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A B S T R A C T

Occupancy models have become a valuable tool for estimating wildlife-habitat relationships and for predicting
species distributions. Highly-mobile species often violate the assumption that sampling units are geographically
closed shifting the probability of occupancy to be interpreted as the probability of use. We used occupancy
models, in conjunction with noninvasive sampling, to estimate habitat use and predict the distribution of a
highly-mobile carnivore, the American black bear (Ursus americanus) in New Mexico, USA. The top model in-
dicated that black bears use areas with higher primary productivity and fewer roads. The predictive performance
of such models is rarely validated with independent data, so we validated our model predictions with 2-in-
dependent datasets. We first assessed the correlation between predicted and observed habitat use for 28 tele-
metry-collared bears in the Jemez Mountains. Predicted habitat use was positively correlated with observed use
for all 3 years (2012: ρ= 0.81; 2013: ρ= 0.87; 2014: ρ= 0.90). We then predicted the probability of use within
a cell where a bear mortality was documented using 2043 mortality locations from sport harvest, depredation,
and vehicle collisions. The probability of habitat use at a mortality location was also positively correlated with
observed use by the species (2012: ρ= 0.74; 2013: ρ= 0.89; 2014: ρ= 0.93). Our validation procedure supports
the notion that occupancy models can be an effective tool for estimating habitat use and predicting the dis-
tribution of highly-mobile species when the assumption of geographic closure has been violated. Our findings
may be of interest to studies that are estimating habitat use for highly-mobile species that are secretive or rare,
difficult to capture, or expensive to monitor with other more intensive methods.

1. Introduction

Since their inception, occupancy models have been an essential tool
for the conservation and management of wildlife. In its original con-
struction, the occupancy-modeling framework enabled estimation of
the static occurrence and distribution of a single species while ac-
counting for imperfect detection (MacKenzie et al., 2002). Recent ex-
tensions of the paradigm provide the ability to investigate the dynamic
nature of various ecological processes that occur over time (MacKenzie
et al., 2003) or among multiple species (MacKenzie et al., 2004) and
include multiple occupancy states (Nichols et al., 2007). General-
izations of the model accommodate forms of heterogeneity and bias
related to variation in abundance (Royle and Nichols, 2003), non-

independence among repeated surveys at sampling units (Nichols et al.,
2008), and false-positives or misidentification of species (Miller et al.,
2011) while investigating hierarchical scales of occurrence (Hines et al.,
2010; Nichols et al., 2008). As a testament to their flexibility, occu-
pancy models have helped explain the mechanisms driving the breeding
dynamics of amphibians (Gould et al., 2019), have been used to
monitor global-terrestrial biodiversity (Steenweg et al., 2017), have
predicted future impacts of population growth and development on
wildlife (Brown et al., 2014), and have been used to monitor the spread
and dynamics of wildlife pathogens (Russell et al., 2017).

Occupancy models in their simplest form estimate the probability of
occupancy (Ψ) in relation to habitat characteristics while accounting
for imperfect detection by simultaneously estimating detection
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probability (p) from repeated site visits (MacKenzie et al., 2002). When
wildlife species violate the assumption that sampling units (e.g., a pond
or a spatial sampling unit on the landscape) are closed to changes in
occupancy state estimates of Ψ will be biased. However, if movements
by a species in and out of sampling units are random, then Ψ can be
interpreted as the probability a sampling unit is “used” rather than
occupied and inferences about habitat use can be drawn (MacKenzie,
2006). Therefore, depending on whether closure can be assumed, oc-
cupancy modeling can be used to estimate the probability a species
occurs at a site or the probability a species uses a site.

Highly-mobile species often violate the geographic closure as-
sumption. Common sampling techniques used to collect presence-ab-
sence data for such species are often expensive and logistically chal-
lenging (e.g. telemetry collars and aerial surveys). Consequently, non-
invasive sampling techniques for highly mobile species, such as camera
and hair traps, have become more widely used. When noninvasive
sampling techniques are coupled with occupancy modeling, a cost-ef-
fective approach arises for modeling habitat use and predicting a spe-
cies' distribution that also embodies a sound statistical framework
(MacKenzie et al., 2002).

For example, occupancy models have provided stakeholders with
information on the predicted range of clouded leopards (Neofelis neb-
ulosa) to help assess the efficacy of a conservation-corridor initiative on
Peninsular Malaysia (Tan et al., 2017). They have also been used to
model the effects of livestock grazing on large mammals determining
that current laws are insufficient in safeguarding large mammal com-
munities in protected reserves of the Hyrcanian forest of Iran (Soofi
et al., 2018). Additionally, inferences from occupancy models have
been used to develop maps of high-priority conservation areas helping
inform local conservation organizations in their assessment and prior-
itization of land management and acquisition scenarios for forest-
breeding birds in the United States (De Wan et al., 2009). Occupancy
models have even been used to fight illegal activity detrimental to
wildlife by providing a cost-effective method to predict and direct re-
sources to combat poaching hotspots in Brazil (Ferreguetti et al., 2018).

Despite the common use of occupancy models, empirical studies
have often failed to assess model fit and the predictive performance of
the models. While some studies have examined violations in model
assumptions, most studies did not identify the root cause of the viola-
tion (MacKenzie and Bailey, 2004; Royle et al., 2007; Warton et al.,
2017). Furthermore, few empirical studies have used spatially-in-
dependent data to validate habitat use relationships (Babu et al., 2015;
Drouilly et al., 2018; Zeller et al., 2011; but see Walpole et al., 2012).
Failing to assess the fit and predictive performance of a habitat use
model is particularly concerning given their importance in guiding
conservation actions and wildlife policy decisions (Araújo et al., 2019;
Guisan et al., 2013). Thus, the assumption that occupancy can be re-
interpreted as habitat use when the assumption of geographic closure is
not met for highly-mobile species has not been properly addressed.

The objective of our study was to use occupancy modeling coupled
with noninvasive sampling to estimate habitat use for a highly-mobile
species. We conducted a goodness-of-fit test to detect if violations of
model assumptions had occurred and to evaluate the fit of the most
supported model to the data. We then assessed the predictive perfor-
mance of the most supported model at 2-different scales with 2-in-
dependent datasets. We show the efficacy of this approach using a case
study on the American black bear (Ursus americanus) in New Mexico,
USA.

2. Methods

2.1. Study area

We conducted our study in the Sangre de Cristo (9925 km2),
Sacramento (3700 km2), and Jemez (~850 km2) Mountains, New
Mexico, USA (Fig. 1). Elevation ranges from ~1500m to 4011m across

the 3 mountain ranges. Dominant vegetation types included subalpine
coniferous forest (Engelmann spruce [Picea engelmannii], limber pine
[Pinus flexilis] and subalpine fir [Abies lasiocarpa]), montane coniferous
forest (Southwestern white pine [P. strobiformes], ponderosa pine [P.
ponderosa], Douglas-fir [Pseudotsuga menziesii], white fir [A. concolor],
blue spruce [P. pungens], and aspen [Populus tremuloides]), and con-
iferous and mixed woodland (piñon pine [P. edulis] and juniper [Juni-
perus spp.]; Dick-Pedie, 1993). Oak species (Quercus spp.) are scattered
throughout mid- and low-elevation forests and are most abundant at
lower elevations (Dick-Pedie, 1993). The average monthly temperature
was highest in July and lowest in January ranging among the mountain
ranges from 22 °C to 30 °C and −15 °C to −5 °C, respectively (Western
Regional Climate Center, 2018). Average monthly precipitation varied
among the mountain ranges from 7.10 cm to 12.70 cm and was highest
during the monsoon season (Jul–Oct), with rainfall typically peaking in
August (Western Regional Climate Center, 2018). In sum, the three
mountain ranges were similar in orography, land cover, and climate.

2.2. Field sampling and genetic analysis

We used hair traps to sample black bears in the Sangre de Cristo and
Sacramento mountains. Sampling within each study area was limited to
primary habitat defined as all closed-canopy forest and woodland ve-
getation types (Costello et al., 2001). We distributed a grid of 5-km×5-
km cells with a randomly determined origin across the landscape. In
each cell, we set a hair trap in a place most likely to encounter bears
such as suspected travel routes, the occurrence of seasonal forage (e.g.,
green grass and ripe soft and hard mast), and the presence of bear sign
(Kendall et al., 2009). Due to logistical constraints, a survey in the
Sangre de Cristo Mountains lasted 4 weeks whereas a survey for the
Sacramento Mountains was 2 weeks. We set hair traps across 4 surveys
in the northern (22 Apr–5 Sep 2012) and southern Sangre de Cristo
Mountains (29 Apr–9 Sep 2013) and across 6 surveys in the Sacramento
Mountains (5 May–6 Aug 2014).

A hair trap consisted of a strand of barbed wire stretched 45 cm
above ground and wrapped around ≥3 trees with a collection of or-
ganic material at the center (i.e., a lure pile). During each survey in the
Sangre de Cristo Mountains, we randomly selected 1 of 4 non-con-
sumable lures (cow blood/fish emulsion mixture [blood], skunk tinc-
ture/lanolin mixture [skunk], fatty acid scent tablet [FAS], or anise oil)
and applied it to the lure pile. Based on this sampling, FAS and anise oil
scent duration and dispersal distance appeared inferior to blood and
skunk. A chi-square test of independence confirmed that the 4 lures
were not collecting an equal number of samples (χ32= 616.29,
P≤0.001). In the Sacramento Mountains, we randomly selected and
applied either blood or skunk lures to maximize detection of black
bears. A sample consisted of all hair caught in one barb, and we used
our best judgment to identify hair samples collected from when bears
rolled around in the lure pile. We deposited each hair sample in a se-
parate paper-coin envelope. Afterwards, we cleaned the barb wire with
a propane torch to prevent false detections during subsequent surveys.
We moved hair traps (100m to 2.5 km) between surveys to help in-
crease detection rates (Boulanger et al., 2006).

The only qualifier for an occupancy analysis is detection of the focal
species (MacKenzie et al., 2002). We considered hair samples to be from
a black bear if 2 odd numbered alleles were amplified for the G10 J
marker and if ≥4 loci were amplified across 8 additional genetic
markers (G1D, G10B, G10L, G10M, G10H, G10J, G10U, MU59; Paetkau
et al., 1998, 1995; Taberlet et al., 1997). The G10J marker is an in-
dicator for black bears among North American ursids but has shown
some cross-species amplification (L. Harris, Wildlife Genetics Interna-
tional, personal communication). All samples were exported to Wildlife
Genetics International (WGI), Nelson, British Columbia, Canada under
permits required by the Convention on International Trade in En-
dangered Species (Export Permits 12US86417A/9, 13US19950B/9, and
14US43944B/9).
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Kindschuh et al. (2016) captured adult-black bears in the Jemez
Mountains from June 2012–July 2014 using culvert traps and foot
snares. They fitted individuals with a global positioning system (GPS)
telemetry collar programmed with a 3 h fix interval (Advanced Tele-
metry Systems model G2110E, Isanti, Minnesota, USA or Northstar
model NSG-LD2, King George, Virginia, USA). Our sampling procedures
were approved by the New Mexico State University Institutional Animal
Care and Use Committee (Protocols #2011-027) and New Mexico De-
partment of Game and Fish (Scientific Collection Permit 3504). The
New Mexico Department of Game and Fish (NMDGF) provided loca-
tions on statewide sport-hunted, depredation, and vehicle collision
mortalities collected in 2012–2014.

2.3. Modeling habitat use

We used single-species, single-season occupancy models to in-
vestigate habitat use by black bears (MacKenzie et al., 2002). We used
the results from our genetic analysis to create a detection history for
each 5-km×5-km cell. While habitat use was the primary objective of
our occupancy modeling analysis, providing an accurate depiction of
the detection process to eliminate negative bias is essential to the
overall model fit and an accurate depiction of habitat use (MacKenzie
et al., 2002). We hypothesized that detection may be influenced by the
distance of a hair trap to a road (dist), lure scent (lure), and mountain
range (mtn) with mtn depicting the natural variation in the movement

Fig. 1. (a) Location of our 3 study areas within New Mexico, USA overlaid on to a digital elevation map with hillshade where the color gradient from light to dark
brown represents lower to higher elevations. (b) Telemetry locations of 1 American black bear (Ursus americanus) from 22 May 2013 to 31 August 2013 in the Jemez
Mountains. Distribution of hair traps in the (c) Sangre de Cristo, 2012–2013 and (d) Sacramento Mountains, 2014. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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behavior of bears from different mountain ranges or due to differences
in survey length between the Sangre de Cristo and Sacramento moun-
tains. We predicted a lower detection probability when we set hair traps
closer to roads as bears have been shown to avoid roads (Simek et al.,
2015; Stillfried et al., 2015). We predicted a higher detection prob-
ability when we used blood as a lure based on the results of our chi-
square test of independence. We also predicted a higher detection
probability in the Sangre de Cristo Mountains because the length of the
surveys was longer. We pooled the detection data by survey across the 2
mountain ranges. This resulted in the detection history having 6 total
surveys with sites in the Sangre de Cristo Mountains censored in surveys
5 and 6. Due to their ineffectiveness in the Sangre de Cristo Mountains,
we pooled the anise oil and FAS lures into 1 lure category.

We modeled habitat use by developing a suite of a priori models. We
hypothesized that habitat use would be influenced by: 1) spatio-
temporal variation in primary productivity because food availability
influences reproduction and survival (Costello et al., 2003), 2) terrain
complexity because it reflects hydrological profiles that may influence
security cover, forage diversity, and primary productivity (Berryman
et al., 2015), and 3) road density because of increased human dis-
turbance and perceived risk and reduced survival (Hostetler et al.,
2009). We selected the enhanced vegetation index (EVI), its coefficient
of variation (EVICV), and dominant land cover type (cover) as covari-
ates correlated with food availability (Merkle et al., 2013; Nijland et al.,
2016). We predicted higher use in cells with a higher mean EVI (a
measure of productivity) and mean EVICV (a measure of seasonality;
Requena-Mullor et al., 2014). We predicted a positive relationship with
seasonality because pulses of productivity that occurred predominantly
during the summer would be more advantageous for bears as they
prepare for hibernation (Wiegand et al., 2008). The EVI has been shown
to be sensitive to spatial and temporal variation in photosynthetic ac-
tivity and has improved corrections for aerosols and cloud cover com-
pared to NDVI (Huete et al., 2002). We predicted higher use of mixed
conifer and spruce-fir land cover, which tend to occur at mid- to high-
elevations, because these classifications likely represent early-seasonal
grasses and soft-mast plant communities that contain important black
bear food during the period that our study was conducted (Guntly,
2016). We predicted a positive association with the terrain ruggedness
index (TRI) because greater terrain complexity would result in more
diverse hydrological profiles that should yield higher forage diversity
and primary productivity (Berryman et al., 2015; Nellemann et al.,
2007). We predicted that a higher density of roads open to mechanized
travel would be used less due to increased anthropogenic disturbance
(Gaines et al., 2005; Hostetler et al., 2009). Last, we assigned mtn as a
group variable to evaluate if habitat use was specific to or similar across
mountain ranges.

We calculated EVI using 16-day, 250m Moderate Resolution
Imaging Spectrometer (MODIS) datasets (Huete et al., 2002). We gen-
erated a single EVI and EVICV value for each cell by averaging all
250m pixels within a 5-km×5-km cell for each MODIS image and then
averaging all MODIS images across all surveys. We reclassified the 30m
LANDFIRE land cover data into 5 classes that represented black bear
habitat: mixed conifer (combination of aspen, Douglas fir, white pine),
piñon pine-juniper, ponderosa pine, spruce-fir, and all remaining
classes (www.landfire.gov; Rollins, 2009). We assigned a sixth classi-
fication of “heterogeneous” when no classification represented ≥50%
of the area within the cell. We calculated TRI using a National Elevation
Dataset 30m digital elevation model (www.nationalmap.gov) and the
Benthic Terrain Modeler in ArcMap. We generated a single, averaged
TRI value for each cell. We measured road density and distance to roads
using the U.S. Census Bureau's 2010 TIGER/Line county-road dataset
(www.rgis.unm.edu). We extracted all model covariates using ArcMap
10.2.1 (Environmental Systems Research Institute, Inc., Redlands, Ca-
lifornia, USA).

We used a multi-step modeling process to determine the final model
structure for p and Ψ (Doherty et al., 2012). First, we standardized all

continuous covariates by subtracting the mean and dividing by 2
standard deviations (Gelman, 2008). We assessed multicollinearity
between continuous covariates by calculating Pearson's sample corre-
lation (r) between all covariate combinations, with r≥0.60 dis-
qualifying use of a covariate combination in a model. We used box plots
to visually evaluate trends between the categorical land cover variable
and each continuous covariate. Land cover and EVI were correlated, so
we did not include them in the same model. We first modeled p by dist,
lure, mtn, all additive combinations of the 3 covariates, or constant
while using the global model for Ψ. We then incorporated the model
structure from the top model for p into our subsequent modeling of Ψ
using all additive combinations of the uncorrelated covariates except
for EVICV, which was only included in models with EVI. We also in-
cluded an interaction between TRI and EVI as we hypothesized cells
with high EVI and low TRI may be used less by bears because the cell
may be more accessible to human activity or contains more open fields
than forest cover.

We used Akaike's Information Criterion corrected for small sample
size (AICc; Hurvich and Tsai, 1989) to rank and determine relative
support among models. We used the AICc weights (wi) to assess pro-
portional support for each model (Burnham and Anderson, 2002). We
assessed the goodness-of-fit for the top-ranked model using visual di-
agnostic plots based on simulated Dunn-Smyth residuals for occupancy
following methods in Warton et al. (2017). If the 95% confidence in-
terval (CI) of the simulation overlapped 0, then we assumed the model
fit the data and that there were no violations of model assumptions. We
performed our occupancy analysis and model ranking using program
MARK (White and Burnham, 1999). All other analyses were performed
in program R (v. 3.4.4 and v. 3.5.1; R Core Team, 2017, 2018).

2.4. Validating the habitat use model

We used the parameter structure for Ψ from the top model to predict
the distribution of black bears at 2-spatial scales, the Jemez Mountains
and New Mexico state. We limited predicted habitat use in the Jemez
Mountains to primary habitat to evaluate how well the top model
predicted habitat use in a mountain range that is similar in habitat but
independent of the Sangre de Cristo and Sacramento mountains
(Costello et al., 2001). We did not limit predicted habitat use for New
Mexico to primary habitat to evaluate how well the model performed
outside of the conditions used to construct it. We validated these maps
by comparing predicted to observed habitat use based on GPS and
mortality locations for each respective scale. We selected GPS locations
that were collected during the same time that hair samples were col-
lected in the Sangre de Cristo and Sacramento mountains, whereas, we
used all mortality locations collected in 2012–2014.

First, from a random starting location, we overlaid a grid of 5-
km×5-km cells over primary bear habitat within the Jemez Mountains
and across all of New Mexico. We then predicted the probability of use
for each cell. We scaled the predicted probabilities of the cells to sum to
1, grouped them into 20-equally sized bins, and then summed within
each bin:

P use( )
j

N

ij

i

=

where i is the bin identifier, j is the grid cell, and is the probability of
habitat use for 1 to N grid cells (Boyce et al., 2002; Howlin et al., 2004).
Next, we summed the proportion of observed habitat use for each grid
cell by bin:

O use
r
r

( )
j

N
ij

i

=

where i is the bin identifier, j is the grid cell, and r is the observed collar
and mortality locations in the study area (Boyce et al., 2002; Howlin
et al., 2004). We then conducted a Spearman's rank correlation test to
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assess the correlation between predicted and observed habitat use and
assumed predicted and observed use would be positively correlated
(ρ≥ 0.60; Boyce et al., 2002). We also generated a histogram that
described the distribution of mortality locations across the distribution
of predicted use probabilities for New Mexico. We assumed that each
source of mortality was proportional to use, and locations would be
found in cells with a higher probability of use. If not, the habitat use
model was not a good predictor of habitat use across New Mexico, or
the source of mortality may have biased locations towards low-quality
habitat due to higher road densities resulting in greater hunter access
(sport-harvest), greater anthropogenic attractants (depredation), or
higher road densities in areas outside of non-primary habitat (vehicle
collision).

3. Results

3.1. Field sampling and genetic analysis

We set 397 and 148 hair traps that were open for 43,951 and 12,080
trap days in the Sangre de Cristo and Sacramento mountains, respec-
tively. These traps collected 2485 and 1198 hair samples with 60% and
53% of hair traps collecting ≥1 black bear hair sample. We obtained
DNA suitable for amplification from 1813 and 851 hair samples, and we
identified 1046 and 546 samples as black bear in the Sangre de Cristo
and Sacramento mountains, respectively. In the Jemez Mountains,
Kindschuh et al. (2016) live-captured 28 individual bears (19 male; 9
female) from which the telemetry collars obtained 30,660 (22,429
male; 8231 female) GPS locations that coincided with sampling periods
in the Sangre de Cristo and Sacramento mountains. New Mexico De-
partment of Game and Fish collected 711, 776, and 556 mortality lo-
cations during a 3-yr period (2012–2014), respectively.

3.2. Modeling habitat use

The top-ranked detection model included lure and mtn as covariates
and was supported almost twice as much (wi = 0.61) as the second
ranked model (wi = 0.32; Appendix Table A.1). The second ranked
model differed from the top model by only 1 parameter and both had
nearly identical deviances. The additional covariate in the second-
ranked model (dist) was uninformative and the competitiveness of the
two models was a consequence of a model structure that was similar to
the top-ranked model (Arnold, 2010). Therefore, we used the model
structure from the top-ranked model for our subsequent modeling of Ψ.
As we predicted, detection probability was highest for the blood lure
and in the Sangre de Cristo Mountains (Fig. 2). The 95% CIs for the beta
coefficients did not overlap 0 for all detection probability covariates
(blood: β=1.28, 95% CI= 0.99–1.58; skunk: β= 0.73, 95%
CI=0.43–1.02; mtn: β=0.39, 95% CI= 0.11–0.66). The ratio be-
tween standardized beta coefficients showed blood had the largest ef-
fect relative to skunk (1.76) and mtn (3.33) and skunk had a larger
effect than mtn (1.89).

The hypotheses that primary productivity and road density affect
black bear habitat use were supported. The top-ranked model for Ψ
included EVI, EVICV, and road density, however, this model received
just over a third of the total model weight (wi = 0.36). The second and
third ranked models differed from the top model by only 1 parameter
and had nearly identical deviances as the top model. Like the results for
modeling p, the competitiveness of the 2 models was a consequence of a
model structure that was similar to the top-ranked model. Thus, we
eliminated the 2 models with the uninformative covariates (TRI and
mtn) from our model set and the wi for the top-ranked model increased
to 0.52 (Appendix Table A.2). The next 11 models contained a cumu-
lative weight of 0.45 and all but 2 had EVI as a covariate. Consistent
with our predictions, habitat use increased with increasing EVI and
EVICV and decreased with increasing road density (Fig. 2).The 95% CIs
for the beta coefficients did not overlap 0 for all probability of use

covariates (EVI: β=2.66, 95% CI= 1.90–3.42; EVICV: β=0.84, 95%
CI= 0.20–1.47; road: β=−0.53, 95% CI=−1.02 to −0.05). The
ratio between standardized beta coefficients showed that EVI had the
largest effect on probability of use relative to EVICV (3.18) and road
density (4.97) and EVICV had a larger effect than road density (1.56).
The visual diagnostic plots did not show a lack-of-fit for the top model
as the 95% CIs for all simulations overlapped 0 (Appendix Figs. B.1 and
B.2). The observed proportion of cells used across both mountain ranges
was 0.58 and when corrected for imperfect detection, the estimated
probability of cell use was = 0.74 (SE= 0.03).

3.3. Validating the habitat use model

We used the model structure for Ψ from the top-ranked occupancy
model to predict habitat use for bears in the Jemez Mountains and New
Mexico because it received 5× more support than the second-ranked
model and because nearly all of the remaining models contained EVI
(Appendix Table A.2). Predicted habitat use was positively correlated
with observed use for all 3 years in the Jemez Mountains (2012:
ρ= 0.81; 2013: ρ= 0.87; 2014: ρ= 0.90) and across New Mexico
(2012: ρ= 0.74; 2013: ρ= 0.89; 2014: ρ= 0.93). Eighty-two percent,
72%, and 77% of all mortality locations in 2012–2014, respectively, fell
within cells that had a predicted probability of habitat use of ≥0.90
even though these cells represented only 18–19% of the total cells in
New Mexico during the 3 years (Fig. 3; Appendix Fig. C.1). When se-
parated by cause-specific mortality cells that had a predicted prob-
ability of habitat use of ≥0.90 contained the highest number of mor-
talities (sport-hunted: 82–87%; depredation: 50–67%; vehicle collision:
37–50%; Appendix Fig. C.1).

4. Discussion

4.1. Benefits of occupancy modeling

Occupancy modeling is a flexible and reliable statistical method that
separates the observation process from the ecological process (i.e., p
and Ψ) and yields a more accurate representation of where a species has
been detected and how it uses the landscape (Kéry et al., 2013; Lahoz-
Monfort et al., 2014). This level of inference is valuable because en-
vironmental characteristics can affect the detection of a species and bias
descriptions of habitat use leading to ill-informed conservation and
management plans (MacKenzie, 2006). Our research highlights the
utility of occupancy modeling, coupled with noninvasive sampling, to
estimate habitat use for highly-mobile species. A unique aspect of our
study was the opportunity to use independent data to assess the pre-
dictive performance of our model. Our empirical validation procedure
reinforces the view that occupancy modeling can be used to estimate
habitat use when the assumption that geographic closure of sampling
units is violated by a highly-mobile species.

Additionally, when paired with thoughtful and flexible study de-
signs occupancy models can help achieve multiple research objectives.
For example, Gould et al. (2018) used noninvasive genetic sampling to
estimate the density of black bears, and then we used these data to
explore habitat use over large-spatial scale that would have been too
financially exorbitant with telemetry collars. In studies that use camera
traps, researchers could use occupancy modeling to simultaneously
analyze range and community dynamics, investigate species interac-
tions, and monitor biodiversity (Kéry et al., 2013; Rich et al., 2017;
Robinson et al., 2014). Occupancy modeling, however, may not always
be the most appropriate method for a study. For instance, research on
cause-specific mortality, foraging behavior, and 2nd–4th order resource
selection requires detailed spatiotemporal location data necessitating
the use of telemetry collars (Manly et al., 2002). Despite its strengths,
the decision to use occupancy modeling will depend on the ecological
questions of interest and monetary constraints of a project.
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4.2. Validating the habitat use model

Our predicted species distribution maps for black bears exhibited
high spatiotemporal concordance with observed habitat use at both
spatial scales. Model predictions are often not validated or are validated
without using independent data because these data are often difficult
and costly to obtain. Instead, researchers typically split the occurrence
data into training and testing datasets. They then use the training da-
taset to generate a single habitat use model, or iteratively generate
multiple habitat use models, and validate the model(s) using the testing
dataset (e.g., k-fold cross-validation; Boyce et al., 2002). A more in-
formative approach would be to estimate habitat use using the full
dataset ensuring a larger sample and greater statistical power to de-
scribe patterns of habitat use. Then validate the predictive performance
of the model using independent data. Yet, researchers rarely have ac-
cess to additional independent data, whereas, we were fortunate to
have 2-independent datasets available to evaluate our habitat use
model.

In the United States, state wildlife management agencies commonly
collect mortality information on multiple species so such data are often
available to serve as independent data sets. Mortality locations, how-
ever, can be biased depending on the cause of mortality. For example,
sport harvest locations may be biased due to hunter selectivity and the
accessibility of an area to motorized vehicles. Depredation mortalities
may be biased if artificial attractants occur outside of high-use habitat.
While vehicle collisions may be biased dependent on road type (e.g.,
interstate vs. dirt). All mortality sources will likely be affected by dif-
ferential movements of the species due to sex and age (e.g., dispersing
juveniles) and increased and uncommon movement patterns due to
drought-induced failure of food crops (Costello, 2010; Jones et al.,
2015; Kerley et al., 2002). The mortality data we used was male-biased
as more males were either killed by sport harvest (1.5–1.6 males:1.0
female), removed because of depredation events (2.0–4.0 males:1.0
female), or killed by vehicle collisions (1.1–2.0 males:1.0 female) across
the 3 years. The larger proportion of males is likely a combination of
male biased harvest limits, larger movement rates relative to females,
and female-biased philopatry, which could increase a male's risk of
mortality due to increased interaction with roads and humans (Lee and
Vaughan, 2003; Costello, 2010; Gould et al., 2018). Despite these

concerns, it seems logical that bears would use areas that are either
easier to travel through, to conserve energy, or contain the resources
they need to meet their energy requirements. Our assumption seems
reasonable, given most of the cause-specific mortality locations were
found in areas with a predicted probability of use ≥0.90 (Appendix Fig.
C.1).

4.3. Modeling habitat use

The simulated Dunn-Smyth residuals for occupancy did not show
any pattern and the 95% CIs for all simulations overlapped 0 suggesting
that the model fit the data well and that the assumptions of the model
were not violated (Appendix Figs. B.1 and B.2). The model assumption
of geographic closure, however, was indeed violated due to the ex-
tended sampling period (Gould et al., 2018). Instead, these results likely
indicate that movement in and out of the sampling units by the species
was random and the probability of occupancy could be interpreted as
use.

Habitat use by black bears in New Mexico had a positive relation-
ship with primary productivity and its variation, which likely describes
the spatiotemporal distribution of food resources. This relationship can
be explained by their omnivorous diet, which is comprised pre-
dominantly of vegetative matter (Costello et al., 2001; McLellan, 2011).
The positive relationships between primary productivity and habitat
use is consistent with various ursid studies that have shown a correla-
tion between primary productivity and population-level habitat selec-
tion, habitat quality, and patterns in density (Duquette et al., 2017;
Stetz et al., 2018; Wiegand et al., 2008).

Incorporating variables on ecosystem functions (i.e., covariates re-
presenting multiple rather than a single ecosystem process) into mod-
eling habitat use has become increasingly popular because they more
realistically track ecological patterns (Cabello et al., 2012). Ecosystem
functioning variables have improved predictions by species distribution
models (Requena-Mullor et al., 2014) and have helped explain diet
patterns, population cycles, and habitat use in several mammalian
species (Schmidt et al., 2018; Squires et al., 2013; Tsuji et al., 2015). We
used EVI and EVICV to represent primary productivity and seasonality,
respectively. Land cover combined with road density, however, had a
similar performance as the top model as the 2 had nearly identical

Fig. 2. (a) The probability of detection as a function of lure
type (blood, skunk, fatty acid scent tablet [FAS] and anise oil)
and mountain range (Sangre de Cristo Mountains=filled
circles, Sacramento Mountains=unfilled circles) and (b) the
probability of habitat use (Ψ) with respect to the enhanced
vegetation index (EVI), (c) its coefficient of variation
(EVICV), and (d) road density. Gray shade represents the
95% confidence intervals of the probability of habitat use.
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deviance values. The similarity in performance most likely arose be-
cause EVI and land cover were correlated, but land cover was not
ranked highly due to parsimony (Burnham and Anderson, 2002). Thus,
land cover may be a good predictor of bear habitat use, but ecosystem
functioning variables are more advantageous because they can often be
assessed with a single, continuous variable resulting in 2 parameters
(intercept and slope) and can characterize the dynamic, spatiotemporal
heterogeneity in ecosystem processes more efficiently than a catego-
rical land cover variable. The occupancy model, however, over-
predicted habitat use in east-central New Mexico along the Texas
border. The EVI and EVICV were likely sensitive to agriculture-based
irrigation and the presence of shinnery oak (Quercus havardii), a de-
ciduous and low-growing shrub. Therefore, some subjectivity based on
biological expertise may be necessary when constructing and inter-
preting habitat use models that are extrapolated outside the area they
were generated.

Our results also suggest that habitat use is influenced by road
density, but to a much lesser degree than primary productivity. The

negative relationship between road density and habitat use is consistent
with a large body of research that has highlighted the negative impact
of roads on ursids, including increasing habitat loss, reducing habitat
quality, heightening genetic isolation, and increasing mortality rates
(Dixon et al., 2007; Little et al., 2017). Roads are also negatively cor-
related with habitat use of other mammals, from marsupials to small
rodents and large-obligate carnivores with greater impacts on species
exhibiting low reproduction and high vagility (i.e., highly-mobile spe-
cies; Kerley et al., 2002; McAlpine et al., 2006; Kelly et al., 2013;
Rytwinski and Fahrig, 2011).

We found no support that habitat use was related to terrain com-
plexity or differences between mountain ranges (Appendix Table A.2).
Terrain complexity may not have been supported because the scale of our
study and the sample of available units was limited to mountain ranges.
If we had broadened the geographic scale of sampling for the develop-
ment of our occupancy model, a greater proportion of less rugged areas
would have been included and terrain complexity likely would have been
an important predictor of broad-scale habitat use for black bears.

Fig. 3. The predicted probability of habitat use for American black bears (Ursus americanus) across (a) New Mexico, USA overlaid with black bear mortality locations
in (b) 2012, (c) 2013, and (d) 2014.
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4.4. Conclusions

Predictive maps highlighting wildlife-habitat use and predicting a
species' distribution can be valuable tools for developing a better un-
derstanding of a species' spatial ecology, thereby informing species
management and conservation plans. Occupancy models provide
practitioners with the ability to estimate and predict these relationships
while accounting for imperfect detection of a species. Using 2-valida-
tion datasets, we assessed the performance of occupancy models for
estimating habitat use and predicting the distribution of a highly-mo-
bile species, the American black bear. Despite our predictions occurring
in an independent mountain range and outside of the habitat conditions
upon which the model was constructed, predicted and observed habitat
use were positively correlated. Our validation procedure supports the
notion that occupancy models can be an effective tool for estimating
habitat use and predicting the distribution of highly-mobile species
when the assumption of geographic closure has been violated. Our
findings may be particularly useful when conservation and manage-
ment agencies are charged with estimating habitat use for highly-mo-
bile species that are secretive or rare, difficult to capture, or expensive
to monitor with other more intensive methods.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.biocon.2019.03.010.

Acknowledgements

We thank the technicians, volunteers, private landowners, busi-
nesses, and state and federal agency personnel for their dedication and
in-kind support. Comments by J. Frey, J. Gedir, J. Stetz, T. Wright, and
an anonymous reviewer improved earlier drafts. The New Mexico
Department of Game and Fish, the New Mexico State University
Departments of Fish, Wildlife and Conservation Ecology and Biology,
The New Mexico State University Agricultural Experiment Station,
Vermejo Park Ranch, and T & E Inc. provided funding. Any use of trade,
firm, or product names is for descriptive purposes only and does not
imply endorsement by the U.S. Government.

References

Araújo, M.B., Anderson, R.P., Barbosa, A.M., Beale, C.M., Dormann, C.F., Early, R.,
Garcia, R.A., Guisan, A., Maiorano, L., Naimi, B., O'Hara, R.B., Zimmermann, N.E.,
Rahbek, C., 2019. Standards for distribution models in biodiversity assessments.
Science Advances 5, eaat4858. https://doi.org/10.1126/sciadv.aat4858.

Arnold, T.W., 2010. Uninformative parameters and model selection using Akaike's
Information Criterion. Journal of Wildlife Management 74, 1175–1178. https://doi.
org/10.2193/2009-367.

Babu, S., Karthik, T., Srinivas, G., Kumara, H.N., 2015. Linking critical patches of sloth
bear Melursus ursinus for their conservation in Meghamalai hills, Western Ghats.
India. Current Science 109, 7. https://doi.org/10.18520/v109/i8/1492-1498.

Berryman, E.M., Barnard, H.R., Adams, H.R., Burns, M.A., Gallo, E., Brooks, P.D., 2015.
Complex terrain alters temperature and moisture limitations of forest soil respiration
across a semiarid to subalpine gradient. Journal of Geophysical Research:
Biogeosciences 120, 707–723. https://doi.org/10.1002/2014JG002802.

Boulanger, J., Proctor, M., Himmer, S., Stenhouse, G., Paetkau, D., Cranston, J., 2006. An
empirical test of DNA mark–recapture sampling strategies for grizzly bears. ursu 17,
149–159. https://doi.org/10.2192/1537-6176(2006)17[149:AETODM]2.0.CO;2.

Boyce, M.S., Vernier, P.R., Nielsen, S.E., Schmiegelow, F.K., 2002. Evaluating resource
selection functions. Ecological Modelling 157, 281–300. https://doi.org/10.1016/
S0304-3800(02)00200-4.

Brown, M.L., Donovan, T.M., Schwenk, W.S., Theobald, D.M., 2014. Predicting impacts of
future human population growth and development on occupancy rates of forest-de-
pendent birds. Biological Conservation 170, 311–320. https://doi.org/10.1016/j.
biocon.2013.07.039.

Burnham, K.P., Anderson, D.R., 2002. Model Selection and Multi-model Inference: A
Practical Information-Theoretic Approach, 2nd ed. Springer-Verlag New York, New
York, NY, USA.

Cabello, J., Fernández, N., Alcaraz-Segura, D., Oyonarte, C., Piñeiro, G., Altesor, A.,
Delibes, M., Paruelo, J.M., 2012. The ecosystem functioning dimension in con-
servation: insights from remote sensing. Biodiversity and Conservation 21,
3287–3305. https://doi.org/10.1007/s10531-012-0370-7.

Costello, C.M., 2010. Estimates of dispersal and home-range fidelity in American black
bears. J Mammal 91, 116–121. https://doi.org/10.1644/09-MAMM-A-015R1.1.

Costello, C.M., Jones, D.E., Green Hammond, K.A., Inman, R.M., Inman, K.H., Thompson,
B.C., Deitner, R.A., Quigley, H.B., 2001. A Study of Black Bear Ecology in New

Mexico With Models for Population Dynamics and Habitat Suitabiltiy (Final Report
No. W-131-R), Federal Aid in Wildlife Restoration Project. New Mexico Department
of Game and Fish, Santa Fe, New Mexico, USA.

Costello, C.M., Jones, D.E., Inman, R.M., Inman, K.H., Thompson, B.C., Quigley, H.B.,
2003. Relationship of variable mast production to American black bear reproductive
parameters in New Mexico. Ursus 14, 1–16.

De Wan, A.A., Sullivan, P.J., Lembo, A.J., Smith, C.R., Maerz, J.C., Lassoie, J.P.,
Richmond, M.E., 2009. Using occupancy models of forest breeding birds to prioritize
conservation planning. Biological Conservation 142, 982–991. https://doi.org/10.
1016/j.biocon.2008.12.032.

Dick-Pedie, W.A., 1993. New Mexico vegetation, past, present and future. University of
New Mexico Press. In: Albuquerque. New Mexico, USA.

Dixon, J.D., Oli, M.K., Wooten, M.C., Eason, T.H., McCown, J.W., Cunningham, M.W.,
2007. Genetic consequences of habitat fragmentation and loss: the case of the Florida
black bear (Ursus americanus floridanus). Conservation Genetics 8, 455–464. https://
doi.org/10.1007/s10592-006-9184-z.

Doherty, P.F., White, G.C., Burnham, K.P., 2012. Comparison of model building and se-
lection strategies. J Ornithol 152, 317–323. https://doi.org/10.1007/s10336-010-
0598-5.

Drouilly, M., Clark, A., O'Riain, M.J., 2018. Multi-species occupancy modelling of
mammal and ground bird communities in rangeland in the Karoo: a case for dryland
systems globally. Biological Conservation 224, 16–25. https://doi.org/10.1016/j.
biocon.2018.05.013.

Duquette, J.F., Belant, J.L., Wilton, C.M., Fowler, N., Waller, B.W., Beyer, D.E., Svoboda,
N.J., Simek, S.L., Beringer, J., 2017. Black bear (Ursus americanus) functional re-
source selection relative to intraspecific competition and human risk. Can. J. Zool.
95, 203–212. https://doi.org/10.1139/cjz-2016-0031.

Ferreguetti, Á.C., Pereira-Ribeiro, J., Prevedello, J.A., Tomás, W.M., Rocha, C.F.D.,
Bergallo, H.G., 2018. One step ahead to predict potential poaching hotspots:
Modeling occupancy and detectability of poachers in a neotropical rainforest.
Biological Conservation 227, 133–140. https://doi.org/10.1016/j.biocon.2018.09.
009.

Gaines, W.L., Lyons, A.L., Lehmkuhl, J.F., Raedeke, K.J., 2005. Landscape evaluation of
female black bear habitat effectiveness and capability in the North Cascades,
Washington. Biological Conservation 125, 411–425. https://doi.org/10.1016/j.
biocon.2005.03.023.

Gelman, A., 2008. Scaling regression inputs by dividing by two standard deviations.
Statistics in Medicine 27, 2865–2873. https://doi.org/10.1002/sim.3107.

Gould, M.J., Cain, J.W., Roemer, G.W., Gould, W.R., Liley, S.G., 2018. Density of
American black bears in New Mexico: density of black bears in New Mexico. The
Journal of Wildlife Management 82, 775–788. https://doi.org/10.1002/jwmg.
21432.

Gould, W.R., Ray, A.M., Bailey, L.L., Thoma, D., Daley, R., Legg, K., 2019. Multistate
occupancy modeling improves understanding of amphibian breeding dynamics in the
Greater Yellowstone Area. Ecological Applications 29, e01825. https://doi.org/10.
1002/eap.1825.

Guisan, A., Tingley, R., Baumgartner, J.B., Naujokaitis-Lewis, I., Sutcliffe, P.R., Tulloch,
A.I.T., Regan, T.J., Brotons, L., McDonald-Madden, E., Mantyka-Pringle, C., Martin,
T.G., Rhodes, J.R., Maggini, R., Setterfield, S.A., Elith, J., Schwartz, M.W., Wintle,
B.A., Broennimann, O., Austin, M., Ferrier, S., Kearney, M.R., Possingham, H.P.,
Buckley, Y.M., 2013. Predicting species distributions for conservation decisions.
Ecology Letters 16, 1424–1435. https://doi.org/10.1111/ele.12189.

Guntly, K.M., 2016. Black Bear (Ursus americanus) Movements, Diet, and Impacts on
Ungulate Neonate Survival on the National Rifle Association Whittington Center,
New Mexico. Texas Tech University, Lubbock, TX, USA.

Hines, J.E., Nichols, J.D., Royle, J.A., MacKenzie, D.I., Gopalaswamy, A.M., Kumar, N.S.,
Karanth, K.U., 2010. Tigers on trails: occupancy modeling for cluster sampling.
Ecological Applications 20, 1456–1466. https://doi.org/10.1890/09-0321.1.

Hostetler, J.A., Walter McCown, J., Garrison, E.P., Neils, A.M., Barrett, M.A., Sunquist,
M.E., Simek, S.L., Oli, M.K., 2009. Demographic consequences of anthropogenic in-
fluences: Florida black bears in north-central Florida. Biological Conservation 142,
2456–2463. https://doi.org/10.1016/j.biocon.2009.05.029.

Howlin, S., Erickson, W.P., Nielson, R.M., 2004. A Validation Technique for Assessing
Predictive Abilities of Resource Selection Functions. pp. 1–13.

Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., Ferreira, L.G., 2002. Overview of
the radiometric and biophysical performance of the MODIS vegetation indices.
Remote Sensing of Environment 83, 195–213. https://doi.org/10.1016/S0034-
4257(02)00096-2.

Hurvich, C.M., Tsai, C.-L., 1989. Regression and time series model selection in small
samples. Biometrika 76, 297. https://doi.org/10.2307/2336663.

Jones, M.D., Berl, J.L., Tri, A.N., Edwards, J.W., Spiker, H., 2015. Predicting harvest
vulnerability for a recovering population of American black bears in western
Maryland. Ursus 26, 97–106. https://doi.org/10.2192/URSUS-D-15-00019.1.

Kelly, C.A., Diggins, C.A., Lawrence, A.J., 2013. Crossing structures reconnect federally
endangered flying squirrel populations divided for 20 years by road barrier: Road
Crossing Structures for Flying Squirrels. Wildlife Society Bulletin 37, 375–379.
https://doi.org/10.1002/wsb.249.

Kendall, K.C., Stetz, J.B., Boulanger, J., Macleod, A.C., Paetkau, D., White, G.C., 2009.
Demography and genetic structure of a recovering grizzly bear population. The
Journal of Wildlife Management 73, 3–16. https://doi.org/10.2193/2008-330.

Kerley, L.L., Goodrich, J.M., Miquelle, D.G., Smirnov, E.N., Quigley, H.B., Hornocker,
M.G., 2002. Effects of roads and human disturbance on amur tigers. Conservation
Biology 16, 97–108. https://doi.org/10.1046/j.1523-1739.2002.99290.x.

Kéry, M., Guillera-Arroita, G., Lahoz-Monfort, J.J., 2013. Analysing and mapping species
range dynamics using occupancy models. Journal of Biogeography 40, 1463–1474.
https://doi.org/10.1111/jbi.12087.

M.J. Gould, et al. Biological Conservation 234 (2019) 28–36

35

https://doi.org/10.1016/j.biocon.2019.03.010
https://doi.org/10.1016/j.biocon.2019.03.010
https://doi.org/10.1126/sciadv.aat4858
https://doi.org/10.2193/2009-367
https://doi.org/10.2193/2009-367
https://doi.org/10.18520/v109/i8/1492-1498
https://doi.org/10.1002/2014JG002802
https://doi.org/10.2192/1537-6176(2006)17[149:AETODM]2.0.CO;2
https://doi.org/10.1016/S0304-3800(02)00200-4
https://doi.org/10.1016/S0304-3800(02)00200-4
https://doi.org/10.1016/j.biocon.2013.07.039
https://doi.org/10.1016/j.biocon.2013.07.039
http://refhub.elsevier.com/S0006-3207(18)31214-X/rf0040
http://refhub.elsevier.com/S0006-3207(18)31214-X/rf0040
http://refhub.elsevier.com/S0006-3207(18)31214-X/rf0040
https://doi.org/10.1007/s10531-012-0370-7
https://doi.org/10.1644/09-MAMM-A-015R1.1
http://refhub.elsevier.com/S0006-3207(18)31214-X/rf0055
http://refhub.elsevier.com/S0006-3207(18)31214-X/rf0055
http://refhub.elsevier.com/S0006-3207(18)31214-X/rf0055
https://doi.org/10.1016/j.biocon.2008.12.032
https://doi.org/10.1016/j.biocon.2008.12.032
http://refhub.elsevier.com/S0006-3207(18)31214-X/rf0065
http://refhub.elsevier.com/S0006-3207(18)31214-X/rf0065
https://doi.org/10.1007/s10592-006-9184-z
https://doi.org/10.1007/s10592-006-9184-z
https://doi.org/10.1007/s10336-010-0598-5
https://doi.org/10.1007/s10336-010-0598-5
https://doi.org/10.1016/j.biocon.2018.05.013
https://doi.org/10.1016/j.biocon.2018.05.013
https://doi.org/10.1139/cjz-2016-0031
https://doi.org/10.1016/j.biocon.2018.09.009
https://doi.org/10.1016/j.biocon.2018.09.009
https://doi.org/10.1016/j.biocon.2005.03.023
https://doi.org/10.1016/j.biocon.2005.03.023
https://doi.org/10.1002/sim.3107
https://doi.org/10.1002/jwmg.21432
https://doi.org/10.1002/jwmg.21432
https://doi.org/10.1002/eap.1825
https://doi.org/10.1002/eap.1825
https://doi.org/10.1111/ele.12189
https://doi.org/10.1890/09-0321.1
https://doi.org/10.1016/j.biocon.2009.05.029
http://refhub.elsevier.com/S0006-3207(18)31214-X/rf0130
http://refhub.elsevier.com/S0006-3207(18)31214-X/rf0130
https://doi.org/10.1016/S0034-4257(02)00096-2
https://doi.org/10.1016/S0034-4257(02)00096-2
https://doi.org/10.2307/2336663
https://doi.org/10.2192/URSUS-D-15-00019.1
https://doi.org/10.1002/wsb.249
https://doi.org/10.2193/2008-330
https://doi.org/10.1046/j.1523-1739.2002.99290.x
https://doi.org/10.1111/jbi.12087


Kindschuh, S.R., Cain, J.W., Daniel, D., Peyton, M.A., 2016. Efficacy of GPS cluster
analysis for predicting carnivory sites of a wide-ranging omnivore: the American
black bear. Ecosphere 7, e01513. https://doi.org/10.1002/ecs2.1513.

Lahoz-Monfort, J.J., Guillera-Arroita, G., Wintle, B.A., 2014. Imperfect detection impacts
the performance of species distribution models: imperfect detection impacts species
distribution models. Global Ecology and Biogeography 23, 504–515. https://doi.org/
10.1111/geb.12138.

Lee, D.J., Vaughan, M.R., 2003. Dispersal movements by subadult American black bears
in Virginia. Ursus 14, 162–170.

Little, A.R., Hammond, A., Martin, J.A., Johannsen, K.L., Miller, K.V., 2017. Population
growth and mortality sources of the black bear population in Northern Georgia.
Journal of the Southeastern Association of Fish and Wildlife Agencies 4, 130–138.

MacKenzie, D.I., 2006. Modeling the probability of resource use: the effect of, and dealing
with, detecting a species imperfectly. The Journal of Wildlife Management 70,
367–374. https://doi.org/10.2193/0022-541X(2006)70[367:MTPORU]2.0.CO;2.

MacKenzie, D.I., Bailey, L.L., 2004. Assessing the fit of site-occupancy models. JABES 9,
300–318. https://doi.org/10.1198/108571104X3361.

MacKenzie, D.I., Nichols, J.D., Lachman, G.B., Droege, S., Royle, J.A., Lantimm, C.A.,
2002. Estimating site occupancy rates when detection probabilities are less than one.
Ecology 83, 2245–2255. https://doi.org/10.1890/0012-9658(2002)
083[2248:ESORWD]2.0.CO;2.

MacKenzie, D.I., Nichols, J.D., Hines, J.E., Knutson, M.G., Franklin, A.B., 2003.
Estimating site occupancy, colonization, and local extinction when a species is de-
tected imperfectly. Ecology 84, 2200–2207. https://doi.org/10.1890/02-3090.

MacKenzie, D.I., Bailey, L.L., Nichols, J.D., 2004. Investigating species co-occurrence
patterns when species are detected imperfectly. Journal of Animal Ecology 73,
546–555. https://doi.org/10.1111/j.0021-8790.2004.00828.x.

Manly, B.F., McDonald, L., Thomas, D., McDonald, T.L., Erickson, W.P., 2002. Resource
Selection by Animals: Statistical Design and Analysis for Field Studies, 2nd ed.
Springer, Netherlands.

McAlpine, C.A., Rhodes, J.R., Callaghan, J.G., Bowen, M.E., Lunney, D., Mitchell, D.L.,
Pullar, D.V., Possingham, H.P., 2006. The importance of forest area and configuration
relative to local habitat factors for conserving forest mammals: a case study of koalas
in Queensland, Australia. Biological Conservation 132, 153–165. https://doi.org/10.
1016/j.biocon.2006.03.021.

McLellan, B.N., 2011. Implications of a high-energy and low-protein diet on the body
composition, fitness, and competitive abilities of black (Ursus americanus) and grizzly
(Ursus arctos) bears. Canadian Journal of Zoology 89, 546–558. https://doi.org/10.
1139/z11-026.

Merkle, J.A., Robinson, H.S., Krausman, P.R., Alaback, P., 2013. Food availability and
foraging near human developments by black bears. Journal of Mammalogy 94,
378–385. https://doi.org/10.1644/12-MAMM-A-002.1.

Miller, D.A., Nichols, J.D., McClintock, B.T., Grant, E.H.C., Bailey, L.L., Weir, L.A., 2011.
Improving occupancy estimation when two types of observational error occur: non-
detection and species misidentification. Ecology 92, 1422–1428. https://doi.org/10.
1890/10-1396.1.

Nellemann, C., Støen, O.-G., Kindberg, J., Swenson, J.E., Vistnes, I., Ericsson, G.,
Katajisto, J., Kaltenborn, B.P., Martin, J., Ordiz, A., 2007. Terrain use by an ex-
panding brown bear population in relation to age, recreational resorts and human
settlements. Biological Conservation 138, 157–165. https://doi.org/10.1016/j.
biocon.2007.04.011.

Nichols, J.D., Hines, J.E., Mackenzie, D.I., Seamans, M.E., Gutiérrez, R.J., 2007.
Occupancy estimation and modeling with multiple states and state uncertainty.
Ecology 88, 1395–1400. https://doi.org/10.1890/06-1474.

Nichols, J.D., Bailey, L.L., O'Connell Jr., A.F., Talancy, N.W., Campbell Grant, E.H.,
Gilbert, A.T., Annand, E.M., Husband, T.P., Hines, J.E., 2008. Multi-scale occupancy
estimation and modelling using multiple detection methods. Journal of Applied
Ecology 45, 1321–1329. https://doi.org/10.1111/j.1365-2664.2008.01509.x.

Nijland, W., Bolton, D.K., Coops, N.C., Stenhouse, G., 2016. Imaging phenology; scaling
from camera plots to landscapes. Remote Sensing of Environment 177, 13–20.
https://doi.org/10.1016/j.rse.2016.02.018.

Paetkau, D., Calvert, W., Stirling, I., Strobeck, C., 1995. Microsatellite analysis of popu-
lation structure in Canadian polar bears. Molecular Ecology 4, 347–354. https://doi.
org/10.1111/j.1365-294X.1995.tb00227.x.

Paetkau, D., Shields, G.F., Strobeck, C., 1998. Gene flow between insular, coastal and
interior populations of brown bears in Alaska. Molecular Ecology 7, 1283–1292.
https://doi.org/10.1046/j.1365-294x.1998.00440.x.

R Core Team, 2017. R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria.

R Core Team, 2018. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria.

Requena-Mullor, J.M., López, E., Castro, A.J., Cabello, J., Virgós, E., González-Miras, E.,
Castro, H., 2014. Modeling spatial distribution of European badger in arid land-
scapes: an ecosystem functioning approach. Landscape Ecology 29, 843–855. https://
doi.org/10.1007/s10980-014-0020-4.

Rich, L.N., Miller, D.A.W., Robinson, H.S., McNutt, J.W., Kelly, M.J., 2017. Carnivore
distributions in Botswana are shaped by resource availability and intraguild species.
Journal of Zoology 303, 90–98. https://doi.org/10.1111/jzo.12470.

Robinson, Q.H., Bustos, D., Roemer, G.W., 2014. The application of occupancy modeling
to evaluate intraguild predation in a model carnivore system. Ecology 95,
3112–3123. https://doi.org/10.1890/13-1546.1.

Rollins, M.G., 2009. LANDFIRE: a nationally consistent vegetation, wildland fire, and fuel
assessment. Int. J. Wildland Fire 18, 235–249. https://doi.org/10.1071/WF08088.

Royle, J.A., Nichols, J.D., 2003. Estimating abundance from repeated presence–absence
data or point counts. Ecology 84, 777–790. https://doi.org/10.1890/0012-
9658(2003)084[0777:EAFRPA]2.0.CO;2.

Royle, J.A., Kéry, M., Gautier, R., Schmid, H., 2007. Hierarchical spatial models of
abundance and occurrence from imperfect survey data. Ecological Monographs 77,
465–481. https://doi.org/10.1890/06-0912.1.

Russell, R.E., Katz, R.A., Richgels, K.L.D., Walsh, D.P., Grant, E.H.C., 2017. A framework
for modeling emerging diseases to inform management. Emerg Infect Dis 23, 1–6.
https://doi.org/10.3201/eid2301.161452.

Rytwinski, T., Fahrig, L., 2011. Reproductive rate and body size predict road impacts on
mammal abundance. Ecological Applications 21, 589–600. https://doi.org/10.1890/
10-0968.1.

Schmidt, J.H., Rexstad, E.A., Roland, C.A., McIntyre, C.L., MacCluskie, M.C., Flamme,
M.J., 2018. Weather-driven change in primary productivity explains variation in the
amplitude of two herbivore population cycles in a boreal system. Oecologia 186,
435–446. https://doi.org/10.1007/s00442-017-4004-3.

Simek, S.L., Belant, J.L., Fan, Z., Young, B.W., Leopold, B.D., Fleming, J., Waller, B., 2015.
Source populations and roads affect American black bear recolonization. Eur J Wildl
Res 61, 583–590. https://doi.org/10.1007/s10344-015-0933-5.

Soofi, M., Ghoddousi, A., Zeppenfeld, T., Shokri, S., Soufi, M., Jafari, A., Ahmadpour, M.,
Qashqaei, A.T., Egli, L., Ghadirian, T., Chahartaghi, N.R., Zehzad, B., Kiabi, B.H.,
Khorozyan, I., Balkenhol, N., Waltert, M., 2018. Livestock grazing in protected areas
and its effects on large mammals in the Hyrcanian forest, Iran. Biological
Conservation 217, 377–382. https://doi.org/10.1016/j.biocon.2017.11.020.

Squires, J.R., DeCesare, N.J., Olson, L.E., Kolbe, J.A., Hebblewhite, M., Parks, S.A., 2013.
Combining resource selection and movement behavior to predict corridors for
Canada lynx at their southern range periphery. Biological Conservation 157,
187–195. https://doi.org/10.1016/j.biocon.2012.07.018.

Steenweg, R., Hebblewhite, M., Kays, R., Ahumada, J., Fisher, J.T., Burton, C., Townsend,
S.E., Carbone, C., Rowcliffe, J.M., Whittington, J., Brodie, J., Royle, J.A., Switalski,
A., Clevenger, A.P., Heim, N., Rich, L.N., 2017. Scaling-up camera traps: monitoring
the planet's biodiversity with networks of remote sensors. Frontiers in Ecology and
the Environment 15, 26–34. https://doi.org/10.1002/fee.1448.

Stetz, J.B., Mitchell, M.S., Kendall, K.C., 2018. Using spatially-explicit capture-recapture
models to explain variation in seasonal density patterns of sympatric ursids.
Ecography 41, 1–12. https://doi.org/10.1111/ecog.03556.

Stillfried, M., Belant, J.L., Svoboda, N.J., Beyer, D.E., Kramer-Schadt, S., 2015. When top
predators become prey: black bears alter movement behaviour in response to hunting
pressure. Behavioural Processes 120, 30–39. https://doi.org/10.1016/j.beproc.2015.
08.003.

Taberlet, P., Camarra, J.-J., Griffin, S., Uhrès, E., Hanotte, O., Waits, L.P., Dubois-
Paganon, C., Burke, T., Bouvet, J., 1997. Noninvasive genetic tracking of the en-
dangered Pyrenean brown bear population. Molecular Ecology 6, 869–876. https://
doi.org/10.1111/j.1365-294X.1997.tb00141.x.

Tan, C.K.W., Rocha, D.G., Clements, G.R., Brenes-Mora, E., Hedges, L., Kawanishi, K.,
Mohamad, S.W., Mark Rayan, D., Bolongon, G., Moore, J., Wadey, J., Campos-Arceiz,
A., Macdonald, D.W., 2017. Habitat use and predicted range for the mainland
clouded leopard Neofelis nebulosa in Peninsular Malaysia. Biological Conservation
206, 65–74. https://doi.org/10.1016/j.biocon.2016.12.012.

Tsuji, Y., Ito, T.Y., Wada, K., Watanabe, K., 2015. Spatial patterns in the diet of the
Japanese macaque M acaca fuscata and their environmental determinants: spatial
patterns in the diet of Japanese macaques. Mammal Review 45, 227–238. https://doi.
org/10.1111/mam.12045.

Walpole, A.A., Bowman, J., Murray, D.L., Wilson, P.J., 2012. Functional connectivity of
lynx at their southern range periphery in Ontario, Canada. Landscape Ecology 27,
761–773. https://doi.org/10.1007/s10980-012-9728-1.

Warton, D.I., Stoklosa, J., Guillera-Arroita, G., MacKenzie, D.I., Welsh, A.H., 2017.
Graphical diagnostics for occupancy models with imperfect detection. Methods in
Ecology and Evolution 8, 408–419. https://doi.org/10.1111/2041-210X.12761.

Western Regional Climate Center, 2018. Cooperative Climatological Data Summaries:
Period of Record General Climate Summaries for Capitan, Cimmaron, Cloudcroft,
Jemez Springs, Los Alamos, Pecos, Red River, Ruidoso, and Wolf Canyon. Mexico,
New.

White, G.C., Burnham, K.P., 1999. Program MARK: survival estimation from populations
of marked animals. Bird Study 46, S120–S139. https://doi.org/10.1080/
00063659909477239.

Wiegand, T., Naves, J., Garbulsky, M.F., Fernández, N., 2008. Animal habitat quality and
ecosystem functioning: exploring seasonal patterns using NDVI. Ecological
Monographs 78, 87–103. https://doi.org/10.1890/06-1870.1.

Zeller, K.A., Nijhawan, S., Salom-Pérez, R., Potosme, S.H., Hines, J.E., 2011. Integrating
occupancy modeling and interview data for corridor identification: a case study for
jaguars in Nicaragua. Biological Conservation 144, 892–901. https://doi.org/10.
1016/j.biocon.2010.12.003.

M.J. Gould, et al. Biological Conservation 234 (2019) 28–36

36

https://doi.org/10.1002/ecs2.1513
https://doi.org/10.1111/geb.12138
https://doi.org/10.1111/geb.12138
http://refhub.elsevier.com/S0006-3207(18)31214-X/rf5000
http://refhub.elsevier.com/S0006-3207(18)31214-X/rf5000
http://refhub.elsevier.com/S0006-3207(18)31214-X/rf0180
http://refhub.elsevier.com/S0006-3207(18)31214-X/rf0180
http://refhub.elsevier.com/S0006-3207(18)31214-X/rf0180
https://doi.org/10.2193/0022-541X(2006)70[367:MTPORU]2.0.CO;2
https://doi.org/10.1198/108571104X3361
https://doi.org/10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2
https://doi.org/10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2
https://doi.org/10.1890/02-3090
https://doi.org/10.1111/j.0021-8790.2004.00828.x
http://refhub.elsevier.com/S0006-3207(18)31214-X/rf0210
http://refhub.elsevier.com/S0006-3207(18)31214-X/rf0210
http://refhub.elsevier.com/S0006-3207(18)31214-X/rf0210
https://doi.org/10.1016/j.biocon.2006.03.021
https://doi.org/10.1016/j.biocon.2006.03.021
https://doi.org/10.1139/z11-026
https://doi.org/10.1139/z11-026
https://doi.org/10.1644/12-MAMM-A-002.1
https://doi.org/10.1890/10-1396.1
https://doi.org/10.1890/10-1396.1
https://doi.org/10.1016/j.biocon.2007.04.011
https://doi.org/10.1016/j.biocon.2007.04.011
https://doi.org/10.1890/06-1474
https://doi.org/10.1111/j.1365-2664.2008.01509.x
https://doi.org/10.1016/j.rse.2016.02.018
https://doi.org/10.1111/j.1365-294X.1995.tb00227.x
https://doi.org/10.1111/j.1365-294X.1995.tb00227.x
https://doi.org/10.1046/j.1365-294x.1998.00440.x
http://refhub.elsevier.com/S0006-3207(18)31214-X/rf0265
http://refhub.elsevier.com/S0006-3207(18)31214-X/rf0265
https://doi.org/10.1007/s10980-014-0020-4
https://doi.org/10.1007/s10980-014-0020-4
https://doi.org/10.1111/jzo.12470
https://doi.org/10.1890/13-1546.1
https://doi.org/10.1071/WF08088
https://doi.org/10.1890/0012-9658(2003)084[0777:EAFRPA]2.0.CO;2
https://doi.org/10.1890/0012-9658(2003)084[0777:EAFRPA]2.0.CO;2
https://doi.org/10.1890/06-0912.1
https://doi.org/10.3201/eid2301.161452
https://doi.org/10.1890/10-0968.1
https://doi.org/10.1890/10-0968.1
https://doi.org/10.1007/s00442-017-4004-3
https://doi.org/10.1007/s10344-015-0933-5
https://doi.org/10.1016/j.biocon.2017.11.020
https://doi.org/10.1016/j.biocon.2012.07.018
https://doi.org/10.1002/fee.1448
https://doi.org/10.1111/ecog.03556
https://doi.org/10.1016/j.beproc.2015.08.003
https://doi.org/10.1016/j.beproc.2015.08.003
https://doi.org/10.1111/j.1365-294X.1997.tb00141.x
https://doi.org/10.1111/j.1365-294X.1997.tb00141.x
https://doi.org/10.1016/j.biocon.2016.12.012
https://doi.org/10.1111/mam.12045
https://doi.org/10.1111/mam.12045
https://doi.org/10.1007/s10980-012-9728-1
https://doi.org/10.1111/2041-210X.12761
http://refhub.elsevier.com/S0006-3207(18)31214-X/rf0370
http://refhub.elsevier.com/S0006-3207(18)31214-X/rf0370
http://refhub.elsevier.com/S0006-3207(18)31214-X/rf0370
http://refhub.elsevier.com/S0006-3207(18)31214-X/rf0370
https://doi.org/10.1080/00063659909477239
https://doi.org/10.1080/00063659909477239
https://doi.org/10.1890/06-1870.1
https://doi.org/10.1016/j.biocon.2010.12.003
https://doi.org/10.1016/j.biocon.2010.12.003

	Validating the performance of occupancy models for estimating habitat use and predicting the distribution of highly-mobile species: A case study using the American black bear
	Introduction
	Methods
	Study area
	Field sampling and genetic analysis
	Modeling habitat use
	Validating the habitat use model

	Results
	Field sampling and genetic analysis
	Modeling habitat use
	Validating the habitat use model

	Discussion
	Benefits of occupancy modeling
	Validating the habitat use model
	Modeling habitat use
	Conclusions

	Acknowledgements
	References




