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ABSTRACT The increasing use of Global Positioning System (GPS) collars in habitat selection studies
provides large numbers of precise location data points with reduced field effort. However, inclusion of
activity sensors in many GPS collars also grants the potential to remotely estimate behavioral state. Thus,
only using GPS collars to collect location data belies their full capabilities. Coupling behavioral state with
location data would allow researchers and managers to refine habitat selection models by using diel
behavioral state changes to partition fine-scale temporal shifts in habitat selection. We tested the capability
of relatively unsophisticated GPS-collar activity sensors to estimate behavior throughout diel periods using
free-ranging female elk (Cervus canadensis) in the Jemez Mountains of north-central New Mexico, USA,
2013–2014. Collars recorded cumulative number of movements (hits) per 15-min recording period
immediately preceding GPS fixes at 0000, 0600, 1200, and 1800 hr. We measured diel behavioral patterns
of focal elk, categorizing active (i.e., foraging, traveling, vigilant, grooming) and inactive (i.e., resting)
states. Active behaviors (foraging, traveling) produced more average hits (0.87� 0.69 hits/min, 4.0� 2.2
hits/min, respectively; 95% CI) and inactive (resting) behavior fewer hits (�1.1� 0.61 95% CI). We
differentiated active and inactive behavioral states with a bootstrapped threshold of 5.9� 3.9 hits/15-min
recording period. Mean cumulative activity-sensor hits corresponded with observed diel behavioral
patterns: hits increased during crepuscular (0600, 1800 hr) observations when elk were most active (0000–
0600 hr: d¼ 0.19; 1200–1800 hr: d¼ 0.64) and decreased during midday and night (0000 hr, 1200 hr)
when elk were least active (1800–0000 hr: d¼�0.39; 0600–1200 hr: d¼�0.43). Even using relatively
unsophisticated GPS-collar activity sensors, managers can remotely estimate behavioral states, approximate
diel behavioral patterns, and potentially complement location data in developing habitat selection models.
� 2016 The Wildlife Society.
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Habitat selection studies often use animal locations obtained
from telemetry collars to estimate relative importance of
various habitat characteristics (Johnson 1980, Rumble et al.
2001, Beyer et al. 2010). The majority of studies apply a
use-versus-availability framework to estimate the value of
a particular habitat attribute for animals by comparing
characteristics of used and available locations, at a specified
spatiotemporal scale (Johnson 1980, Millspaugh and
Marzluff 2001, Johnson et al. 2006, Mayor et al. 2009,
Beyer et al. 2010). Although this is a reasonable method for

making large-scale inferences on species’ habitat needs,
problems may arise if habitats are disproportionately
important compared with their frequency of use (Spencer
et al. 1990, Rettie andMcLoughlin 1999,Wilson et al. 2012,
Harju et al. 2013, Poessel et al. 2014). For example, habitat
conditions required for specific behaviors such as mating,
parturition, and foraging might not always be detectable if
the spatial or temporal scales considered in the study are not
correctly identified (Wiens 1989, Beyer and Haufler 1994,
Mayor et al. 2009, Onorato et al. 2011, Wilson et al. 2012).
Arbitrarily delineating spatial and temporal scales also
exacerbates the danger of failing to detect necessary habitat
components in relation to specific animal behavioral states
(Rettie and McLoughlin 1999, Beyer et al. 2010, Wilson
et al. 2012, Harju et al. 2013, Poessel et al. 2014).
The use of Global Positioning System (GPS) collars has

become standard for habitat selection studies, with most
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studies using them to obtain location data (Millspaugh and
Marzluff 2001). The location-obtaining capabilities of GPS
collars are well-known and allow researchers to record
accurate locations at fixed intervals, throughout a day, and
in remote locations (Rumble et al. 2001, Kochanny et al.
2009, Frair et al. 2010). These features give researchers the
opportunity to widen or narrow spatial and temporal scales
assessed to nearly any specification (Moe et al. 2007, Biggs
et al. 2010, Woodside 2010, De Knegt et al. 2011, Onorato
et al. 2011). Although these applications provide immense
benefit by aiding understanding of habitat requirements
and movements by animals (Millspaugh et al. 1998,
Johnson et al. 2002b, Joly 2005, Stewart et al. 2010),
simply using GPS collars for location data belies their full
potential as data gathering tools (Janis et al. 1999, Moe et al.
2007, Schwartz et al. 2010, Soltis et al. 2012, Wang et al.
2015).
Many GPS collars also come equipped with activity sensors

that have the potential to detect and record neck and upper
body movements (Ungar et al. 2005). Even for non-GPS
location-measuring collars, activity sensors have been
available and used for some time (Green and Bear 1990,
Merrill 1991). These sensors provide the opportunity to
remotely estimate animal behavior (Umst€atter et al. 2008,
L€ottker et al. 2009, Ungar et al. 2010, Soltis et al. 2012). The
most sophisticated sensors can differentiate between, and
separately record, vertical and horizontal motion and tilt
angle, whereas less complex models simply record any
sufficiently forceful motion (Coulombe et al. 2006,
Umst€atter et al. 2008, Ungar et al. 2010, Wang et al.
2015). Less advanced activity sensors that separately
recorded vertical and horizontal motion were still able to
distinguish foraging and resting bouts in deer (Odocoileus
virginianus; Coulombe et al. 2006), active versus inactive
periods in bears (Ursus thibetanus japonicus; Yamazaki et al.
2008), and cattle behaviors (e.g., resting, grazing, traveling;
Ungar et al. 2005, Augustine and Derner 2013). Thus, less
sophisticated sensors could provide general behavioral data
or gather exploratory data before researchers embark on a
study with more advanced sensors (Coulombe et al. 2006,
Yamazaki et al. 2008).
Although automated recording of animal behavior is

useful for remotely estimating activity budgets, given that
habitat characteristics sought out by animals often vary with
behavior (i.e., foraging area characteristics vs. resting areas),
perhaps the greatest potential benefit of GPS-collar
activity-sensor data, and any other location-measuring
collar, is combining location and behavior data to relate
habitat selection to behavioral states. Coupling time-
stamped location and behavioral data could allow research-
ers to empirically delineate behaviorally driven diel shifts in
habitat selection without the need for direct observation of
animals (Spencer et al. 1990, Arthur and Schwartz 1999,
Moe et al. 2007, Wilson et al. 2012, Roberts 2015). Even
using less sophisticated activity-sensor data alongside
location data could grant researchers and land managers
a more detailed understanding of species’ habitat use and a
greater ability to prioritize habitat management actions

in a time- and cost-effective manner (Hansen et al. 1992,
Rumble et al. 2001, Yamazaki et al. 2008, Wilson et al.
2012).
Because elk (Cervus canadensis) is often a species of

conservation interest and subject of numerous studies on
habitat selection (Skovlin et al. 2002, Hebblewhite et al.
2008, Beck et al. 2013), behavior, and habitat use (Collins
et al. 1978, Green and Bear 1990, Becker et al. 2012), it is a
species with well-studied characteristics on which to test
GPS-collar activity sensors. Some studies have reported on
use of sophisticated GPS-collar activity sensors to delineate
active and inactive behavioral states in captive elk (Naylor
and Kie 2004, Gaylord 2013) and European red deer
(C. elaphus; Adrados et al. 2003, 2008; L€ottker et al. 2009).
However, these studies do not assess the capability of GPS-
collar activity sensors to associate elk behavioral data with
location data, and 3 of 4 of these studies were conducted with
captive animals, some of which were habituated to humans
and not at risk of predation (Adrados et al. 2003, 2008;
L€ottker et al. 2009; Gaylord 2013; Roberts 2015). Human
disturbance and predation risk can alter elk behavior,
increasing frequency of vigilant behavior, running, and
rapid erratic movements (Childress and Lung 2003, Creel
et al. 2005). These types of behaviors have the potential to
confound behavioral predictions from data derived from
activity sensors in GPS collars (Yamazaki et al. 2008, L€ottker
et al. 2009).
Remotely estimating animal behavior with GPS-collar

activity sensors could grant researchers and land managers
greater insight into species’ habitat use and requirements by
1) obtaining behavioral data throughout diel periods without
time-consuming observations and 2) relating behavioral
states to location data. Using free-ranging elk as an example,
our objectives were to 1) use activity sensor data to remotely
estimate behavioral states of free-ranging elk and 2) compare
behavioral patterns throughout diel periods to activity
sensor data.

STUDY AREA

We conducted this study in the Valles Caldera National
Preserve (VCNP; 36,017 ha) in the Jemez Mountains
of north-central New Mexico, USA, from January to
August 2014. The VCNP consisted of grasslands, ponderosa
pine (Pinus ponderosa) forests, mixed conifer forests of
Douglas fir (Pseudotsuga menziesii), spruce (e.g., Picea
engelmannii, P. pungens), firs (Abies concolor, A. lasiocarpa),
and aspen stands (Populus tremuloides; Allen and Station
2001, Roberts 2015). Elevation ranged from 1,500 to
>3,000m. Climate was considered semiarid continental, and
annual precipitation and snowfall averaged 58 cm (SD¼
25 cm) and 305 cm (SD¼ 97 cm), respectively (National
Oceanic and Atmospheric Administration 2014, Western
Regional Climate Center 2015). The area had recently
experienced notable wildfire activity: the Las Conchas (2011,
approx. 63,536 ha) and Thompson Ridge (2013, approx.
9,712 ha) were the most recent wildfires on the VCNP at the
time of the study, having burned nearly two-thirds of the
preserve. On the VCNP, the Thompson Ridge fire was of
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mixed severity—stand-replacing in some areas and low-
severity in other areas. The Las Conchas fire was almost
exclusively a stand-replacing, high-intensity fire. These fires
created a mosaic of early successional shrub–forb commu-
nities between matchstick snags and patches of largely intact
forests. Common predators and ungulates on the VCNP
were mountain lion (Puma concolor), black bear (Ursus
americanus), coyote (Canis latrans), and mule deer (Odo-
coileus hemionus). Limited grazing by domestic cattle (Bos
taurus), hunting, hiking, and fishing also occurred on the
VCNP.

METHODS

GPS Collars
We captured and collared adult female elk by net-gunning
and darting from helicopter, or by darting from a vehicle.We
deployed 6 Iridium GPS collars (Model G2110E; Advanced
Telemetry Systems, Isanti, MN, USA) in January 2014, and
we deployed 4 more Iridium GPS collars in March 2014.
Because this study took place within a larger habitat selection
study that required maximum battery life for GPS collars, we
set collars to record locations every 6 hr, at 0000, 0600, 1200,
and 1800 hr. Activity sensor data were recorded by collars for
15min prior to each GPS fix. All capture and handling
procedures followed acceptable methods and were approved
by the New Mexico State University Institutional Animal
Care and Use Committee (IACUC protocol #2011-038;
Sikes et al. 2011).
Collar activity sensors were designed to detect movement

in the animal and record each detected movement as a “hit.”
Hits could represent any sufficiently forceful movement by
the animal, from neck and head movements such as foraging
or grooming to entire body movements such as walking or
running. Thus, our activity sensors were relatively unsophis-
ticated when compared with those that record movements
independently along horizontal and vertical axes. For each
15-min interval in which activity sensors were recording
data, collars recorded the cumulative number of hits without
time-stamping them beyond the GPS fix with which they
were associated. Activity sensor data were transmitted via the
Iridium satellite system every 3 days along with the GPS
location data.

Behavioral Data Collection
To estimate behavioral states, we used focal sampling to
collect behavioral data (Altmann 1974) on GPS-collared elk
during the 15-min activity-sensor recording interval prior to
programmed GPS location fixes. During a focal survey, we
recorded date, time, and behavioral state every minute on the
minute. We considered 7 behavioral categories: foraging
(browsing, grazing, drinking, standing, or moving with head
below shoulder level), vigilance (standing immobile with
head above or at shoulder level), resting (lying on the ground
with head in any position), traveling (walking or running
with head at or higher than the shoulder), aggression (social
interactions involving biting, kicking, or charging), nursing
(standing immobile with calf suckling), and grooming
(scratching or licking; Childress and Lung 2003). When

possible, we conducted surveys from open roads, using a
vehicle as a blind. Otherwise, we followed the focal animal at
a great enough distance so as not to disturb it and observed it
with a spotting scope or binoculars. If the focal animal was
visibly disturbed so that it stopped whatever behavior it was
engaged in or moved away in response, we discontinued
observation of that animal immediately. As a result of the
high visibility in grassland and burned portions of the
VCNP, almost all collared focal animals were observed in
these areas. When possible, we also used radiotelemetry to
track and observe elk in spruce–fir, ponderosa pine, and
burned forests. If multiple GPS-collared elk were in the same
herd or area, we identified individuals by strength and
direction of radio signals. Because collar very-high-frequency
transmitters did not transmit between 1800 and 0600 hr, we
conducted all 15-min observations except one before the
1200-hr and 1800-hr fix times. We used the Animal
Behaviour Pro application installed on an Apple iPad mini 2
to record behavior (Apple, Cupertino, CA, USA; Newton-
Fisher 2014, Roberts 2015).
When we had continuous, unimpeded visuals on the focal

animal during activity sensor recordings, we also simulta-
neously performed continuous focal sampling, in which we
recorded every change in the focal animal’s behavior (in
practice, behavior was recorded accurately down to changes
in seconds; Altmann 1974, Childress and Lung 2003).
We added this continuous sampling to obtain finer scale
behavioral data to relate to activity sensor data. Hereafter, we
refer to the focal sampling method described in Roberts
(2015) as the minute method and the continuous method
described here as the continuous method.
To compare diel behavioral patterns to activity sensor

data, we also used focal sampling (see above) to collect
behavioral data across 24-hr diel periods on adult female elk
within the same population as the collared elk. We sampled
each diel hour a minimum of 3 times over a minimum of
14 days every month (Roberts 2015). We selected animals
with GPS activity-sensor collars for observation when
possible, but if we could not locate collared animals, we
opportunistically selected adult female elk. All nocturnal
behavioral observations were made from a vehicle and with
light-amplifying night vision goggles (Morovision Night
Vision, Inc., Laguna Hills, CA, USA).

Analysis
Comparing activity sensor hits to observed behavior.—The

GPS-collar activity sensors in our study did not distinguish
motion direction or time-stampmovements beyond the GPS
location fix; therefore, we sought only to use activity sensor
data to differentiate active from inactive behavioral states.
We validated the separation of active from inactive
behavioral states with multiple regression; that is, if active
and inactive behavior coefficients had opposite signs (e.g.,
active behaviors increased the no. of hits, whereas inactive
behaviors decreased the no. of hits), we could validly
differentiate them. We used the amount of time elk were
exhibiting specified behaviors (i.e., foraging, resting) as
potential predictor variables, with the number of activity
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sensor hits as the response variable in the multiple regression
models. Although grouping all behaviors into active or
inactive categories would meet our objectives, we also chose
to estimate separate coefficients for each behavior to estimate
their relative contributions to the number of activity sensor
hits per recording interval. We chose predictor variables
using stepwise forward and backward selection based on
Akaike Information Criterion corrected for small sample size
(AICc; Anderson 2008, R Core Development Team 2014).
Foraging and resting almost never occurred in the same
observation and were the 2 most common behaviors;
therefore, there was a negative correlation between them
(r¼�0.89), which prevented their inclusion in the same
model. Thus, we tested 2 models, one with only active
behaviors (i.e., foraging, traveling, grooming, aggression)
and one with only inactive behaviors (i.e., resting, nursing).
We also tested for nonlinear effects in models by adding
quadratic and higher order terms. We tested regressions for
heteroscedasticity of variance with the Breusch–Pagan test
from the “lmtest” package in R (Zeileis and Hothorn 2002).
Some previous studies considered standing or vigilance as
inactive behaviors (Ungar et al. 2005, Umst€atter et al. 2008),
but in elk, vigilance is often interspersed with traveling and
foraging (Childress and Lung 2003, L€ottker et al. 2009, St
Clair and Forrest 2009). To determine whether vigilance
should be counted as an active or inactive behavior, we added
it as a potential variable in both the active and inactive
regression models. We applied stepwise model selection
to the minute and continuous methods separately. We
included standard error estimates for all regression co-
efficient estimates.
We also compared observed diel behavioral patterns to

the mean number of activity sensor hits from all collared
individuals. To summarize diel behavioral patterns, we
calculated the percent time per hour each observed
individual spent engaged in each behavioral category
(Roberts 2015). We estimated the mean number of activity
sensor hits for all collared elk for each 15-min pre-GPS fix
interval with 95% confidence, excluding records used to
validate the regressions and threshold values. We qualita-
tively compared activity sensor hits and behavioral patterns
by creating side-by-side plots for activity sensor hits and diel
behavior data. We also estimated temporally sequential
effect sizes (Cohen’s d) for differences between mean
activity sensor hits across diel activity-sensor recording
intervals (Cohen 1988).
Threshold values.—We delineated active and inactive

behavioral states during 15-min recording intervals by
creating an activity sensor hit “threshold” as described by
Coulombe et al. (2006) and Yamazaki et al. (2008). We
considered values greater than the threshold as active and
values less than or equal to the threshold as inactive
(Coulombe et al. 2006, Yamazaki et al. 2008). To generate
a threshold value of activity sensor hits, we selected
observations completely consisting of either active or inactive
behaviors, omitting mixed observations, and designed an
algorithm to select the optimal threshold value. Because the
success rate of a given threshold value was not the same for

active and inactive predictions, we applied the algorithm
separately to active and inactive observations.
The flow of the algorithm was as follows: 1) determine the

observed range of activity sensor hits per observation period;
2) predict whether each activity sensor recording was active
or inactive using all values within the observed range;
3) compare active versus inactive predictions from each
threshold value to the observed active versus inactive periods;
4) calculate a percent success rate of the predictions (we
considered hit values where active and inactive prediction
success rates differed minimally as the optimal threshold
value); 5) bootstrap the sample 999 times; and 6) derive
mean, standard error, and 95% confidence interval for
threshold and percent success rate values from bootstrapped
replicates (Coulombe et al. 2006, Yamazaki et al. 2008,
R Core Development Team 2014). To determine whether
vigilance was best considered active or inactive behavior, we
compared bootstrapped threshold and success rate values
for both categorizations. We performed all plotting and
data analyses in R (Wickham 2009, R Core Development
Team 2014).

RESULTS

We obtained 70 observations for the minute method and 26
for the continuous method. The number of activity sensor
hits per observation ranged from 0 to 71, with an average of
18.5 (�5.02, 95% CI). Foraging and resting behaviors
dominated observations, but elk also commonly engaged in
traveling and vigilance. In minute method observations, elk
never exhibited vigilance and resting in the same observation
and were never vigilant or traveling for the entire length of an
observation. Grooming, nursing, and aggression occurred
so infrequently they could not serve as predictors for
the minute method, although they were testable in the
continuous method.
Multiple regression models successfully differentiated

active versus inactive behaviors based on the number of
activity sensor hits. Stepwise model selection found foraging
and traveling behaviors to be the best predictors in the active
model and only resting behavior for the inactive model.
Foraging and traveling were positively associated with
activity sensor hits (bforaging¼ 0.87� 0.35; btraveling¼
4.0� 1.13; intercept¼ 7.75� 3.37 SE), and resting was
negatively associated with activity sensor hits (bresting¼
�1.08� 0.32; intercept¼ 24.19� 3.05 SE). Within the
active model, time spent traveling was a stronger predictor of
hits than foraging. Stepwise selection did not choose
vigilance for either active or inactive models. Both models
were significant (active: F2,67¼ 9.73, P< 0.001; inactive:
F1,68¼ 11.72, P¼ 0.002), although their R2 values were
relatively low (R2¼ 0.20, 0.14, respectively).
The continuous method produced model structures

identical to the minute method. Both models were also
significant (active: F2,26¼ 9.92, P¼ 0.001, R2¼ 0.39; inac-
tive: F1,27¼ 12.63, P¼ 0.001, R2¼ 0.29); however, the
continuous method increased R2 values in the active models
from 0.20 to 0.39 and in the inactive models 0.14 to 0.29
over the minute method models. The coefficients in both
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models also showed the same pattern as in the minute
method. Traveling still proved a stronger predictor than
foraging (bforaging¼ 0.069� 0.01; btraveling¼ 0.032� 0.02;
intercept¼ 0.68� 5.43 SE), and resting was negatively
associated with sensor hits (bresting¼�0.031� 0.01; inter-
cept¼ 29.19� 4.57 SE).
Mean number of activity sensor hits differed by hour

(95% CI), peaking at 0600 hr (16.36� 0.66 hr) and 1800 hr
(20.48� 1.14 hr) and dropping at 0000 hr (12.66� 0.61 hr)
and 1200 hr (8.65� 0.51 hr; Fig. 1). Effect sizes also
demonstrated this pattern: mean activity sensor hits increased
slightly between 0000 and 0600 hr (Cohen’s d¼ 0.19),
decreased between 0600 and 1200 hr (d¼�0.43), increased
again between 1200 and 1800 hr (d¼ 0.64), and decreased
between 1800 and 0000 hr (d¼�0.39).Over a diel period, elk
engaged in active behaviors most during crepuscular periods
and inactive behaviors most at midday (Fig. 1). During the
night, elk switched between active and inactive behaviors
(Fig. 1).
Because we never observed vigilance and resting in the

same observation, we effectively either counted vigilance
as an active behavior or completely removed it from
the threshold analyses. Counting vigilance as an active
behavior, 67 out of the total 70-min method observations
consisted of either completely active or inactive behaviors.
Of those 67 observations, 40 were completely active and
27 were completely inactive. Removing observations with
vigilance, 18 were completely active and 27 were completely
inactive. Neither the bootstrapped threshold nor the
success rates changed whether vigilance was counted as
active (threshold¼ 5.95� 3.68; success rate¼ 69%� 13%)
or inactive (threshold¼ 6.89� 4.27; success rate¼ 71%� 15%),
although counting vigilance as active reduced standard
errors and confidence interval widths. Only 2 observations
in the continuous method contained completely active or

inactive behaviors, so it could not be used to determine
an activity-sensor-hit threshold value.

DISCUSSION

Our qualitative comparison of activity sensor hits across diel
periods indicates that these activity sensors can be used for
remotely estimating diel behavioral states and associating
behavioral states with location data. Mean number of activity
sensor hits over diel periods coincided with observed diel
behavioral patterns of free-ranging elk. These observed
patterns are also consistent with results of previous
behavioral studies on elk, which tend to be most active
during crepuscular periods, less active during midday, and
oscillate between active and inactive behaviors at night
(Green and Bear 1990, Toweill and Thomas 2002). We did
not always perform diel behavioral observations on collared
elk; therefore, we could not directly assess the relationship
between activity sensor hits and diel behavioral patterns
outside periods of our observations. Despite this, we found
active behaviors (foraging and traveling) to be positively
related to GPS-collar activity-sensor hits and inactive
behavior (resting) to be negatively related to activity sensor
hits, even with a relatively low sample size.
Our study also demonstrated the potential to estimate diel

behavioral patterns with relatively coarse activity sensor data.
Although studies with similar objectives and methods
obtained greater success rates (�90%), those studies used
captive animals and much more sophisticated motion-
sensor-equippedGPS collars capable of recordingmuch finer
scale movement data (Ungar et al. 2005, 2010; Umst€atter
et al. 2008; L€ottker et al. 2009; Gottardi et al. 2010; Gaylord
2013). However, the less sophisticated motion sensors used
in our study still produced relatively accurate estimates of
active and inactive behavioral states and reflected the diel
behavioral patterns commonly observed in elk. Thus, less
sophisticated sensors would be sufficient for describing
general behavioral state, associating behavioral patterns with
location data, or providing preliminary behavioral data
before launching a more in-depth behavioral or habitat
selection study (Moe et al. 2007, Schwartz et al. 2010).
For managers and researchers wishing to remotely estimate

the behavioral states of free-ranging animals, logistical and
budgetary constraints are often essential considerations.
Given the time and cost of capturing animals and replacing
collars because of battery depletion, the short fix and frequent
activity-sensor recording interval commonly used in studies
of captive animals may not be applicable to studies of free-
ranging wildlife (Johnson et al. 2002a, Latham et al. 2015;
but see Brown et al. 2012). Studies of captive animals
obtained more frequent fixes, larger sample sizes, did not
have to balance fix frequency with battery longevity, and
could replace collars at will with relative ease (Ungar et al.
2005, 2010; Coulombe et al. 2006; L€ottker et al. 2009;
Gaylord 2013). More frequent fixes and larger sample sizes
in controlled, captive settings would tend to improve model
and threshold fits—an undoubtedly desirable goal (Frair
et al. 2004). Our results suggest that use of less sophisticated
collars that record somewhat infrequently may still allow for

Figure 1. Mean percent of each diel hour female elk exhibited foraging,
resting, traveling, or vigilance behavior (top panel), and mean number of
cumulative activity sensor hits per 15-min period recorded every 6 diel hours
by GPS-collar activity sensors on female elk (bottom panel) in the Jemez
Mountains, New Mexico, USA, during 2014. Error bars indicate 95%
confidence limits.
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remote estimation of behavioral state. Our study coincided
with a long-term habitat selection study on free-ranging
elk; therefore, we set relatively wide temporal intervals
between activity sensor recordings (6 hr) to optimize battery
longevity. This provided only isolated samples of behavior
within a wide range of variability over diel periods, but it still
corresponded with observed diel behavioral patterns. For
future studies seeking to gather more continuous behavioral
data via activity sensors, we suggest that synchronizing
activity sensor recordings with location fixes and spacing
recordings out so that each diel hour is evenly sampled (e.g.,
5-hr fix intervals) could allow researchers to estimate diel
behavior and empirically establish temporal delineations for
modeling of diel habitat selection or activity budgets while
avoiding temporal and spatial autocorrelation issues and
optimizing battery longevity (Orians and Wittenberger
1991, Millspaugh and Marzluff 2001, Latham et al. 2015).
Inaccuracies and lower precision in threshold predictions in

this study may have stemmed from several sources. Foraging
dominated most active observations; although elk often
moved while foraging, they tended to keep their heads and
necks down and relatively still. This could contribute to the
reduced magnitude of effect of foraging on activity sensor
hits compared with traveling. Also, the inactive regression
model only explained a small amount of variation in activity
sensor hits likely because even while resting, any head or neck
movement could produce an activity sensor hit. In most
inactive observations, resting elk kept their heads up,
surveying their surroundings, ruminating, or grooming.
Because we defined any behavior while lying on the ground
as resting, we could not distinguish movements while resting
from more completely inactive behaviors. Idiosyncratic
behavioral differences between individual elk and the
tightness of the collars on their necks also could have
influenced how motion registered on collar sensors (L€ottker
et al. 2009).
The accuracy of threshold predictions could be increased by

accounting for how collars are fitted on individuals,
individual elk behaviors, and minimum amount of force
necessary to result in a hit (Yamazaki et al. 2008, L€ottker
et al. 2009, Gaylord 2013). Physiological differences in elk
could also explain more variation in activity sensor hits
(L€ottker et al. 2009). Perhaps most importantly, recording
head and neck movements alongside categorical behaviors
could account for variation in activity sensor hits between
active and inactive states (Coulombe et al. 2006, L€ottker
et al. 2009, Gaylord 2013).
Behavioral prediction success rates did not differ when

defining vigilance as an active or inactive behavior, but
defining vigilance as active did narrow confidence intervals
because more samples were included in the analysis.
Although vigilance was not related to activity sensor hits
in regression models, it always occurred amid active
behaviors (foraging, traveling, and grooming) during our
observations. Other behavioral studies on free-ranging elk
have found vigilance to be associated with active behaviors
(Childress and Lung 2003, Wolff and Van Horn 2003).
Also, transitions between foraging or traveling and vigilance

could have triggered activity sensors as elk raised and lowered
their heads. Thus, it seems reasonable to categorize vigilance
as an active behavior for the purpose of GPS activity-sensor
behavioral predictions.
Most habitat selection studies using GPS technology

collect incredible amounts of location data, but they often do
not explore its full potential. Using GPS-collared elk as an
example, our study demonstrates the potential and benefits of
associating animal behavioral data with location data and
outlines a time- and cost-effective method to remotely
estimate behavior. It also shows that accurate predictions of
general behavioral state can be made even with relatively
unsophisticated activity sensors.

MANAGEMENT IMPLICATIONS

Using less sophisticated GPS-collar activity sensors with
coarser recording intervals could provide general behavioral
data while also optimizing GPS-collar battery longevity.
Monitoring animal behavior remotely could also reduce time
and resources needed to obtain behavioral data, minimize
stress from human disturbance, and decrease the bias human
presence may impose on behavioral observations. Other
specific ways in which researchers and land managers could
benefit from remote estimation of animal behavior include
1) the ability to associate animal behavioral states with
location data, which could aid in understanding the impor-
tance organisms allocate to those habitats and further inform
management decisions regarding those habitats; 2) the ability
to address questions regarding behavioral responses to various
stimuli such as predator presence, human-induced (e.g.,
recreation, logging), or natural disturbances (e.g., wildfires);
and 3) obtaining behavioral data from all diel hours, which
could establish empirical temporal delineations for diel
habitat selection analyses or simply provide behavioral data
on species that are difficult to observe at night.
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