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Abstract.   The capacity to describe and quantify predation by large carnivores expanded considerably 
with the advent of GPS technology. Analyzing clusters of GPS locations formed by carnivores facilitates 
the detection of predation events by identifying characteristics which distinguish predation sites. We 
present a performance assessment of GPS cluster analysis as applied to the predation and scavenging of 
an omnivore, the American black bear (Ursus americanus), on ungulate prey and carrion. Through field 
investigations of 6854 GPS locations from 24 individual bears, we identified 54 sites where black bears 
formed a cluster of locations while predating or scavenging elk (Cervus elaphus), mule deer (Odocoileus 
hemionus), or cattle (Bos spp.). We developed models for three data sets to predict whether a GPS cluster 
was formed at a carnivory site vs. a non-carnivory site (e.g., bed sites or non-ungulate foraging sites). 
Two full-season data sets contained GPS locations logged at either 3-h or 30-min intervals from April to 
November, and a third data set contained 30-min interval data from April through July corresponding to 
the calving period for elk. Longer fix intervals resulted in the detection of fewer carnivory sites. Clusters 
were more likely to be carnivory sites if they occurred in open or edge habitats, if they occurred in the 
early season, if the mean distance between all pairs of GPS locations within the cluster was less, and if 
the cluster endured for a longer period of time. Clusters were less likely to be carnivory sites if they were 
initiated in the morning or night compared to the day. The top models for each data set performed well 
and successfully predicted 71–96% of field-verified carnivory events, 55–75% of non–carnivory events, and 
58–76% of clusters overall. Refinement of this method will benefit from further application across species 
and ecological systems.
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Introduction

In-depth knowledge of predator–prey dynam-
ics has been limited due to a paucity of suit-
able methods for identifying predation events. 

Although cause-specific mortality studies of 
prey species can quantify the impact carnivores 
have on prey populations (e.g., Ballard et  al. 
2001), inferences about carnivore behavior and 
ecology including predation rates, carnivore diet 
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composition, and individual variation or varia-
tion across demographic classes are limited by 
this method. Recently, the analysis of carnivore 
movements via location data from GPS collars 
has provided a novel approach to predation 
research. Analysis of spatiotemporal clustering 
of carnivore GPS locations enables remote iden-
tification of predation events by selecting char-
acteristics of clusters that distinguish predation 
clusters from non-predation clusters includ-
ing metrics of time spent at the site, movement 
within the site, or habitat characteristics at the 
site among others. First developed by Anderson 
and Lindzey (2003), GPS cluster analysis has 
been used to identify predation events from 
obligate carnivores including cougars (Puma con-
color, Anderson and Lindzey 2003, Knopff et al. 
2009, Ruth et al. 2010, Elbroch and Wittmer 2013), 
wolves (Canis lupus, Sand et al. 2005, Franke et al. 
2006, Demma et al. 2007, Webb et al. 2008, Lake 
et  al. 2013), lions (Panthera leo, Tambling et  al. 
2010), leopards (Panthera pardus, Martins et  al. 
2010, Pitman et al. 2012), jaguars (Panthera onca, 
Cavalcanti and Gese 2010), Eurasian lynx (Lynx 
lynx, Mattisson et al. 2011, Krofel et al. 2013), and 
bobcats (Lynx rufus, Svoboda et al. 2013).

Cluster analysis has been validated when com-
pared to several traditional methods of investi-
gating predation. Tracking predator movements 
via VHF radiotelemetry resulted in an underesti-
mation of kill rates compared to cluster analysis 
(Ruth et al. 2010). Cluster analysis detected 100% 
of predation events identified via snow-tracking 
(Knopff et al. 2009) and provides an opportunity 
to monitor predation year round without limita-
tions due to snow conditions. While smaller prey 
items were underestimated by cluster analysis 
compared to scat analysis, both methods resulted 
in nearly equivalent prey composition in large 
carnivore diets due to the low biomass from 
small prey in predator diets and high success in 
locating large prey with GPS clusters (Martins 
et al. 2010, Bacon et al. 2011, Pitman et al. 2013). 
Tracking predation with movement data from 
GPS collars has the advantage of providing con-
tinuous data year round across wide-ranging 
habitats and affords opportunities to collect more 
detailed information on prey characteristics (e.g., 
species, sex, age, and condition) and monitoring 
individual variation in predatory behavior of 
carnivores.

Cluster models developed for one species 
may not be directly applicable to other species 
due to variable movement patterns and feed-
ing behavior among carnivore species (Webb 
et al. 2008). Predator and prey body size impact 
how long a carnivore spends at a predation site, 
while dietary plasticity in facultative carnivores 
can affect how often clusters are formed at non-
carnivorous feeding sites. Furthermore, prey 
density and availability, availability of non-prey 
food sources (e.g., vegetation, mast), and compe-
tition with other carnivores may affect applica-
bility of cluster models across populations within 
a species. Therefore, the utility of this method 
needs strengthening by continued refinement 
through application in a variety of predator–prey 
systems.

The first application of cluster analysis to a 
facultative carnivore investigated grizzly bear 
(Ursus arctos) predation of moose calves (Rauset 
et al. 2012). This was followed by two more gen-
eral (i.e., varying ungulate species and ages) 
applications to grizzly bear consumption of 
ungulates (Cristescu et  al. 2015, Ebinger et  al. 
2016). As of yet, the accuracy of cluster analysis 
has not been assessed for predicting predation 
and scavenging (hereafter collectively referred 
to as carnivory) events by American black bears 
(Ursus americanus). As omnivores, black bears 
exhibit movement patterns and feeding behav-
iors that provide an interesting challenge for the 
application of cluster analysis to this species. 
Movements associated with scavenging behavior 
as well as cluster formation at non-carnivorous 
feeding sites may lead to less distinguishable 
clustering of GPS locations than those of obligate 
carnivores. Black bear predation is an important 
proximate cause of ungulate neonate mortality 
(e.g., Zager and Beecham 2006, White et al. 2010, 
Yarkovich et al. 2011), and scavenging by black 
bears can impact cougar kill rates (Elbroch et al. 
2015) and access to carrion by other scavengers 
(Allen et  al. 2014). However, rigorous methods 
of quantifying black bear carnivory are lacking. 
Few studies have quantified black bear carnivory 
of ungulates through monitoring of black bear 
movements and behavior (Ballard 1992, Fortin 
et al. 2013a), which could provide a more com-
plete assessment of the impacts of carnivory on 
black bears, prey species, and competing carni-
vore population dynamics.
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Thus, our objective was to test whether ungu-
late (i.e., elk, Cervus elaphus, mule deer, Odocoileus 
hemionus, and cattle, Bos spp.) carnivory events 
can be accurately predicted based on the char-
acteristics of black bear GPS location clusters 
and to develop a model that maximizes detect-
ability of carnivory events. We identified a clus-
ter definition that maximizes efficiency of field 
investigations and selected a fix interval for GPS 
collar data collection that maximizes efficiency of 
battery life for GPS collars. By determining the 
accuracy of GPS cluster analysis in predicting 
black bear carnivory events, we provide a basis 
for improving techniques for assessing trophic 

relationships of omnivorous species and contrib-
ute to broader understanding of black bear ecol-
ogy and interrelationships with ungulates.

Study area
The southwest Jemez Mountains, located in 

north-central New Mexico’s Rio Arriba and 
Sandoval counties, lie within the southernmost 
boundary of the Southern Rockies Ecoregion. 
The core study area of approximately 85,000 ha 
(Fig.  1) centered around the town of Jemez 
Springs (35°46′ N, 106°41′ W) and comprised the 
Valles Caldera National Preserve (VCNP) and 
Santa Fe National Forest (SFNF), with a small 

Fig. 1. Core study area in the southwest Jemez Mountains, New Mexico, where GPS location clusters formed 
by black bears were field-investigated to assess performance of GPS cluster analysis in predicting carnivory 
events, 2012–2014.
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portion (<10%) of private, Pueblo of Jemez, and 
New Mexico State Trust lands. Elevations ranged 
from 1670 to 3431  m with steep canyons and 
mesas descending from a volcanic caldera that 
encompassed montane grassland valleys and 
forested resurgent domes. Vegetation communi-
ties transitioned with increasing elevation from 
pinyon–juniper woodlands (Pinus edulis and 
Juniperus spp.) and ponderosa pine (Pinus ponder-
osa) forests to spruce (Picea spp.) and fir 
(Pseudotsuga spp.) forests interspersed with 
aspen (Populus tremuloides) stands. With a semi-
arid continental climate, the mean daily tempera-
ture in January was −2°C and in July was 18°C in 
Jemez Springs (Western Regional Climate Center, 
2012–2014), with variation across elevations. 
Annual precipitation averaged 642  mm (SD  = 
72.6; VCNP Valle Grande meteorological station, 
elevation 2644 m, 2003–2011), with the majority 
falling in heavy summer rainstorms and winter 
snowstorms.

Large mammals in the study area included elk, 
mule deer, black bears, and cougars. Common 
black bear vegetative food sources comprised 
acorns (Quercus gambelii), piñon nuts, juniper 
berries, currants and gooseberries (Ribes spp.), 
prickly pear (Opuntia spp.), and abundant gram-
inoids. Social insects (e.g., ants, formicidae) and 
abundant small mammal species provided addi-
tional food sources.

Methods

Animal capture and handling
Between June 2012 and July 2014, we captured 

black bears using baited culvert traps or leg 
snares. We administered 4.4 mg/kg ketamine and 
2 mg/kg xylazine to chemically immobilize bears 
for processing. We fitted each adult black bear 
with a GPS collar (Advanced Telemetry Systems 
G2110E Iridium/GPS location collar, Isanti, 
Minnesota, USA or Northstar NSG-LD2 GPS col-
lar with Globalstar Satellite Tracking System, 
King George, Virginia, USA) programmed to 
record locations at either 3-h or 30-min intervals 
and to transmit location data via satellite every 
48  h between 1 April and 30 November each 
year. Following processing, we administered 
either 0.15 mg/kg yohimbine or 2 mg/kg tolazo-
line as an antagonist. All capture and handling 
procedures followed acceptable methods (Sikes 

et  al. 2016) and were approved by the New 
Mexico State University Institutional Animal 
Care and Use Committee (Protocol #2011-038).

Cluster identification and selection for field 
investigation

Based on earlier work by Knopff et  al. (2009) 
and Svoboda et al. (2013), we developed a rule-
based algorithm which relied on spatial and tem-
poral restrictions to identify clusters of point 
locations within the GPS collar data using 
Program R (version 3.1.2; R Core Team 2015; 
Appendix S1). Our algorithm checked each GPS 
location against only the locations that occurred 
within the defined time period (i.e., 12 h or 24 h) 
to determine whether any of those locations 
occurred within the defined distance (i.e., 30, 50, 
100, or 200 m) of the given location. If two loca-
tions fell within the time and distance criteria, 
those locations were assigned a cluster identifica-
tion number. Rather than identifying a geometric 
center to be adjusted as each new location is 
added to a cluster and then adding locations to 
the cluster if they occur within the designated 
time and distance criteria, our algorithm added 
locations to a cluster if a location fell within the 
designated time and distance constraints of any 
location within a cluster. In order to test a range 
of definitions for applicability to black bear car-
nivory of elk, mule deer, and livestock, we 
applied a broad cluster definition to GPS loca-
tions to guide field investigation. This definition 
joined any ≥2 locations that occurred within 
200 m or 100 m of each other into a cluster for 3-h 
and 30-min collar data, respectively, and 
excluded locations recorded outside the time 
constraint from the core cluster locations 
(Anderson and Lindzey 2003, Knopff et al. 2009, 
Rauset et al. 2012).

Field investigation of clusters
During field investigations, we used a hand-

held GPS unit to locate each cluster. We searched 
for evidence of carnivory by walking concentric 
transects 5 m apart up to a 30 m radius around 
each GPS location (Rauset et al. 2012) that com-
posed each cluster. Ungulate carcass remains 
with matted or trampled feeding areas indicated 
a carnivory event, which could include either 
predated or scavenged ungulates. When suffi-
cient evidence was present, we identified the 
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species, age, and sex of ungulate prey and car-
rion based on morphological measurements, hair 
samples, and tooth condition (Moore et al. 1974, 
Heffelfinger 2010). Scat containing ungulate 
remains was not considered sufficient evidence 
to classify a cluster as a carnivory event. We 
investigated clusters within 2  weeks of cluster 
formation (up to 1 month if the bear was active in 
the area for an extended period of time). We 
investigated clusters after cessation of bear activ-
ity at the site for researcher safety and to mini-
mize disturbance which could impact the 
distribution of GPS locations within the cluster. 
A subsample of clusters was searched while the 
sites were still in use when field personnel were 
available to increase crew size to ≥2.

Cluster definition and fix interval
For analysis, we utilized data downloaded 

directly from retrieved collars when available 
rather than data received via satellite transmis-
sion to increase the number of successful location 
fixes available in the data. All analyses were per-
formed in the R programming language (R Core 
Team 2015; Appendix S2). To determine how 
locations were to be grouped into clusters for 
analysis, we evaluated a range of cluster defini-
tions and fix intervals for greatest efficiency. The 
most efficient fix interval was one that maxi-
mized the likelihood of cluster formation at an 
ungulate carnivory site while maximizing bat-
tery life. The most efficient cluster definition was 
one that maximized the likelihood of cluster for-
mation at an ungulate carnivory site while creat-
ing the fewest clusters to minimize wasted search 
effort. To determine which fix interval and clus-
ter definition best met these objectives, we subsa-
mpled the 30-min fix interval data into 30 min, 1, 
2, and 3  h (combined with 3-h collar data) fix 
intervals. We used the cluster detection algo-
rithm to group locations into clusters using eight 
cluster definitions (i.e., each combination of spa-
tial restrictions of 30, 50, 100, and 200 m and tem-
poral restrictions of 12 and 24  h between any 
given location and at least one other location in 
the cluster). Each resulting data set was associ-
ated with one of the eight cluster definitions and 
contained all GPS locations from all study ani-
mals within the monitoring period (1 April to 30 
November each year), including both field-
investigated and non-investigated locations. All 

locations that occurred within 30  m (the maxi-
mum search radius) of an ungulate carcass were 
marked so that any cluster that contained a 
marked location was considered an ungulate car-
nivory cluster.

For each data set, we then summarized the 
number of ungulate carcasses included in at least 
one cluster (to account for how often carcasses 
were lost if a definition was too broad to form 
a cluster at each carcass), the number of field-
investigated carnivory clusters (to account for 
duplicate clusters forming at a single carcass), 
the total number of clusters formed, and the pro-
portion of all locations that were isolated from 
clusters. We selected the longest fix interval (max-
imized battery life) from the subsampled 30-min 
collar data that retained enough locations to form 
clusters at all of the field-investigated ungulate 
carnivory sites. Using this fix interval for the 30-
min collar data and the 3-h fix interval for com-
bined data from the 30-min and 3-h collars, we 
then determined which definitions (one for each 
of the two data sets) met the following criteria: 
(1) maximized the number of field-investigated 
ungulate carnivory events where clusters were 
formed, (2) minimized the number of ungulate 
carnivory events where multiple clusters formed 
at a single event, (3) maximized the number of 
isolated locations (i.e., not grouped into clus-
ters), and (4) minimized the number of clusters 
formed.

Model development
We developed cluster analysis models for each 

of three data sets after applying the selected fix 
intervals and cluster definitions. The first data set 
included locations from all study animals, but 
only including GPS locations that occurred at 3-h 
fix intervals (hereafter, 3-h interval data). The 
second data set included locations only from ani-
mals fitted with collars with a 30-min fix interval 
(hereafter, 30-min interval data). These 30-min 
interval data were included to account for car-
nivory of ungulate neonates that might be con-
sumed in <3 h. The final data set was a subset of 
the 30-min interval data, truncated to May–July 
of each year and including only elk calf carnivory 
events (hereafter, calving season data). This data 
set was intended to refine a cluster model that 
specifically identified black bear carnivory events 
targeting elk calves.
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We performed mixed-effects logistic regres-
sion to model the probability of an ungulate 
carnivory event for each GPS cluster in each 
data set as a function of seven possible predictor 
variables (Table 1). The predictors Fixes (Knopff 
et al. 2009) and Duration (Anderson and Lindzey 
2003, Tambling et  al. 2010) were calculated as 
either the number of GPS fixes (corrected for 
the fix success rate) or total time duration of the 
cluster. Spread is an index for how much move-
ment occurred within the cluster, calculated as 
the mean distance between every possible pair 
of locations within the cluster. Travel away from 
and returning to the cluster was measured by 
Fidelity (Knopff et  al. 2009). The time of day a 
cluster began was indicated by Initiation (modi-
fication of Ruth et al. 2010, Rauset et al. 2012, and 
Svoboda et al. 2013), grouped into four activity 
periods: morning, day, evening, and night based 
on results from Lewis and Rachlow (2011) and 
adjusted for local photoperiod. Habitat type and 
Season indicate where and when the cluster was 
formed; Season was excluded as a covariate in 
the calving season data models.

Individual black bears were the experimen-
tal units so Bear ID served as a random factor 
within which clusters were nested. Hereafter, a 
field-investigated cluster of GPS locations will 
be referred to as an observation, an observation 
where an ungulate carnivory event occurred will 
be an event, and an observation where no ungu-
late carnivory occurred will be a non-event. We 
assigned each event one of four prey classes (elk 
calf, adult mule deer, adult elk, or cattle) to deter-
mine whether multinomial logistic regression 
could be used to estimate prey and carrion compo-
sition in black bear diets; however, models failed 
to converge due to small sample sizes within some 
of the ungulate classifications. Consequently, we 
conducted a logistic regression with observations 
simply classified as events vs. non-events.

We screened for collinearity among predictor 
variables by calculating variance inflation factors 
(VIF, Fox and Monette 1992) to identify highly 
related variables, which we avoided including in 
the same model. We included a model in the top 
model set if all variables in the model were signif-
icant (P < 0.1). To identify these models for each 
data set, we ran a logistic regression (Bates 2010) 
first on the global model that included all vari-
ables then removed the least significant variable, 

repeating the process until all variables in the 
model presented P-values of <0.1 (Hosmer and 
Lemeshow 2000). Rotating through excluding the 
various subsets of variables involved in a multi-
collinearity gave rise to multiple possible models 
which became our top model set. We identified 
the best model for each data set out of the top 
model set based on its ability to predict events, 
as assessed by generalized cross-validation. We 
did not use an information theoretic approach 
because our goal was to predict ungulate car-
nivory events rather than testing a set of a pri-
ori hypotheses; therefore, we focused our model 
selection approach on the predictive performance 
of the models. By performing a generalized cross-
validation on each logistic regression in the top 
model sets, we obtained a probability estimate for 
whether each observation was an event. Rather 
than excluding data during model development 
and then using the withheld data for model val-
idation, k-fold cross-validation divides the data 
into k partitions, using one of the partitions for 
the test data and the remaining k − 1 partitions as 

Table 1. Descriptions of logistic regression model co-
variates assessed for significance in predicting back 
bear carnivory events from GPS location clusters in 
the Jemez Mountains, New Mexico, 2012–2014.

Covariate Description

Duration Total time span (h) of the cluster:  
Time(last GPS fix) − Time(first GPS fix)

Fixes Number of GPS locations (i.e., GPS fixes) in 
the cluster, corrected for variation in GPS 
fix success: Number of GPS fixes in the 
cluster/proportion of successful GPS fixes 
within the duration of the cluster

Spread Mean of distances (m) among every possible 
pair of GPS fixes within the cluster

Fidelity Proportion of the duration that a bear spent 
at the cluster vs away from the cluster: 
(Number of GPS fixes in the cluster − Number 
of GPS fixes away from the cluster within the 
cluster duration)/Total number of GPS fixes 
within the duration of the cluster

Initiation Time of day of first GPS fix in the cluster, 
classed into four activity periods: morning 
and evening active periods (400–930 and 
1700–2230 h) and day and night inactive 
periods (1000–1630 and 2300–330 h)

Habitat Habitat structure: Cover (shrub or tree 
canopy) and Open (edge habitats, open 
meadow, and human development)

Season Early (April–July) and Late 
(August–November)

Bear ID Individual black bear (experimental unit)
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the training data set. It then rotates through each 
of the k partitions using each partition, in turn, 
as the test data set. Hence, all k subsets of the 
data are eventually used in model development 
and assessment (Knopff et al. 2009). Generalized 
cross-validation is the extreme of this where every 
observation is cycled through as an individual 
test data set, using the remaining n − 1 observa-
tions as the training data set. This can be useful 
given the small sample numbers of observations 
classified as events.

The cutoff point of the probability value  
(π̂) at which an observation is predicted to be an 
event or non-event can be set arbitrarily and can 
impact the prediction performance of the model 
(Hosmer and Lemeshow 2000). The probability 
threshold that returns the highest correct classifi-
cation rate for all observations (i.e., overall correct 
classification rate) may not be the best probability 
threshold for correct classification of events (e.g., 
Svoboda et  al. 2013), particularly where a data 
set contains considerably more non-events than 
events. To investigate probability thresholds for 
prediction that would give improved classifica-
tion rates for events while limiting degradation 
of the overall correct classification rate, we cal-
culated sensitivity (correct classification rate of 
events) and specificity (correct classification rate 
of non-events) for each model using each prob-
ability value output during cross-validation as 
the probability threshold. We then selected the 
probability threshold that maximized the sum of 
sensitivity and specificity (i.e., combined correct 
classification rate) for each model. The combined 
correct classification rate is not a true rate (may 
be >1) but gives equal weight to both sensitivity 
and specificity, as opposed to the overall correct 
classification rate which is heavily influenced 
by the proportion of non-events to events. We 
selected the best model from each top model set 
by its ability to accurately predict events when 
using the probability threshold that maximizes 
combined correct classification rate. By maxi-
mizing sensitivity this way, we minimized the 
false-negative rate, thereby reducing the risk of 
incorrectly classifying events as non-events.

Results

We included data from 24 collared individuals 
(9 F, 15 M) for analysis, of which 18 wore collars 

with a 3-h fix interval and seven wore collars 
with a 30-min fix interval. One individual wore 
each collar type in different years due to recap-
ture (therefore n  =  25). Within the monitoring 
seasons between June 2012 and November 2014, 
individual bears wore active GPS collars 18–519 d 
(x̄ = 184, SD = 119), for a combined total of 50,685 
locations. Average collar fix success rate was 
78.5% ± 3.9% (x̄ ± SE, n = 25). Across all fix inter-
val and cluster definitions, 35–80% of locations 
occurred within a cluster (Table 2). We investi-
gated 6854 GPS locations in the field (35.7% 
recorded by 3-h collars, 64.3% recorded by 30-
min collars) and found 56 ungulate carnivory 
events. Of the 24 individual black bears moni-
tored (25 GPS collars), we found no evidence of 
ungulate carnivory by nine individuals (4  F, 
5 M). The prey items at carnivory events were elk 
calves (n = 39), adult mule deer (n = 7), adult elk 
(n = 6), and cattle (n = 4). One mother–young of 
year pair of each species was identified; each of 
these cases was counted as one carnivory event. 
We censored one elk calf carnivory event from 
cluster analysis due to human disturbance that 
impacted cluster formation, and classified one 
elk calf carnivory event as a non-event due to 
evidence that the calf was killed and consumed 
by an uncollared bear and merely visited by the 
collared bear. We identified small prey (e.g., rab-
bits, Sylvilagus nuttallii, woodrats, Neotoma cine-
rea, and passerines) at 17 clusters, although these 
were not classified as carnivory events for cluster 
analysis. Clusters formed by 3-h collars indicated 
30 ungulate carnivory events, and clusters 
formed by 30-min collars indicated 24 ungulate 
carnivory events.

Fix interval and cluster definition
The 3-h interval data formed clusters at ≤44 

ungulate carnivory events (Table 2). All cluster 
definitions with a 12-h time restriction created 
duplicate clusters at carnivory events; there-
fore, the 24-h restriction was optimal. The 
smallest spatial restriction (30  m) best met 
the criteria to minimize wasted search effort in 
the field; however, this spatial restriction failed 
to include five ungulate carnivory events in 
clusters. The most efficient cluster definition for 
the 3-h interval data was therefore ≥2 locations 
within 50  m and within 24  h of one another. 
This definition created 617 clusters from 
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field-investigated GPS locations, 7.1% (n  =  44) 
of which were ungulate carnivory events used 
in model development.

When the 30-min interval data were trans-
formed into lower resolution fix intervals, clus-
ters formed at fewer carnivory events. Doubling 
the fix interval from 30  min to 1  h resulted in 
the omission of 17.7% of carnivory events from 
clusters. Increasing the fix interval to 2 and 3 h 
omitted 29.2% and 41.7% of carnivory events, 
respectively. The 30-min fix interval was there-
fore retained for analysis of these data to pre-
serve carnivory events. With this fix interval, 
all cluster definitions formed duplicate clus-
ters at ungulate carnivory events. However, the 
24-h time restriction minimized the number 

of duplicate carnivory clusters (24  h: ≤2; 12  h: 
3–6); therefore, this was the most efficient time 
restriction. All of the spatial restrictions formed 
clusters at 24 carnivory sites. The most efficient 
spatial restriction in terms of minimizing wasted 
search effort was 30 m; therefore, the cluster defi-
nition for the 30-min interval data was defined 
as ≥2 locations within 30  m and within 24  h of 
one another. This definition created 355 clusters, 
7.3% (n = 26) of which were ungulate carnivory 
events used in model development. The calving 
season data were grouped into clusters accord-
ing to the same fix interval and cluster definition 
as the 30-min interval data. These data formed 
247 clusters, 7.3% (n = 18) of which were elk calf 
carnivory events.

Table 2. Metrics for selecting a fix interval and cluster definition to structure the GPS location data used in 
cluster analysis to predict black bear carnivory in the Jemez Mountains, New Mexico, 2012–2014.

Fix interval

Cluster definition Ungulate 
Carcasses 

(n)¶

Clusters (n)† GPS locations‡
Bears 
(n)§Distance Time Events

Non-
events Total

Clustered 
(%)

Isolated 
(%)

Total 
(n)

3 h 30 m 12 h 38 52 548 3082 35 65 25,087 25
24 h 39 40 540 3145 38 62

50 m 12 h 42 56 606 3519 42 58
24 h 44 44 573 3564 45 55

100 m 12 h 43 57 653 4021 52 48
24 h 44 45 568 3930 56 44

200 m 12 h 44 55 579 4211 64 36
24 h 44 45 474 3911 68 32

2 h 30 m 12 h 15 18 171 885 38 62 7090 7
24 h 15 15 167 901 41 59

50 m 12 h 15 17 175 980 46 54
24 h 15 15 161 973 49 51

100 m 12 h 17 18 170 1065 56 44
24 h 17 17 152 1020 60 40

1 h 30 m 12 h 19 23 271 1610 51 49 14,749 7
24 h 19 22 253 1593 53 47

50 m 12 h 20 24 259 1733 59 41
24 h 20 23 240 1673 61 39

100 m 12 h 20 24 227 1740 69 31
24 h 20 22 194 1613 72 28

30 min 30 m 12 h 24 30 363 2799 62 38 30,680 7
24 h 24 26 329 2686 64 36

50 m 12 h 24 29 337 2838 69 31
24 h 24 26 293 2650 71 29

100 m 12 h 24 29 280 2568 78 22
24 h 24 27 250 2353 80 20

† Number of field-investigated clusters identified as Events (ungulate carnivory occurred at the cluster) or Non-Events (no 
evidence of ungulate carnivory at the cluster), and total number of clusters formed (includes investigated and not investigated 
clusters) within the monitoring period.

‡ Proportion of GPS locations that occur as part of a cluster or in isolation and total number of locations in the data set.
§ Number of black bear collars included in the data set.
¶ Number of ungulate carcasses identified during field investigations that occur within 30  m of a GPS location that is 

grouped in a cluster.



October 2016 v Volume 7(10) v Article e015139 v www.esajournals.org

﻿� Kindschuh et al.

Model performance
Duration and Fixes were the only highly collin-

ear covariates, each with a VIF in excess of 10 in 
all three data sets when included in the same 
model. When either of these predictors was used 
without the other, all VIF were below 2. Due to 
their high correlation (r  ≥  0.8) in all three data 
sets, resulting models were similar with either of 
these two predictors substituted for the other in 
the model. For each data set, we compared pre-
dictive ability of the top models to determine 
whether Duration or Fixes exhibited superior 
prediction performance.

Duration, Fixes, Habitat, Spread, Season, 
and Initiation were each significant predictor 
variables in the top model set (P < 0.1; Table 3). 
Clusters were more likely to be carnivory events 
if they exhibited longer duration or contained 
more fixes, if they occurred in open habitats, if 
they were in the early season, and if they exhib-
ited reduced spread (Table 3). Clusters were less 
likely to be carnivory events if they were initi-
ated in the morning or night compared to the 
day (Table  3). All top models included either 
the Duration or Fixes covariate (Table  3). Total 
handling times (Duration) at ungulate carnivory 
clusters ranged from 30 min (elk calves) to 409 h 
(bull elk). Despite the fact that 66% of the ungu-
lates at carnivory events were elk calves, bears 
spent 181% and 100% more time overall feeding 
on adult ungulates than elk calves based on the 
3-h and 30-min interval data sets, respectively.

Habitat was a significant predictor in all top 
models (P < 0.005, Table 3). Of the Open Habitat 
clusters, 18.6% and 20.3% were ungulate car-
nivory events, while only 4.8% and 4.2% of clus-
ters in Cover habitat were ungulate carnivory 
events in the 3-h and 30-min interval data, 
respectively. Season was a significant predic-
tor for both data sets in which it was included 
as a covariate (P  <  0.09, Table  3). Ungulate car-
nivory events comprised 11.9% and 9.1% of Early 
Season clusters, but only 3.2% and 2.9% of Late 
Season clusters in the 3-h and 30-min interval 
data, respectively. Black bears consumed 69% of 
elk calves in May and June (peak calving season) 
and only 10% between August and November. 
Spread varied widely among clusters, with the 
mean distance between all pairs of locations in 
a cluster ranging from 0 to 64.5 m (0.8 to 44.5 m 
at events). Spread was only significant in the top 

models for the 30-min data sets (P < 0.02, Table 3). 
Initiation was significant in two of the models for 
the 3-h interval data (P < 0.09). Fidelity was not a 
significant predictor in any models (P > 0.1).

Using the usual probability decision point of 
π̂ = 0.5 to predict whether an observation was an 
event or non-event resulted in very low overall 
correct classification rates (<8% for each data set, 
Table 4). Sensitivity improved at the expense of 
specificity and the overall correct classification 
rate when the probability threshold was adjusted 
to the point at which the maximum combined 
correct classification rate occurred for each logis-
tic regression (Table 4, Fig. 2). For example, the 
maximum combined classification rate for Model 
A was 1.58, which occurred when any observa-
tion with a π̂ ≥ 0.0614 was classified as an event. 
With this adjusted probability threshold, Model 
A presented 88% sensitivity and 70% specificity, 
with a correct classification of 70% of events and 
non-events combined.

Logistic regression of the 3-h interval data 
resulted in four top models with Habitat, Season, 
and either Fixes or Duration as the best pre-
dictors (Models A and B, respectively), two of 
which also included Initiation (Models C and D, 
Table  3). With the adjusted probability thresh-
old (π̂ = 0.0596), Model C exhibited the best pre-
dictive ability, with highest sensitivity, highest 
specificity, and highest overall correct classifi-
cation within this data set (Table  4). Initiation 
was significant in this model (P  =  0.07 overall), 
with morning and night initiation periods sig-
nificantly different than day (P < 0.05), although 
the evening period was not significantly different 
than day (P > 0.1, Table 3). Therefore, we retained 
this model as the best predictor of carnivory 
events for the 3-h interval data set. Compared 
to the next best performing model that excludes 
Initiation (Model A), Model C showed 5.3% 
higher sensitivity, 7.5% higher specificity, and 
8.3% higher overall accuracy (Table 4).

There were two top models for the calving sea-
son data with Habitat, Spread, and either Fixes or 
Duration as the best predictors (Models I and J, 
respectively, Table  3). Both models predicted 
events with identical accuracy; however, Model 
I exhibited marginally superior performance in 
non-event prediction (4.3% higher specificity), 
combined accuracy (2.1% more accurate), and 
overall accuracy (4.0% more accurate, Table  4). 
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Table 3. Estimated coefficients, standard errors, P-values, and odds ratios with 90% confidence intervals for the 
top logistic regression models predicting black bear carnivory events in the Jemez Mountains, New Mexico, 
2012–2014.

Data Model Covariate Class Estimate SE P Odds ratio
90% CI

Upper Lower

3 h 
50 m 24 h

A Intercept   −2.898 0.330 0.000
Habitat Open 1.198 0.405 0.003 3.314 1.705 6.441
Season Late −1.522 0.419 0.000 0.218 0.110 0.434
Fixes   0.086 0.020 0.000 1.090 1.054 1.127

B Intercept   −2.803 0.321 0.000
Habitat Open 1.157 0.407 0.005 3.179 1.631 6.198
Season Late −1.681 0.430 0.000 0.186 0.092 0.377

Duration   0.024 0.005 0.000 1.024 1.016 1.033
C Intercept   −2.151 0.412 0.000

Habitat Open 1.382 0.423 0.001 3.982 1.989 7.972
Season Late −1.615 0.431 0.000 0.199 0.098 0.403

Initiation Evening −0.708 0.505 0.161 0.493 0.215 1.127
Morning −1.385 0.701 0.048 0.250 0.079 0.790

Night −1.092 0.450 0.015 0.336 0.160 0.702
Fixes 0.084 0.021 0.000 1.087 1.050 1.126

D Intercept   −2.089 0.409 0.000
Habitat Open 1.322 0.424 0.002 3.751 1.870 7.523
Season Late −1.767 0.440 0.000 0.171 0.083 0.352

Initiation Evening −0.670 0.503 0.183 0.512 0.224 1.168
Morning −1.356 0.702 0.054 0.258 0.082 0.815

Night −1.028 0.451 0.023 0.358 0.171 0.749
Duration   0.023 0.006 0.000 1.023 1.014 1.033

30 min  
30 m 24 h

E Intercept   −2.244 0.548 0.000
Habitat Open 1.982 0.458 0.000 7.255 3.422 15.381
Spread −0.090 0.034 0.007 0.914 0.865 0.966
Fixes   0.033 0.009 0.000 1.034 1.019 1.049

F Intercept   −2.292 0.569 0.000
Habitat Open 1.929 0.470 0.000 6.884 3.187 14.866
Spread −0.086 0.033 0.009 0.918 0.870 0.968

Duration   0.044 0.012 0.000 1.045 1.026 1.065
G Intercept   −1.911 0.585 0.001

Habitat Open 1.846 0.460 0.000 6.336 2.980 13.474
Spread −0.096 0.034 0.005 0.909 0.859 0.962
Season Late −1.216 0.727 0.094 0.297 0.090 0.977
Fixes   0.035 0.009 0.000 1.035 1.020 1.051

H Intercept   −1.716 0.590 0.004
Habitat Open 1.799 0.455 0.000 6.040 2.863 12.742
Spread −0.106 0.035 0.003 0.900 0.849 0.953
Season Late −1.669 0.756 0.027 0.188 0.055 0.651

Duration   0.054 0.014 0.000 1.056 1.031 1.080
Calving season 

30 min  
30 m 24 h

I Intercept −1.839 0.767 0.017
Habitat Open 1.696 0.543 0.002 5.450 2.236 13.286
Spread −0.111 0.045 0.014 0.895 0.831 0.964
Fixes   0.034 0.012 0.005 1.034 1.014 1.055

J Intercept −1.797 0.761 0.018
Habitat Open 1.616 0.533 0.002 5.031 2.101 12.048
Spread −0.102 0.044 0.020 0.903 0.840 0.971

Duration   0.040 0.017 0.020 1.041 1.012 1.071
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For both of these data sets, predictive capacity of 
the models did not differ dramatically between 
models that included Fixes vs. models that 
included Duration.

Analysis of the 30-min interval data resulted 
in four top models, all of which included Habitat 
and Spread as significant predictors (Table  3). 
Two of the models included Season as a covariate 
(Models G and H with Fixes and Duration, respec-
tively) and two excluded Season (Models E and 
F with Fixes and Duration, respectively, Table 3). 
The models that included Season as a covariate 
both exhibited superior prediction of events and 
greater combined accuracy (though lower overall 
accuracy) than their counterparts that excluded 
Season (Model E vs G and Model F vs H, Table 4). 
The most accurate event prediction (96.0%) was 
achieved by Model G (26.3% higher sensitivity 
than the next best model, Model E, Table 3). Overall 
highest accuracy occurred with Model F, margin-
ally higher than the next best model (2.1% more 
accurate than Model H, Table 4). However, overall 
accuracy is strongly associated with prediction of 
non-events due to the disproportion of non-events 
vs. events in the sample sizes for each data set.

The models that best predicted events at the 
probability threshold where combined correct 
classification rate was maximized were Models C, 
G, and I. For the 3-h interval data, the best model 
(Model C) included the covariates Fixes, Habitat, 
Season, and Initiation as predictors of ungulate 
carnivory clusters and resulted in the following 
log odds regression equation (π̂ = estimated prob-
ability that an observation is an event): 

This model presented 93% sensitivity and 75% 
specificity, with an overall correct classification 
rate of 76% using a probability threshold of 0.0596 
(Table 4). The false-negative rate was 7%, and the 
false-positive rate was 25%. Odds ratios for this 
model estimate that a cluster was 3.9 times more 
likely to be a carnivory site if it occurred in open 
or edge habitats than in closed-canopy areas, and 
9% more likely with each additional GPS fix in 
the cluster (Table 3). A cluster was 80% less likely 
to be an ungulate carnivory event if it occurred in 
the late season, 75% less likely if it was initiated 
in the morning than during the day, and 76% less 
likely to be a carnivory event if it was initiated in 
the night than during the day (Table 3).

The best model for the 30-min interval data 
included the predictors Fixes, Habitat, Season, 
and Spread. This model (Model G) presented 
96% sensitivity and 55% specificity, with an 
overall correct classification rate of 58% using 
a probability threshold of 0.0395 (Table  4). The 
false-negative rate was 4% and the false-positive 
rate was 45%. The log odds regression equation 
for Model G was as follows: 

(1)

log
(

π̂

1−π̂

)

=−2.151+0.084 fixes

+1.382 Iother(Habitat)
−1.615 Ilate (Season)
−0.708 Ievening(Initiation)

−1.385 Imorning(Initiation)

−1.092 Inight(Initiation)

Table 4. Correct classification rates of each logistic regression model predicting black bear carnivory in the 
Jemez Mountains, New Mexico (2012–2014), using a probability cutoff of π̂ = 0.5 or an adjusted probability 
cutoff.

Model

π̂ = 0.5 Maximized combined correct classification rate (CCR)

Overall CCR π̂

Sensitivity 
(Event CCR)

Specificity  
(Non-event CCR) Combined CCR Overall CCR

A 0.0681 0.0614 0.8837 0.6981 1.5818 0.7050
B 0.0681 0.0698 0.8372 0.7452 1.5824 0.7455
C 0.0697 0.0596 0.9302 0.7504 1.6807 0.7634
D 0.0713 0.0612 0.9302 0.7435 1.6737 0.7585
E 0.0704 0.0617 0.7600 0.7356 1.4956 0.7380
F 0.0704 0.1248 0.5600 0.8511 1.4111 0.8338
G 0.0704 0.0395 0.9600 0.5532 1.5132 0.5803
H 0.0704 0.0915 0.6800 0.8328 1.5128 0.8169
I 0.0769 0.0723 0.7059 0.7467 1.4526 0.7409
J 0.0769 0.0661 0.7059 0.7162 1.4220 0.7126
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Odds ratios for this model estimate that a clus-
ter was 6.3 times more likely to be a carnivory 
site if it occurred in open habitats. Odds of a 
cluster being a carnivory site increased 4% with 
each additional GPS fix in the cluster (Table 3). 

A  cluster was 9% less likely to be a carnivory 
event for each additional meter in the mean 
spread between locations within the cluster, 
and 70% less likely to be a carnivory event if it 
occurred in the late season (Table 3).

The best model for the calving season data 
(Model I) included the predictors Fixes, Habitat, 
and Spread. The log odds regression equation for 
Model I was as follows: 

Compared to the full-season data sets, this 
model exhibited poorest sensitivity (71%) but 
high specificity (75%) and a high overall cor-
rect classification rate of 74% using a probability 
threshold of 0.0723 (Table 4). The false-negative 
rate was 29%, and the false-positive rate was 25%. 
This model estimates that a cluster is 5.4 times 
more likely to be a carnivory site if it occurs in 
open habitats and 3% more likely for each addi-
tional GPS fix in the cluster (Table 3). A cluster 
is 11% less likely to be a carnivory site for each 
additional meter of mean spread between loca-
tions within the cluster (Table 3).

Discussion

Our analysis suggests that GPS cluster models 
are useful for predicting black bear carnivory 
sites and perform well compared to models 
developed for other carnivore species. Our mod-
els correctly classified 71–96% of carnivory 
events with overall accuracy of 58–76%. While 
some cougar predation models performed with 
as high as 86% overall accuracy (21.5% of clusters 
misclassified as kills, Knopff et al. 2009), others 
overestimated kill rates by 49% (Anderson and 
Lindzey 2003). Wolf predation models demon-
strated up to 100% accuracy for large-bodied 
prey species, although 40% of small-bodied prey 
were misclassified (Webb et  al. 2008). When 
modeling grizzly bear predation of moose calves, 
22 of 23 verified kills were predicted (Rauset 
et  al. 2012), but when modeling grizzly bear 
consumption of ungulates more generally 
(i.e., varying ungulate species and age), 48% ± 1% 
of carnivory sites were accurately predicted 
(Cristescu et  al. 2015). Ebinger et  al. (2016) 

(2)

log
(

π̂

1−π̂

)

=−1.911+0.035 fixes

+1.846 Iother(habitat)
−1.216 Ilate(season)−0.096 spread

(3)log
(

π̂

1−π̂

)

=−1.839+0.034 fixes

+1.696 Iother(habitat)−0.111 (spread)

Fig. 2. Maximized combined correct classification 
rates for Models C (a), G (b), and I (c) predicting black 
bear carnivory in the Jemez Mountains, New Mexico, 
2012–2014. The dotted line shows sensitivity (correct 
classification rate of events), the dashed line shows 
specificity (correct classification rate of non-events), 
and the solid line shows the combined correct 
classification rate. The vertical line occurs at the 
probability threshold where the combined correct 
classification rate is maximized.
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achieved 78–88% correct classification of large-
biomass carcasses and 30% of small-bodied car-
casses used by grizzly bears. Bobcat predation of 
white-tailed deer fawns was particularly difficult 
to model, with 34.1% of kill sites correctly classi-
fied and overall accuracy of 67.1% (Svoboda et al. 
2013).

Knopff et  al. (2009) noted that prediction of 
predation events via GPS cluster analysis will 
likely be most successful for large carnivores 
that have long handling times and display high 
fidelity to the kill locations. GPS cluster analysis 
may be less appropriate for modeling predation 
of small-bodied prey (Knopff et al. 2009, Palacios 
and Mech 2010) due to short handling times, 
observational error during field investigations, 
or misclassifying a small-prey carnivory event 
as a non-event. Our models indicate that fidel-
ity to a cluster site was not a significant predictor 
of black bear carnivory events, contrasting with 
results from Cristescu et  al. (2015) who found 
that grizzly bear fidelity to carnivory sites was 
lower than fidelity to bedding sites, yet served 
as a significant predictor. The ungulate remains 
at 68% of the carnivory events we identified 
were elk calves, which can range in mass from 
approximately 15 kg at birth (Barber-Meyer et al. 
2008) to 90–145  kg in November (Cook et  al. 
2010). Our results show that black bears primar-
ily consumed elk calves as neonates in May and 
June (peak calving season), when body size was 
relatively small. We did not identify deer fawn 
scavenging or predation with the exception of 
one doe–fawn pair. Mule deer populations in our 
study area are unknown but substantially lower 
than elk populations (New Mexico Department 
of Game and Fish, unpublished data). Low mule 
deer density may have provided black bears too 
few opportunities to prey on mule deer neonates. 
It is also possible that fawns were consumed too 
completely or removed from the site by scaven-
gers so that remains could not be detected during 
field investigations. Alternatively, the fix interval 
resolution may have been too coarse for clusters 
to form at fawn predation sites due to short han-
dling times.

Fix intervals determine the level of detail with 
which GPS data loggers record animal move-
ments. More frequent fix intervals provide finer 
scale data, but this must be balanced with the 
restraints of battery life and associated collar and 

capture costs. Fix intervals employed in GPS clus-
ter analysis studies have varied from 10 to 30 min 
on wolves (Sand et al. 2005, Demma et al. 2007, 
Webb et al. 2008), 30 min to 1 h on grizzly bears 
(Rauset et al. 2012, Cristescu et al. 2015), and 3 h 
on cougars (Anderson and Lindzey 2003, Knopff 
et  al. 2009, Ruth et  al. 2010), depending on the 
size of prey researchers sought to detect and 
other factors. When compared to scat analysis for 
diet composition, GPS cluster analysis was found 
to underestimate small prey items although it 
proves reliable for larger prey items (Bacon et al. 
2011, Tambling et  al. 2012). More frequent GPS 
fix intervals can improve detection of smaller 
prey items such as ungulate neonates (Sand et al. 
2005). When fix intervals were increased from 1 
to 2  h, 80% of grizzly bear carnivory sites were 
retained, while an increase to 12 h retained 50% 
of carnivory sites (Cristescu et al. 2015). However, 
we found an increase even from 30-min to 3-h 
fix intervals omitted almost half of carnivory 
sites. By field-investigating isolated locations in 
addition to clusters, it is possible to determine 
whether carnivory events occur with very short 
handling times (i.e., less than the fix interval). For 
example, Ruth et al. (2010) identified 53 kills asso-
ciated with 165 locations of 382 field-investigated 
cougar locations with 3-h fix intervals.

Both of the higher resolution data sets showed 
mean distance between locations within a cluster 
was a significant predictor of black bear ungulate 
carnivory events, although it was not significant 
in the 3-h interval data. Because the mean dis-
tance between locations within a cluster is lim-
ited by the spatial restriction used to define the 
cluster, the influence of this predictor in a GPS 
cluster model will vary depending on the clus-
ter definition used. A within-cluster movement 
variable had not been included in cluster anal-
yses for other carnivores until Cristescu et  al. 
(2015) included two similar covariates in grizzly 
bear carnivory models. For most obligate carni-
vores, clusters will form at predation sites and at 
resting sites, so it is critical for models to distin-
guish between these two activities. The average 
distance from each location in a cluster to the 
cluster’s centroid was significant in predicting 
grizzly bear carnivory, with lower distance values 
at carnivory sites than at non-carnivory foraging 
sites (Cristescu et al. 2015). However, for omni-
vores, a cluster model must distinguish between 
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carnivory sites, resting sites, and non-carnivory 
foraging sites. Depending on the food item, for-
aging sites may exhibit greater distances between 
locations (e.g., grazing for graminoids) or lesser 
distances (e.g., foraging in a tree for acorns) than 
carnivory sites. This issue is confounded by clus-
ters where black bears both rest and feed at the 
same site. In several cases, GPS collars on black 
bears during this study went into mortality (4 or 
6  h mortality switch) at resting sites, carnivory 
sites, and vegetation foraging sites due to inac-
tivity of the bear.

Our models showed that clusters are more 
likely to be ungulate carnivory events when 
formed in spring and early summer or in habi-
tats without tree or shrub cover. Similarly, griz-
zly bear clusters occurring in spring were more 
likely to be carnivory events than those in sum-
mer or fall (Cristescu et  al. 2015). Scavenging 
opportunities can peak in early spring due to 
winter die-off of ungulates and in the fall as a 
result of the rut and hunter harvest (Green et al. 
1997, Milakovic and Parker 2012); however, the 
majority of spring carnivory events observed 
in our study were ungulate neonates. We also 
observed that a higher proportion of carnivory 
events that occurred in open habitats were ungu-
late neonates. Black bear diets are dominated by 
graminoids and neonate ungulates in the spring, 
while summer diets shift toward mast and 
social insects (Raine and Kansas 1990, Bull et al. 
2001). While black bears prefer structural cover, 
Bastille-Rousseau et al. (2011) demonstrated that 
black bears selected for areas with higher vegeta-
tion abundance during spring and early summer, 
which opportunistically increased their chances 
of encountering ungulates. Seasonal variation in 
diet composition may be increased for facultative 
carnivores compared to obligate carnivores.

The day period in which a cluster was initiated 
was significant in predicting black bear carnivory 
for only one of the three data sets, although 
time of initiation has been shown to be import-
ant for other carnivore species. The majority of 
clusters formed at predation events by cougars 
were initialized between 2000 and 0500 h, while 
non-predation clusters were initialized between 
0800 and 1700  h (Ruth et  al. 2010). At clusters 
formed by leopards, kills were more likely to be 
present when clusters began during diurnal or 
crepuscular hours (Pitman et  al. 2012). Grizzly 

bear clusters were more likely to be carnivory 
events when initiated in crepuscular and noc-
turnal periods than diurnal periods (Cristescu 
et al. 2015). Number of active periods and num-
ber of locations that occur within active periods 
were both significant predictors of grizzly bear 
predation of moose calves (Rauset et  al. 2012). 
While optimal hunting conditions drive many 
large carnivores to exhibit nocturnal activity pat-
terns, black bear carnivory is often less a result 
of hunting than opportunistic predation of neo-
nates (Kunkel and Mech 1994, Bastille-Rousseau 
et  al. 2011) and scavenging. Black bears exhibit 
high plasticity in diel activity patterns, with vari-
ation across seasons (e.g., Bridges et al. 2004) and 
demographic classes (e.g., Lewis and Rachlow 
2011) and variation in response to human distur-
bance (e.g., Matthews et  al. 2006) and foraging 
opportunities (e.g., Reimchen 1998). Most com-
monly, however, black bear activity peaks during 
the day (Fortin et al. 2013b). Time of initiation of 
carnivory events by black bears likely reflects the 
opportunistic nature of black bear carnivory and 
is therefore less distinct from time of initiation of 
bedsites and non-carnivory foraging sites.

Further research, management, and conservation 
implications

Our results evince factors that are important in 
selecting clusters before field investigation to 
increase likelihood of locating black bear car-
nivory events. Black bear predation of ungulate 
neonates and scavenging of ungulates killed by 
cougars, human hunters, or other causes have 
important implications throughout the ecologi-
cal community. Although black bears rarely kill 
adult ungulates (Zager and Beecham 2006), con-
sumption of ungulates may be supplemented by 
livestock mortalities that are not retrieved by 
ranchers, ungulates wounded but not recovered 
during hunts, and gut piles or carrion left behind 
after successful hunter harvest. Kleptoparasitism 
by black bears can force cougars to increase pre-
dation frequencies to compensate for lost prey 
(Elbroch et  al. 2015). As dominant scavengers, 
black bears can also limit consumption of carrion 
by other scavengers, potentially influencing 
scavenger survival and population dynamics 
(Allen et al. 2014).

Future research could consider the impli-
cations of black bear sex and age, competing 
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predators, and composition of ungulate popu-
lations as cluster analysis is implemented across 
ecological systems. Where ungulate populations 
are below desired levels, predator control is 
often considered as a management tool. When 
a carnivore species exhibits high variability in 
carnivory rates among individuals, however, 
predator control will only be effective when par-
ticular individuals are targeted. The impacts of 
black bear scavenging behavior on cougar pre-
dation rates and on behavior and fitness of other 
scavengers are poorly understood. Likewise, the 
impacts of ungulate biomass availability on black 
bear fitness and population dynamics are largely 
unknown, although increased consumption of 
ungulate neonates has been linked to increased 
vigor (i.e., larger body size and increased repro-
ductive success) in some black bear populations 
(Schwartz and Franzmann 1991). Black bear use 
of ungulates as food can vary depending on 
the availability of prey, carrion, and other food 
sources (Ballard 1992, Zager and Beecham 2006, 
Fortin et al. 2013a). Therefore, predation rates and 
quantity of ungulate biomass in black bear diets 
in one population may be dramatically different 
from another. Monitoring black bear carnivory 
events can provide a more complete assessment 
of the extent to which ungulate biomass contrib-
utes to black bear fitness and impacts the ecolog-
ical community.

Increased sample sizes resulting from greater 
field efficiency will contribute to the devel-
opment of more robust cluster models just as 
increased field investigation of these events will 
improve understanding of black bear carnivorous 
behaviors. Selection of a cluster definition will 
depend in part on the fix interval employed and 
resources available for field investigations. Our 
results indicate that a 30  m maximum distance 
between locations within a cluster will allow for 
the detection of carnivory events with a 30-min 
fix interval; however, a 50  m distance is neces-
sary with a 3-h fix interval. Larger maximum dis-
tances between locations may decrease the risk of 
omitting carnivory events; however, field inves-
tigations of clusters will require more time and 
search effort if larger distances are employed. 
We found that a maximum of 24 h between loca-
tions was appropriate for clusters with a 3-h fix 
interval; however, this temporal screen resulted 
in duplicate clusters forming at carnivory events 

with a 30-min fix interval. To decrease the over-
estimation of carnivory rates in cluster models, a 
longer temporal screen between locations should 
be incorporated into a cluster definition with fix 
intervals <3 h. Again this will result in increased 
search time per cluster.

Our models provide a mechanism for associ-
ating animal behavior with GPS location data 
by identifying locations of ungulate carnivory 
by black bears. We accepted a tradeoff between 
sensitivity and false-positive rates because we 
were not attempting to estimate carnivory rates. 
Our objective of maximizing the number of car-
nivory events detected by the models was met by 
minimizing the false-negative rate. While highly 
specific cluster models will improve accuracy 
within a population and may be suitable for esti-
mating carnivory rates, more general models pro-
vide a basis for application across populations. 
Variations in prey composition and density or 
competition with other carnivores can affect han-
dling times, site fidelity, movements within a clus-
ter, time of day of cluster initiation or activity, and 
other predictors in a cluster model. Refinement of 
a cluster model to estimate black bear carnivory 
rates should entail field investigations of isolated 
locations in addition to clusters or should employ 
GPS collars with a shorter fix interval in order to 
detect carnivory of small ungulate prey.
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