49 5.27 0.046 

Shrubs     

N + N
2 

+ Climate 5 106.74 0.0 0.385 

DMD +Moist + Moist
2 

+ Climate 6 107.76 1.02 0.231 

Moist + Moist
2 
+ Climate 5 109.19 2.45 0.113 

N + Climate + N × Climate 6 110.13 3.39 0.071 

DMD + N + Climate 5 110.99 4.24 0.046 

Succulents     

DMD + Climate 4 78.43 0.0 0.675 

DMD + N + Climate 5 80.84 2.41 0.202 

DMD + N+ N
2
 + Climate 6 81.98 3.55 0.114 

Moist + Climate 4 88.99 10.56 0.003 

Moist + Moist
2 
+ Climate 5 90.82 12.39 0.001 

Trees     

N + Moist + Climate 5 58.41 0.0 0.562 

DMD + N + Climate 5 62.22 3.82 0.083 

DMD + N + N
2
 + Moist + Moist

2
 + Climate 8 62.53 4.12 0.072 

N + N
2 

+ Moist + Moist
2
 + Climate 7 62.59 4.19 0.069 

N + Climate 4 62.89 4.49 0.060 
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Table 3. Model-averaged logistic regression coefficient estimates, standard errors, and 95% confidence limits for variables in the best 

approximating models for the relationship between forage selection by desert bighorn sheep and forage nutritional content and 

climatic period. 
Variable Model-averaged parameter estimate. 90% Confidence limits 

 Estimate SE Lower CL Upper CL 

 Forbs 
N 229.79 527.78 -637.86 1097.44 

Climate (drought) -0.49 0.59 -1.46 0.48 

Climate (average) -0.27 0.57 -1.20 0.66 

DMD -4.99 1.71 -7.79 -2.18 

Moisture
 

0.01 2.42 -3.79 4.00 

 Grass 
N -175.68 53.93 -264.40 -86.97 

Climate (drought) -0.66 0.46 -1.42 0.09 

Climate (average) -0.89 0.41 -1.56 -0.22 

DMD -0.47 0.92 -1.97 1.04 

Moisture
 

6.40 3.03 1.41 11.39 

 Shrubs 

N 70.50 43.50 -1.06 142.06 

N
2
 -4368.64 1656.83 -7093.96 -1643.32 

Climate (drought) -0.41 0.21 -0.75 -0.07 

Climate (average) -0.29 0.19 -0.61 0.02 

DMD -1.33 0.74 -2.55 -0.12 

Moisture 4.99 1.75 2.10 7.87 

 Succulents 

N -112.86 112.67 -298.19 72.47 

Climate (drought) 0.26 0.28 -0.20 0.71 

Climate (average) 0.28 0.27 -0.17 0.73 

DMD -5.69 0.69 -6.83 -4.55 

Moisture -3.52 1.86 -6.58 -0.46 

 Trees 

N 68.48 40.77 1.41 135.55 

Climate (drought) -0.12 0.27 -0.56 0.32 

Climate (normal) -0.07 0.26 -0.49 0.35 

DMD 1.35 1.19 -0.60 3.31 

Moisture 8.95 4.48 1.58 16.33 
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Figure 1. Standardized precipitation index calculated from long-term (1969-2005) precipitation 

data from Tacna, Arizona, January 2002 – September 2005. 
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Figure 2. Mean seasonal nitrogen content of desert bighorn sheep forage during climatic periods 

with drought (closed black symbols), average (open symbols) and wet (closed gray symbols) 

rainfall conditions. Circles are winter (Jan – Mar), triangles are early summer (Apr – Jun), 

squares are late summer (Jul – Sep), and diamonds are autumn (Oct – Dec). Means and error bars 

are back-transformed estimated marginal means and 95% confidence intervals. 
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Figure 3. Mean nitrogen content of desert bighorn sheep forage by plant type for climatic periods 

with drought (closed black symbols), average (open symbols) and wet (closed gray symbols) 

rainfall conditions. Circles are succulents, downward pointing triangles are grasses, squares are 

shrubs, diamonds are trees, and upward pointing triangles are forbs. Means and error bars are 

back-transformed estimated marginal means and 95% confidence intervals. 
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Figure 4. Mean seasonal dry matter digestibility 

(DMD) content of desert bighorn sheep forage 

by plant type during climatic periods with 

drought (black error bars with closed symbols), 

average (black error bars with open symbols) 

and wet (gray error bars with closed symbols) 

rainfall conditions. Circles are winter (Jan – 

Mar), downward pointing triangles are early 

summer (Apr – Jun), squares are late summer 

(Jul – Sep), and diamonds are autumn (Oct – 

Dec). Means and error bars are back-

transformed estimated marginal means and 95% 

confidence intervals. 
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Figure 5. Mean seasonal moisture content of 

desert bighorn sheep forage by plant type 

during periods with drought (closed black 

symbols), average (open symbols) and wet 

(closed gray symbols) rainfall conditions. 

Circles are winter (Jan – Mar), triangles are 

early summer (Apr – Jun), squares are late 

summer (Jul – Sep), and diamonds are autumn 

(Oct – Dec). Means and error bars are back-

transformed estimated marginal means and 

95% confidence intervals. 
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Impact of Drought on Southwestern Pronghorn Population Trends and Predicted 

Trajectories in the Southwest in the Face of Climate Change 

Jay V. Gedir, Department of Fish, Wildlife and Conservation Ecology, New Mexico State 

University 

James W. Cain III, USGS CRU New Mexico Cooperative Fish and Wildlife Research Unit 

 

Problem statement and implications:  Many pronghorn populations across the Southwest 

appear to be declining. In response, managers are applying various techniques in attempts to 

increase pronghorn numbers often without a clear understanding of the causes of these 

declines. Some population declines have been associated with drought conditions resulting in 

reduced forage quality and quantity impacting survival of adults and fawns. Various climate 

change models predict warmer and drier conditions, which is likely to exacerbate future 

drought-related population declines, forcing managers to make some difficult decisions 

regarding the long-term viability of their management practices and the persistence of some 

pronghorn populations in the Southwest. In collaboration with the USFWS, we will undertake 

a meta-analysis of pronghorn population trends in the Southwest in relation to climatic 

conditions, specifically drought.  

 

Goals and objectives: In this study we aim to: 1) determine the extent of pronghorn decline 

in the Southwest; 2) identify climatic factors which best predict these declines; and 3) use 

global climate forecast data to project how climate change may effect pronghorn population 

dynamics to the end the of the century. Quantifying the relationship between climatic 

conditions and pronghorn population trajectories is central to developing appropriate 

management actions for pronghorn in the face of climate change. The development of 

pronghorn management strategies spanning multiple populations and differing habitat 

conditions have mostly used inferences from studies of single populations; however, evidence 

suggests that there can be significant variation among local pronghorn populations in factors 

explaining density and recruitment (Hoffman et al. 2010). 

We adopt an information-theoretic approach in a Bayesian framework to analyze 

long-term data from pronghorn populations in Utah, Arizona, New Mexico, and Texas, to 

determine climatic factors that predict annual rate of population change (λ). We then use 

these predictors to project long-term pronghorn population trends in response to predicted 

changes in climate. However, populations do not simply respond to approximated global 

averages, but rather regional changes, which are highly spatially heterogeneous, and are more 

relevant in the context of ecological response to climatic change (Walther et al. 2002). 

Therefore, we employ climate data derived from region-specific downscaled climate 

projection models to predict future pronghorn population dynamics. 

This project will contribute to the development of conservation and management 

plans for pronghorn populations across the southwestern U.S. This will enable wildlife 

managers responsible for managing these pronghorn populations to make scientifically-

informed decisions when developing management strategies. 

 

Approach 
We are analyzing long-term pronghorn population data from annual aerial surveys 

conducted in Utah, Arizona, New Mexico, and Texas. Within each state, we define 

subpopulations based on physical barriers (e.g., rivers, canyons, mountain ranges, major 

highways, etc.), variation in precipitation patterns, and availability of population data. We 

calculate annual rate of population change (λ) as our response variable. This is a useful metric 
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for evaluating population performance because it summarizes survival and recruitment rates 

and can be used for open populations (Nichols and Hines 2002). When population-specific 

harvest and translocation data are available, population estimates for calculating λ are 

adjusted according to the following equation: 

 

λt =         (1) 

 

where λt is population change from time t-1 to t, Nt and Nt-1 are population estimates from 

current and previous surveys, respectively, h is number of pronghorn harvested, and r and a 

are number of individuals removed from and released into the population, respectively, 

through translocations. Although survey methods and periods may vary among states and/or 

populations, constant pronghorn detectability is assumed. 

Climate data (precipitation [mm/day] and mean temperature [°C]) are derived from 

historical and future simulations from the World Climate Research Programme’s Coupled 

Model Intercomparison Project phase 5 (CMIP5) Global Climate Models (GCM) subset from 

the National Center for Atmospheric Research Community Climate System Model version 4 

(CCSM4). Comparisons of GCM historical simulation results with observations often show 

biases, which may vary by location and/or season. A monthly bias-correction and spatial 

disaggregation (BCSD) statistical downscaling technique is used to correct for such biases 

(Wood et al. 2004; Maurer 2007). Model evaluations demonstrated that results from 

downscaling algorithms were in good agreement with observations, with precipitation and 

average surface temperature biases of ±0.04 mm/day and ±0.05°C, respectively, for all values 

for all time steps and grid cells (Brekke et al. 2013). These climate data have a 1/8 degree 

grid resolution, and thus, for monthly precipitation and temperature calculations, we take the 

mean of grids across pronghorn range falling within population boundaries. 

Our aim is to compare two realistic future global climate situations; a more optimistic 

lower atmospheric C02 concentration scenario (ACCS) and a more pessimistic high ACCS. 

Therefore, our climate projections were modelled from data derived from the BCSD CMIP5 

Representative Concentrations Pathways (RCP) 4.5 and 8.5 (Moss et al. 2010; van Vuuren et 

al. 2011). These scenarios attempt to account for external factors that have affected climate in 

the past, since GCMs calculate their own internal patterns of natural variability. External 

factors include the forcing of greenhouse gases, aerosols, and reactive species from 

anthropogenic emissions, changes in solar output, particulate emissions from volcanic 

eruptions, and changes in tropospheric and stratospheric ozone (Hayhoe and Stoner 2014). 

The RCP8.5 pathway represents a comparatively high ACCS of continued global dependency 

on fossil fuels, whereby atmospheric C02 concentrations approach 2.5 times current levels by 

2100 (Riahi et al. 2011). The RCP4.5 pathway represents a lower ACCS, whereby there is an 

increase of about 60% in atmospheric C02 concentrations by mid-century, followed by a 

decline to near 1990 levels by 2100 (Thomson et al. 2011). 

In addition to testing mean temperature and total precipitation as predictors of 

pronghorn population dynamics, we also test the drought index Standardized Precipitation 

Index (SPI; McKee et al. 1993; Guttman1999), which is the number of standard deviations 

that observed cumulative precipitation deviates from the long-term climatological average. 

We calculate SPI for 3-, 6-, 12-, and 24-month periods from all available monthly 

precipitation data in the BCSD CMIP5 climate dataset using program SPI SL 6 (National 

Drought Mitigation Center 2014). 

For our explanatory variables, we summarize monthly mean temperature, total 

precipitation, and mean SPI (3-, 6-, and 12-month periods) by important phases in an adult 

female’s annual reproductive cycle relative to peak fawning (early, mid-, and late gestation 
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and lactation). Peak pronghorn fawning is usually over three weeks during the early growing 

season, with the majority of births occurring within a ten day period (Autenrieth and Fichter 

1975). In our study area, fawning peaks in mid-April in southern Arizona, in mid-May in 

northern Arizona and Texas Trans-Pecos, and in late May in Utah, New Mexico, and Texas 

Panhandle (Buechner 1950; Larsen 1964; Canon 1993; Ticer et al. 2000; Miller & Drake 

2006; J. Weaver pers. comm., A. Aoude pers. comm.). We also summarize mean temperature, 

total precipitation, and mean SPI for 12- and 24-month periods preceding each population 

survey. All data are scaled prior to analysis by subtracting the mean and dividing by standard 

deviation (Gelman and Hill 2007). 

We use Bayesian inference to estimate parameters from regressions using a Markov-

Chain Monte Carlo (MCMC) technique by creating models in R 3.0.2 (R Core Team 2013) 

and running them in OpenBUGS 3.2.3 (Lunn et al. 2009) using R2OpenBUGS (Sturtz et al. 

2005). We model λ as a log-linear function with an uninformative N(0,100) prior assigned to 

regression coefficients and G(0.001, 0.001) assigned to hyperparameters. Model convergence 

is assessed in OpenBUGS using the Brooks-Gelman-Rubin diagnostic tool (Gelman and 

Rubin 1992; Brooks and Gelman 1998) after simultaneously running two Markov chains with 

different initial values. For each model, we run 20,000 MCMC iterations, discarding the 

initial 10,000 MCMC samples as burn-in. We use an information-theoretic approach whereby 

competing models are ranked by their deviance information criterion (DIC, Spiegalhalter et 

al. 2002). DIC measures the fit of the model to the data, with a penalty for model complexity, 

and models within two DIC units of the most parsimonious model (i.e., the model with the 

lowest DIC value) are considered to have to have higher predictive value (Spiegalhalter et al. 

2002; Burnham and Anderson 2002). 

For each population, we determine which climate metrics best predict λ by first 

running separate models with a single precipitation or a single temperature covariate (plus a 

covariate for density effect). We run separate model comparison sets for precipitation and 

temperature. We then test precipitation and temperature covariates from the best-fit models 

together in individual models, as well as those models with an added term for the interaction 

between precipitation and temperature (Eqn. 2). 

 

 ln(λt) = β0 + β1XN[t-1] + β2Xprec + β3Xtemp + β4Xprec*temp 

    (2) 

We run the top combined model with precipitation and temperature data derived from 

the BCSD CMIP5 RCP4.5 and RCP8.5 datasets to predict λt. If the ∆DIC of the top single 

climate covariate model is ≥10 (i.e., no support for the data), λt is predicted from only 

precipitation or only temperature data. We use λt to project annual pronghorn population size 

and probability of extirpation to the year 2090 using an integrated modeling approach 

(Schaub and Abadi 2011) whereby we generate population projections concurrently with 

estimates of λt, such that estimation of uncertainty is propagated into the projections. 

Population projection models are created in R 3.0.2 (R Core Team 2013) and run in JAGS 

3.4.0 (Plummer 2003) using R2jags (Su and Yajima 2010). Population projections are made 

in the absence of any management intervention (harvest or translocation) and assume that 

pronghorn peak fawning periods will not significantly shift as a result of climate change. 

For populations projected to fail, we will test whether there is potential for population 

recovery through translocations. We will do so by incorporating a management scenario 

where the population is supplemented with a fixed number of pronghorn annually or 

biennially, to determine the level of supplementation required for the population to persist, 

while ensuring the source population can sustain these removals. 

 

 



19 

 

 

Progress To Date 

 Compiled from state agencies all available population, harvest, and translocation data for 

Arizona, New Mexico, and Texas (Table 1). Data for Utah is currently incomplete. 

 Defined 16 populations with sufficient data for modelling (Table 1) – Arizona 5; New 

Mexico 5; Texas 2; Utah 4 (not confirmed). 

 Reviewed available GCMs and selected data from the latest GCM (BCSD CMIP5) which 

utilizes a more advanced statistical downscaling technique and has particular applicability 

to the southwest U.S. 

 Downloaded all climate data and for one population data has been prepared for analysis. 

 Developed models in R for execution in OpenBUGS to predict climatic factors that 

influence pronghorn population growth. 

 Developed integrated population projection model in R for execution in JAGS. 

 Completed modelling of one population – Texas Trans-Pecos (Fig. 1). 

 

Results 
Texas Trans-Pecos Population 

 The model that best predicted λ included total precipitation during lactation, mean 

temperature in the 2 years prior to population surveys, and the interaction of these 

covariates (Table 1). 

 Based on median population projections, under the lower (RCP4.5) and high (RCP8.5) 

ACCS and without management intervention, the population is predicted to be extirpated 

by the mid-2040s and mid-2030s, respectively (Fig. 1). 

 Based on the lower 2.5% credible intervals, the population is at risk of disappearing in the 

next 10 years under the high ACCS and 15 years under the lower ACCS (Fig. 1). 

 The upper 97.5% credible intervals predict that in the best case scenario, the population 

may persist into the early 2070s under the high ACCS, whereas under the lower ACCS, it 

would be approaching extirpation by 2090 (Fig. 1). However, these intervals are wide, 

and thus there is high uncertainty in these projections. 

 Under the lower ACCS, the probability of extirpation of this population surpasses 50% in 

2046 and reaches 96% by 2090. Under the high ACCS, probability of extirpation is 50% 

in 2036 and increases to 98% by 2090. 
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Table 1. Pronghorn populations modelled in the Southwest USA. 

Survey n Population Area

Population Period
a

(years) Range (km
2
) Lactation Early Gestation Mid-gestation Late Gestation Regression equations for projections

c

Utah

  Northwest (NW) Jun-Sep Sep-Nov Dec-Feb Mar-May

  West (W) Jun-Sep Sep-Nov Dec-Feb Mar-May

  East (E) Jun-Sep Sep-Nov Dec-Feb Mar-May

  South (S) Jun-Sep Sep-Nov Dec-Feb Mar-May

Arizona

  Northwest (NW) 1975-2013 39 48-619 May-Aug Sep-Nov Dec-Feb Mar-May

  Central (C) 1961-2013 53 1,663-5,802 May-Aug Sep-Nov Dec-Feb Mar-May

  East-Central (EC) 1961-2013 53 391-2,808 May-Aug Sep-Nov Dec-Feb Mar-May

  Southeast - N10 (SEN10) 1961-2013 52 29-341 Apr-Jul Aug-Oct Nov-Jan Feb-Apr

  Southeast - S10 (SES10) 1961-2013 52 11-420 Apr-Jul Aug-Oct Nov-Jan Feb-Apr

New Mexico

  Northeast (NE) 1984-2008 19 1,327-2,828 Jun-Sep Sep-Nov Dec-Feb Mar-May

  East (E) 1992-2009 15 71-239 Jun-Sep Sep-Nov Dec-Feb Mar-May

  East-Central (EC) 1978-2009 20 162-474 Jun-Sep Sep-Nov Dec-Feb Mar-May

  Central (C) 1991-2011 15 210-576 Jun-Sep Sep-Nov Dec-Feb Mar-May

  Southwest (SW) 1992-2011 17 86-240 Jun-Sep Sep-Nov Dec-Feb Mar-May

Texas

  Trans-Pecos (TP) 1978-2012 35 2,751-17,226 May-Aug Sep-Nov Dec-Feb Mar-May ln(λ t ) = 0.02  - 0.14X N[t-1]  + 3.0X PrecLac  + 0.16X TempAnn24  - 1.62X PrecLac*TempAnn24

  Panhandle (PH) 1978-2012 35 2,568-12,968 Jun-Sep Sep-Nov Dec-Feb Mar-May

Reproductive Periods
b

a
 Population surveys conducted July/August in Arizona and Texas, April in New Mexico, and March/April in Utah.

b
 Sources for peak fawning periods - Buechner 1950; Larsen 1964; Canon 1993; T icer et al. 2000; Miller and Drake 2006; J. Weaver pers. comm.; A. Aoude pers. comm.

c
 Covariates used in population projection models: PrecLac  = total precipitation during lactation; TempAnn24  = mean temperature over 24 months prior to population survey; N[t-1]  = population estimate in previous year (density effect).  
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Figure 1. Pronghorn population projection from an integrated Bayesian model for Texas Trans-

Pecos under a high (RCP8.5, black) and a lower (RCP4.5, gray) emissions scenario from 2014 to 

2090 based on an estimated initial population size of 3,016 in 2013. Solid line represents 

estimated median population and dashed lines represent 2.5% and 97.5% credible intervals. 

Dotted line represents annual population estimates from aerial surveys (1977-2013). 
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Matthew P. Zeigler, New Mexico State University, Dept. Fish, Wildlife and Conservation 

Ecology 

 

Problem statement and implications:  Rio Grande cutthroat trout (RGCT), the southernmost 

subspecies of cutthroat trout, is endemic to the Rio Grande, Canadian, and Pecos River basins of 

Colorado and New Mexico.  The subspecies is currently restricted to approximately 12% of its 

historic range with most populations occupying isolated high elevation headwater streams (Alves 

et al. 2008).  A recent status review found that listing of the subspecies under the Endangered 

Species Act of 1973 was warranted, but precluded by higher priority actions (U.S. Federal 

Register 2008).  The status review listed climate change as a major threat to the subspecies future 

persistence.  Although the majority of studies examining the negative effects of climate change 

on salmonid species have focused on changes in stream temperatures, future decreases in 

precipitation are expected to profoundly affect RGCT because the majority of populations 

occupy streams that are small (Zeigler et al. 2013) and highly fragmented (Alves et al. 2008).   

An ongoing monitoring program of stream temperature and summer baseflow of RGCT 

populations was initiated in 2010.  Although the majority of RGCT populations occupy 

thermally stable habitat, a large portion of these populations occupy small streams with 

extremely low summer baseflow (< 1.0 cubic foot per second, cfs; Zeigler et al. 2013).  Since 

2010, low winter snowpack and reduced seasonal precipitation across the subspecies’ range have 

resulted in baseflows well below 1.0 cfs, with extended reaches of streams becoming dry 

(Zeigler and Todd, unpublished data).  As a result of this suspected widespread stream 

intermittency, additional funds were obtained in 2012 to develop and deploy stream 

temperature/flow intermittency loggers within populations of RGCT experiencing extremely low 

summer baseflows (< 0.50 cfs).  Although these new sensors are documenting critical 

information regarding the extent and duration of stream intermittency, we do not know the 

effects that intermittency has had on the demographics (growth, recruitment, health) of RGCT 

populations.  The full extent of how drought will impact RGCT is unknown because only a 

portion of the 120 RGCT populations are monitored annually by State and Federal management 

agencies.  The current drought (2011-2013) within the Rio Grande basin provides a unique 

opportunity to study the impacts of extended drought on a sensitive coldwater fish species with 

high ecosystem importance and management relevance.   
 

Interim Results of 2014 Reporting Period:  Stream Temperature Intermittency and 

Conductivity loggers (STICs) and ProV2 temperature loggers were deployed May 2013 

throughout 30 RGCT populations and were retrieved September 2014 (Table). Rio Grande 

cutthroat trout populations were selected based on stream size, baseflows <0.5 cfs, and previous 

evidence of intermittency. Of note, stream intermittency was not observed at the time the STICs 

were retrieved throughout RGCT populations; thus, habitat surveys to characterize the effects of 

intermittency on pools (size and number) were not conducted.  Analysis of intermittency and 

flow duration as well as stream temperature is underway.  

During the reporting period, USFWS published the decision that RGCT is not warranted for 

listing as an endangered or threatened species under the 1973 Endangered Species Act (USFWS 
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2014).  The species was not in danger of extinction throughout its range nor was it likely to 

become extinct in the foreseeable future. 
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Table 1. Streams throughout New Mexico and Colorado with populations of Rio Grande 

cutthroat trout streams where Stream Temperature, Intermittency and Conductivity 

logger (STICs) were deployed August 2013 and retrieved September 2014 

Stream Name Population ID Basin Number of STICs 

McCrystal Creek 11080002cp001 Cimarron 3 

Middle Ponil Creek 11080002cp003 Cimarron 1 

E. F. Luna Creek 11080004cp001 Mora 2 

Cat Creek 13010002cp002 Alamosa-Trinchera 3 

Jim Creek 13010002cp005 Alamosa-Trinchera 1 

Torsido Creek 13010002cp009 Alamosa-Trinchera 1 

Torcido Creek 13010002cp010 Alamosa-Trinchera 1 

Deep Creek 13010002cp012 Alamosa-Trinchera 1 

West Indian Creek 13010002cp015 Alamosa-Trinchera 1 

Wagon Creek 13010002cp016 Alamosa-Trinchera 1 

Sangre de Cristo Creek 13010002cp016 Alamosa-Trinchera 5 

East Pass Creek 13010004cp002 Saguache 1 

Jacks Creek 13010004cp003 Saguache 1 

Cross Creek 13010004cp003 Saguache 1 

M. F. Carnero Creek 13010004cp007 Saguache 4 

N. F. Carnero Creek 13010004cp008 Saguache 4 

Prong Creek 13010004cp011 Saguache 1 

Cave Creek 13010004cp012 Saguache 1 

Tio Grande 13010005cp002 Conejos 1 

Tanques Creek 13010005cp003 Conejos 1 

Rio Nutrias 13010005cp004 Conejos 2 

Powderhouse Creek 13020101cp004 Upper Rio Grande 3 

La Queva Creek 13020101cp005 Upper Rio Grande 1 

Grassy Creek 13020101cp006 Upper Rio Grande 1 

Comanche Creek 13020101cp006 Upper Rio Grande 2 

Vidal Creek 13020101cp006 Upper Rio Grande 1 

Rito de las Palomas 13020202cp002 Jemez 3 

Rito de los Pinos 13020204cp002 Rio Puerco 1 

Osha Canyon 13020101cp024 Upper Rio Grande 3 

Pinelodge Creek 13060005cp001 Arroyo del Macho 2 
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Effects of Climate on Scaled Quail Reproduction and Survival 

Scott Carleton, USGS CRU New Mexico Cooperative Fish and Wildlife Research Unit 

 

Problem statement and implications:  Across the southwestern U.S., long-term declines in 

populations of scaled quail and contraction of their range-wide distribution have caught the 

attention of avian ecologists (Cantu et al. 2006). One of the factors hypothesized as a primary 

cause of this decline is a long-term trend in warmer, drier conditions and reduced monsoonal 

rainfall across their range. The mechanism believed to be driving this trend is declining nest 

success due to temperature and humidity levels above a critical threshold for egg and chick 

survival. While habitat loss cannot be discounted as a possible driver, areas managed specifically 

for scaled quail in western Texas have seen similar losses in population numbers across the same 

time frame indicating that these reductions are independent of habitat related factors (Rollins 

2000). Coupled with climate models forecasting shifts in the arrival of summer monsoon rains 

away from the critical reproductive periods of June and July (Cook and Seager 2013), the long-

term forecast for scaled quail response to decreased rainfall and higher temperatures is bleak. 

Scaled quail are considered to be a key indicator species of the health of the habitats they occupy 

across the southwest and are frequently used to assess the success of restoration projects 

undertaken by federal and state agencies (Coffman 2012). We propose to use this species to 

study climate effects (temperature, humidity, and precipitation) preceding, during and following 

the nesting season with a primary focus on how these climate variables affect nest success.  

 

Goals and Objectives:  Our primary objective will be to measure nest success in different 

populations across their range and determine if nest success is related to temperature and 

humidity measurements taken in incubating nests using ibuttons. This project could be expanded 

in future years if funding becomes available to compare presence/absence of scaled quail on 

White Sands Missile Range (where habitat condition is driven by only climate variables because 

grazing has not occurred in over 50 years) using drought indices to determine if measures of 

precipitation, temperature and humidity can predict scaled quail abundance. 

 

Project activities during reporting period and current status:  For the 2014 breeding season 

we deployed temperature and humidity loggers in scaled quail nests in New Mexico, Texas, and 

Oklahoma.  We have not received the logger data from Texas and Oklahoma, but we have added 

two new sites.  We will be starting an additional project on White Sands Missile Range and 

placing data loggers in scaled quail nests in Arizona in 2015.  We have collected and analyzed 

the data from nests here in New Mexico from the 2014 nesting season and will be deploying data 

loggers at all sites across the range again in 2015. 

 

2014 Results 

Precipitation patterns during the growing season in 2014 were characterized by initial 

precipitation beginning in early July and increasing in frequency and magnitude through the 

beginning of October (Figure 1). High rainfall in October was the result of a tropical storm 

followed by a hurricane on the northwest coast of Mexico and is atypical of the end of the 

monsoon season. Nests were first initiated in June before the onset of summer monsoon rains and 

continued through late September; the end of the monsoon season.  Temperature and humidity 

data from inside and immediately outside the nest indicate that scaled quail hens were very good 

at buffering nest temperatures from ambient temperatures, but poor at buffering nests from both 
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small and large changes in ambient humidity (Figure 2).  Interestingly, nest success seemed 

unaffected by ambient temperature and humidity with nest success being highest prior to the 

onset of summer monsoons when ambient temperature is highest and humidity lowest (Figure 

3A and Figure 2, respectively).  One of the biggest drivers of overall reproductive success in 

2014 appeared to be onset of summer monsoons.  Brood success increased as the monsoon 

season progressed with 100% brood survival observed in September and October (Figure 3B).   



30 

 

 

 
 

 

Figure 1. Total weekly precipitation at our New Mexico study site during the 2014 monsoon 

season. 

June 1                                                                                                                                                 October 4 
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Figure 2.  Scaled Quail hens appear to buffer the temperature of the nest  

across both hot and cool periods (A), but appear to buffer ambient humidity  

poorly (B). Black lines depict nest temperature and humidity; gray lines represent ambient 

conditions 
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Figure 3.  Scaled quail nest success (A) varied widely while brood success (B) increased through 

the breeding season indicating that brood success is more dependent on summer monsoons than 

nest success.  
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