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Abstract

Context. Despite the diversity of available home range estimators, no single method performs equally well in all
circumstances. It is therefore important to understand how different estimators perform for data collected under diverse
conditions. Kernel density estimation is a popular approach for home range estimation. While many studies have evaluated
different kernel bandwidth selectors, few studies have compared different formulations of the bandwidth matrix using
wildlife telemetry data. Additionally, few studies have compared the performance of kernel bandwidth selectors using VHF
radio-telemetry data from small-bodied taxa.

Aims. In this study, we used eight different combinations of bandwidth selectors and matrices to evaluate their ability to
meet several criteria that could be potentially used to select a home range estimator.

Methods. We used handheld VHF telemetry data from two species of snake displaying non-migratory and migratory
movement patterns. We used subsampling to estimate each estimator’s sensitivity to sampling duration and fix rate and
compared home range size, the number of disjunct volume contours and the proportion of telemetry fixes not included in
those contours among estimators.

Key Results. We found marked differences among bandwidth selectors with regards to our criteria but comparatively little
difference among bandwidth matrices for a given bandwidth selector. Least-squares cross-validation bandwidths exhibited
near-universal convergence failure whereas likelihood cross-validation bandwidths showed high sensitivity to sampling
duration and fix rate. The reference, plug-in and smoothed cross-validation bandwidths were more robust to variation in
sampling intensity, with the former consistently producing the largest estimates of home range size.

Conclusions. Our study illustrates the performance of multiple kernel bandwidth estimators for estimating home ranges
with datasets typical of many small-bodied taxa. The reference and plug-in bandwidths with an unconstrained bandwidth
matrix generally had the best performance. However, our study concurs with earlier studies indicating that no single home
range estimator performs equally well in all circumstances.

Implications. Although we did not find strong differences between bandwidth matrices, we encourage the use of
unconstrained matrices because of their greater flexibility in smoothing data not parallel to the coordinate axes. We also
encourage researchers to select an estimator suited to their study objectives and the life history of their study organism.

Additional keywords: bandwidth matrix, Crotalus oreganus, Drymarchon couperi, eastern indigo snake, home range,
kernel bandwidth, utilisation distribution, western rattlesnake.
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Introduction describe individual variation in space use (Borger et al. 2006a),

Estimations of animal home ranges provide essential information individual responses to landscape and climatic factors (Kie et al.
for many aspects of ecology and conservation. They are used to 2002; Morellet et al. 2013), resource availability and selection
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(Johnson 1980; Marzluff et al. 2004) and inter- and intra-specific
interactions (Robert ef al. 2012; Benson and Patterson 2013).
The number of techniques available for estimating animal home
ranges has increased greatly over the years (Borger et al. 2008;
Kie et al. 2010). Despite this diversity, no single technique is
without drawbacks, leading Fieberg and Borger (2012) to suggest
that there is no single best method for estimating animal home
ranges. Instead, they propose that the choice of a technique should
be driven mostly by the research question and by the method’s
appropriateness for addressing that question. Different estimators
may vary in their robustness to sampling design (Girard et al.
2002; Borger et al. 2006b) and the spatial arrangement of the
underlying data points (Blundell ez a/. 2001; Hemson ez al. 2005;
Gitzen et al. 2006; Downs et al. 2012). As a result, different
estimators may vary in their adequacy to address specific study
questions, depending on the underlying characteristics of the
data. Although stating well formulated research questions and
developing a suitable sampling design are of primary importance
in ensuring accurate home range estimates (Otis and White 1999;
Borger et al. 2006b; Fieberg and Borger 2012), understanding
how home range estimators perform under diverse situations and
inresponse to multiple criteria can help researchers select the most
appropriate estimator for their research question.

Kernel density estimators (Silverman 1986; Worton 1989;
Wand and Jones 1995) are currently among the most popular
techniques for quantifying animal space use (Laver and Kelly
2008; Kie et al. 2010). The size of the kernel is controlled by the
bandwidth or smoothing parameter, which in turn influences the
size and shape of the resulting utilisation distribution and volume
contours (e.g. 95% volume contour; Worton 1995; Seaman and
Powell 1996). Multiple bandwidth selectors are available, many
of which have been evaluated in the context of home range
estimation (Seaman and Powell 1996; Gitzen and Millspaugh
2003; Horne and Garton 2006; Gitzen et al. 2006; Lichti and
Swihart 2011). However, very few studies have examined the
influence of the bandwidth matrix. For bivariate data, such as
telemetry data, the bandwidth matrix isa2 x 2 matrix (Wand and
Jones 1993, 1995). This matrix can include a single parameter
along the diagonal, which imposes an equal degree of smoothing
in all directions (H1, Wand and Jones 1993) or two parameters
along the diagonal to allow for different degrees of smoothing
along the coordinate axes (H2). An unconstrained matrix (H3)
features three parameters that allow smoothing in any orientation.
It is possible to obtain different degrees of smoothing using a
single-parameter value by standardising the data (e.g. scaling or
sphering, Fukunaga 1972), estimating a single bandwidth value,
and then back-transforming this value to produce different
matrix values. This facilitates asymmetrical smoothing (e.g.
C2 and C3, Wand and Jones 1993). However, such approaches
do not estimate a true unconstrained matrix and are generally
inadvisable (Silverman 1986; Wand and Jones 1993). Recent
statistical advances have allowed researchers to directly estimate
the multiple parameters of the diagonal and unconstrained
bandwidth matrices (Wand and Jones 1993; Duong and
Hazelton 2003, 2005a, 2005b). These studies indicate that
unconstrained matrices often outperform diagonal or single-
parameter matrices (both with and without pre-estimation
transformation), particularly if the distribution of the data is not
parallel to the coordinate axes. Many animal species exhibit linear
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movement patterns, including migratory species or those
constrained to linear habitat features such as rivers or forest
edges (Blundell et al. 2001; Gardiner et al. 2013). In such
situations, an unconstrained bandwidth matrix may provide a
more accurate estimate of space use. However, most of wildlife
space use studies do not report using different smoothing
parameters for different axes (Laver and Kelly 2008). Gitzen
and Millspaugh (2003) found that diagonal least-squares cross-
validation bandwidth matrices — estimated using pre-estimation
data transformations — did not strongly outperform single-
parameter bandwidth matrices. They also did not estimate an
unconstrained bandwidth matrix and used simulated data. The
unconstrained bandwidth matrix for different bandwidth selectors
with actual wildlife field data remains to be tested.

Most wildlife home range studies comparing different
bandwidth selectors, as well as other home range estimators,
have used simulated data (Seaman and Powell 1996; Gitzen
and Millspaugh 2003; Home and Garton 2006; Gitzen et al.
2006; Lichti and Swihart 2011). While simulated data provide
many advantages, they may fail to capture the spatial patterns and
distributions of real animal movement data (Hemson et al. 2005;
Downs et al. 2012). In particular, many small-bodied taxa exhibit
repeated use of multiple refugia, resulting in highly clustered
or duplicate fixes (Beck and Jennings 2003; Row and Blouin-
Demers 2006), features not often explicitly evaluated in
simulation studies. Additionally, relatively few studies have
evaluated home range estimators using data from smaller
bodied taxa, particularly non-mammalian taxa (Wauters et al.
2007; Ward et al. 2013). Many studies of small-bodied taxa (e.g.
small mammals, herpetofauna) rely on handheld very high
frequency (VHF) telemetry to collect space use data.
Logistical constraints often restrict the number of animals and/
or fixes that can be obtained with handheld VHF telemetry,
resulting in relatively small numbers of fixes per individual (e.
g. <100 fixes per individual). Finally, animal telemetry data are
often autocorrelated (Swihart and Slade 19854, 1985h; McNay
et al. 1994), thereby violating an assumption of kernel density
estimation (Silverman 1986; Wand and Jones 1995). While the
relevance of autocorrelation to kernel home range estimation
is debated among wildlife biologists (Swihart and Slade 1985q;
De Solla et al. 1999; Otis and White 1999; Fieberg 2007),
evaluating home range estimators with real animal movement
data may provide a better understanding of estimator performance
in the presence of biologically induced autocorrelation (Cushman
et al. 2005). As such, studies are increasingly needed to evaluate
the performance of different bandwidth selectors in estimating
utilisation distributions and home range sizes with data collected
under the aforementioned circumstances.

In this paper, we compared multiple bandwidth selectors
and bandwidth matrices to estimate kernel home ranges using
very high frequency (VHF) telemetry data from two species that
exhibit repeated use of multiple refugia. For consistency with the
term’s general usage in the wildlife literature, we considered the
home range to be the two-dimensional space contained within
some volume contour (e.g. 95%) of the kernel density surface (Kie
etal. 2010). We evaluated five criteria that researchers might use
to select a home range estimator depending on their research
questions: (1) sensitivity to fix rate; (2) sensitivity to sampling
duration; (3) volume contour (i.e. home range) size; (4) ability of
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the home range to produce a single contiguous volume contour
(sensu Blundell et al. 2001); and (5) ability to contain all telemetry
fixes within the aforementioned volume contour(s). We considered
that an ideal home range estimator should be relatively robust to
variations in sampling intensity, including both the fix rate and
duration of sampling. Home range size could be used as a criterion,
depending on the importance of including areas of unobserved use
within the home range. Larger (i.e. over-smoothed) home ranges
may account for location uncertainty or incomplete sampling,
whereas smaller (i.e. under-smoothed) home ranges emphasise
regions of confirmed use. Use of our final two criteria might follow
similar guidelines. We evaluated these criteria at multiple volume
contours that are commonly used to delineate home ranges. We
predicted that unconstrained bandwidth matrices would produce
smaller home ranges (indicating a tighter ‘fit” around the data) and
fewer disjunct volume contours containing a higher proportion of
telemetry fixes than single-parameter bandwidth matrices. Tomore
fully evaluate the utility of different bandwidth matrices, we used
data from a non-migratory and migratory species and predicted
that the differences between single-parameter and unconstrained
matrices would be greater for the migratory species. Finally, we use
Mantel correlograms to examine the degree of autocorrelation
within our data.

Materials and methods
Data collection

Our primary dataset included VHF telemetry data collected from
eastern indigo snakes (Drymarchon couperi) in peninsular
Florida. Within our study area, indigo snakes are surface
active year-round, have relatively large home range sizes
(>700 ha, Breininger et al. 2011) and are capable of moving
>l km per day (J. Bauder, unpubl. data). Most individuals
included in this study had substantial overlap between
seasonal home ranges and did not seasonally migrate among
different portions of their annual home range. We used data
collected from two separate studies. The first study occurred on
the southern 40 km of the Lake Wales Ridge in Highlands County
(27°17'N, 81°21'W) from 2011-2013. The study area and
sampling methodology were described in Bauder and Barnhart
(2014). The second study occurred primarily at three locations in

Table 1.
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central peninsular Florida, including Brevard (28°38'N,
80°42'W), Indian River (27°50’N, 80°35'W) and Polk counties
(27°37'N, 81°19’W), Florida. Data were collected from 1998—
2003 as described in Breininger e al. (2011). We hereafter refer
to these two datasets as Highlands and Brevard.

We estimated annual and seasonal home ranges for our indigo
snake data. We recognised two 6 month seasons (winter and
summer) based on seasonal variation in movement patterns
(J. Bauder, unpubl. data) and indigo snake reproductive biology
(Stevenson et al. 2009; Hyslop et al. 2014). Seasonal home ranges
were estimated for individuals monitored for complete seasons
with at least five and three fixes per month for Highlands and
Brevard, respectively (Table 1). We estimated annual home ranges
using 12 month blocks of data consisting of two consecutive and
complete (6 month) seasons, with at least four fixes and one fix
per month for Highlands and Brevard, respectively (Table 1). To
increase our sample size, we also estimated 11 month annual home
ranges for the Highlands data using data from two consecutive 5 or
6 month seasons. Lastly, for one individual from Highlands and
four individuals from Brevard, we had data for two full years and
thus estimated two separate annual home ranges and four separate
seasonal ranges.

To evaluate bandwidth selector and matrix performance
for data from a migratory species, we used VHF telemetry
data from western rattlesnakes (Crotalus oreganus) in south-
east Idaho (43°40' N, 112°46’ W). Our study populations
overwintered in communal hibernacula and undertook linear
migrations to summer foraging and breeding habitats during a
5—6 month activity season (Jenkins 2007). The study area and data
collection methods are described in Jenkins (2007). Rattlesnakes
were monitored throughout their activity season after spring
emergence, but equipment failures or lost telemetry signals
meant that not all individuals were monitored for their entire
outbound or inbound migration. Total sampling duration also
varied due to differing dates of spring emergence, which varied as
much as 4 weeks in a single population. We therefore truncated
each individual’s data so that individuals with a complete
outbound migration had data from their first capture at their
hibernaculum through 30 July, and individuals with a
complete inbound migration had data from 15 July until their
return to the hibernaculum. In this way, all individuals included

Sampling intensities and autocorrelation results for the very high frequency (VHF) telemetry datasets used in this paper

Duration of autocorrelation refers to interval between fixes (days) over which fixes are autocorrelated. Means and standard errors (s.e.) for rattlesnake
number of fixes per month represent number of fixes per half-month blocks (see text for details)

Number of fixes

Total number Duration of

per month of fixes autocorrelation
(days)

N Mean (s.e.) Range Mean (s.e.) Range Mean Range

Annual Indigo snake - Highlands gh 10.61 (0.33) 4-18 122 (6.37) 89-148 5.6 3-11
Indigo snake - Brevard 33 3.25(0.07) 1-7 39 (1.50) 23-57 13.78 10-31

Seasonal Indigo snake - Highlands 21 10.21 (0.27) 4-18 61.29 (2.08) 45-84 8.1 4-18
Indigo snake - Brevard 35 4.05 (0.07) 3-9 24.31 (0.66) 20-34 12.9¢ 10-24

Rattlesnake 13 9.81 (0.39) 4-14 39.23 (2.10) 23-49 6.9 4-12

AFour individuals were monitored for 12 months and four for 11 months.

BEach individual’s annual data were split into their two respective seasons fora total of 66 Mantel correlograms. 43 seasons were not autocorrelated at the minimum

lag distance of 7 days.

€16 seasons were not autocorrelated at the minimum lag distance of 7 days.
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in our analyses were monitored for approximately four 2 week
blocks (4860 days), had at least four fixes per block and
included a full outbound or inbound migration (Table 1).
Three individuals had data for a complete activity season so
we randomly assigned each individual as outbound or inbound
and truncated their data as above.

Bandwidth estimation

We compared five kernel bandwidth selectors that have
either received widespread use in the wildlife literature or have
recently emerged as alternatives to previously used selectors:
(1) the reference or normal bandwidth; (2) least-squares cross-
validation; (3) likelihood cross-validation; (4) plug-in; and (5)
smoothed cross-validation. The reference (REF) and least-squares
cross-validation (LSCV) methods have been used extensively in
wildlife home range estimation (Laver and Kelly 2008) and many
studies have evaluated their performance using simulated and field
data (Seaman and Powell 1996; Gitzen and Millspaugh 2003;
Hemson et al. 2005; Gitzen et al. 2006; Lichti and Swihart 2011).
The remaining three selectors have received comparatively less use
in the wildlife literature. Horne and Garton (2006) found likelihood
cross-validation (LCV) to outperform LSCV, particularly at small
sample sizes (< ~50 fixes), but no studies have yet evaluated LCV
against other selectors or with field data. Plug-in bandwidths (PI)
have received increasing attention in recent years both for their
theoretical properties (Wand and Jones 1995; Duong and Hazelton
2003) and frequent outperformance of REF and LSCV in studies
using simulated telemetry data (Gitzen et al. 2006; Lichti and
Swihart 2011). An increasing number of wildlife telemetry studies
use PI selectors (Kertson and Marzluff 2011; Ward et al. 2013),
though they do not appear to have attained widespread use (Laver
and Kelly 2008). Smoothed cross-validation (SCV; Hall et al.
1992) has perhaps received the least use in wildlife home range
estimation to date (Coates et al. 2013). This method combines
features of both plug-in and cross-validation selectors. It uses
a pilot bandwidth to estimate the integrated squared bias
component of mean integrated squared error rather than its
asymptotic approximation and pre-smooth’s pairwise differences
of observations before cross-validation. These features provide
SCV with a lower degree of variability and greater stability than
other cross-validation selectors (Wand and Jones 1995; Duong and
Hazelton 2005a).

We used the ks package (version 1.9.2, Duong 2007, 2014) in
R (version 3.0.2; R Core Development Team 2013) to estimate
unconstrained bandwidth matrices of the form H3 (sensu Wand
and Jones 1993) for REF, LSCV, PI and SCV, using the default
settings on their respective functions. The ks package directly
estimates each parameter within the bandwidth matrix (Duong
2007). We did not consider single-parameter bandwidth matrices
(H1) for PI or SCV because ks currently does not provide those
estimates. For comparison with earlier studies, we estimated a
single-parameter bandwidth matrix for REF following Worton
(1989) and LSCV using the package adehabitatHR (version
0.4.11; Calenge 2006). We considered LSCV to have failed if
the numerical optimisation function did not minimise the error
function within the optimisation interval (0.1 *REF—4*REF). The
LCV is currently only estimated as a single-parameter bandwidth
matrix. We therefore used the pre-sphere functions from ks to
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standardise our data to have unit variance, then applied the LCV
function (J. Horne, pers. comm.) to estimate a single parameter
and back-transformed these values to obtain a ‘full’ bandwidth
matrix (C2 and C3 sensu Wand and Jones 1993). However, our full
bandwidth matrix for LCV is not a true unconstrained bandwidth
matrix even though it allows the kernel to rotate on the coordinate
plane. Despite poor statistical performance of bandwidth matrices
estimated using these pre-estimation transformations (Wand and
Jones 1993), we included it because we were more interested
in how well each home range estimator met our criteria rather
than how well we estimated the ‘correct’ utilisation distribution.
Although diagonally constrained bandwidth matrices have
received limited attention in wildlife home range estimation
(Gitzen and Millspaugh 2003; Laver and Kelly 2008), we did
not include them in our analyses because we felt that the coordinate
axes rarely, if ever, would correspond to biologically meaningful
orientations. We therefore included a total of eight bandwidth
selector—matrix combinations, hereafter referred to as estimators.

Subsampling routine

We used a bootstrap procedure to evaluate the sensitivity of each
estimator to fix rate and sampling duration. Because each dataset
varied in its sampling design, we analysed each one separately.
We randomly selected 3—11 and 3—12 consecutive months from
the 11 and 12 month annual Highlands data respectively, and
then randomly selected 1, 2, 3, 4 or all fixes per month. Our design
was identical for the seasonal data except that we randomly
selected 3—6 consecutive months. For the rattlesnake data, we
first randomly selected 1-4 2 week blocks and then randomly
selected 1,2, 3,4 orall fixes per block. We did not have a sufficient
number of fixes per month to examine fix rate in the Brevard data,
so we randomly subsampled consecutive months as described
above and used all fixes. We excluded combinations of sampling
duration and fix rate with <5 fixes for the annual and rattlesnake
data and <3 fixes for the seasonal data. We used 100 bootstrapped
replicates per individual sampled with replacement and computed
fixed kernel home range estimates at the 80%, 90%, 95% and 99%
volume contours for each estimator. We selected these contours
because they are the most commonly used to delineate home
ranges. Replicates for bandwidth values that could not be
estimated were excluded. For each replicate we calculated the
relative bias in home range size as the size of the home range
derived from the reduced duration and/or fix rate (hereafter
referred to as the reduced distribution) divided by the size of
the home range using all fixes from the entire duration (hereafter
referred to as the full distribution). Our measure of bias, therefore,
is a measure of the consistency of the estimator. Under this
formulation, a value of one reflects no bias relative to the full
home range. We used the Volume of Intersection index (VI;
Seidel 1992; Millspaugh et al. 2004; Fieberg and Kochanny
2005) to compare the reduced and full utilisation distributions.
We pooled data from across all replicates and all individuals
within each treatment level and then calculated the mean and
95% quantiles of these pooled data.

Statistical analysis

To determine how home range size varied among estimators, we
used linear mixed-effects models in the nlme package (version
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3.1-111; Pinheiro et al. 2013). We combined indigo snake data
from both sites, but performed separate analyses for annual
and seasonal data and conducted separate analyses for each
volume contour. We used log-transformed home range size as
the dependent variable and estimator, sex and a sex-by-season
interaction (indigo snake seasonal data only) as fixed effects.
Although sampling duration was relatively constant across
individuals within each analysis, we included an estimator-by-
number-of-fixes interaction to control for variation in fix rate. We
centred the number of fixes by dividing each value from the mean,
so the estimate of the regression intercept could be interpreted as
the predicted log home range size for the reference levels at the
mean number of fixes. We evaluated the significance of our fixed
effects using backwards stepwise selection with likelihood ratio
tests. We included individual as arandom effect for the annual and
rattlesnake analyses and individual-season as a random effect in
the seasonal analysis. We examined our data for heterogeneity of
variances and included a varldent variance structure with regards
to estimator and a varPower or varExp variance structure with
regards to number of fixes where appropriate (Zuur ez al. 2009).
We removed the LCV seasonal home range sizes from one
outlying individual in the seasonal home range analysis to
allow for model convergence. We report the median and range
of number of disjunct volume contours formed with each
estimator, and the median proportion of points outside of these
contours(s) for each estimator, volume contour and dataset.

Autocorrelation analysis

We calculated Mantel correlograms using the package vegan
(version 2.2—-0; Oksanen ef al. 2014) to determine the durations
over which our telemetry fixes were autocorrelated (Cushman
et al. 2005). We calculated a correlogram for each individual’s
season within the Highlands and Brevard seasonal data and the
rattlesnake data. To minimise non-stationarity, we split the
Highlands and Brevard annual data for each individual into their
two respective seasons and then calculated a correolgram for each
season. For each individual’s season, we created two distance
matrices: one representing Euclidean distance between all pairs of
fixes and the second representing the ‘distance’ in time (days)
between all pairs of fixes. We used lag distances of 1 day (starting
with a 2 day distance bin) for the Highlands and rattlesnake data
and 7 days (starting with a 7 day distance bin) for the Brevard data,
which approximated the finest temporal sampling resolution of
each dataset. We used 999 permutations to assess significance with
the default adjustment for multiple comparisons and identified
the last significant (0.=0.05) lag distance before the first non-
significant distance as the duration of autocorrelation. We report
the mean and range of these durations across individual seasons for
each dataset.

Results
LSCV convergence

We observed failed LSCV convergence for the majority of
individuals, although this rate varied by dataset and bandwidth
matrix. For the Highland data, LSCV failed for all individuals
with each bandwidth matrix for both annual and seasonal home
ranges. Least-squares cross-validation performed better with the
Brevard data. The single-parameter bandwidth matrix failed for
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72% and 60% of annual and seasonal home ranges respectively,
but failed in all annual and seasonal home ranges for the
unconstrained bandwidth matrix. Least-squares cross-validation
failed for all individuals in the rattlesnake data as well. Because of
these high failure rates, we did not include LSCV in subsequent
analyses.

Fix rate and sampling duration

Results were consistent across indigo snake datasets and volume
contours, so for brevity we limit our discussion to results from the
Highlands annual (12 month) home ranges and the 95% volume
contour (see Figs S1-S10 for 12 month Highlands annual results
at the 80% volume contour and 11 month Highlands annual,
Highlands seasonal, Brevard annual and Brevard seasonal at the
95% volume contours).

Home range size and VI were more sensitive to fix rate than
sampling duration, although the magnitude of sensitivity to both
fix rate and sampling duration varied substantially among
estimators. Reducing fix rate generally led to greater increases
in relative bias and decreases in precision than reducing sampling
duration (Fig. 1). For example, the mean relative bias across
estimators for the 12 months sampling duration increased from
one for the baseline representing all fixes to 1.58 for a fix rate of
one per month, whereas the mean relative bias for all fixes
decreased from one for the baseline representing 12 months
sampling duration to only 0.82 for a sampling duration of
3 months. Similarly, the precision decreased (i.e. range among
replicates increased) from 0.45 to 4.97 as the fix rate decreased
to one per month for the 12 month sampling duration, whereas
the precision decreased from 0.19 to 1.86 as the sampling
duration shortened to 3 months for the estimates based on all
fixes. These trends were apparent for all estimators, but they were
most pronounced for LCV estimators. Plug-in, REF and SCV
estimators showed less sensitivity to both fix rate and sampling
duration, with the REF estimator being the least sensitive.
Overall, these trends were consistent for VI, as VI decreased
more rapidly with decreasing fix rate than with decreasing
sampling duration (Fig. 2). However, while relative bias and
precision were similar for PI, REF and SCV estimators across fix
rates and sampling durations, REF showed the least sensitivity
and was the only estimator to have mean VI>0.90 at any sampling
intensity (Fig. S4).

Forany given sampling intensity, home range size and VI were
more sensitive to bandwidth selector than matrix type. Relative
bias and VI were very consistent between the single-parameter
and full LCV bandwidth matrix but showed more variation with
REF (Figs 1, 2). However, the difference in relative bias between
the single-parameter and unconstrained bandwidth matrix for
REF was 0.04 for 9 months with all fixes and 12 months with four
fixes, and the difference in VIwas 0.02 for 9 months with all fixes
and 0.01 for 12 months with four fixes.

Results were consistent across volume contours for the
rattlesnake dataset, so for brevity we limit our discussion to
results from the 95% volume contour (see Figs S11, S12 for
80% volume contour results).

Similar to indigo snakes, decreasing fix rate at the longer
sampling duration (2 months) resulted in positive relative bias
in home range size, whereas at the shorter sampling durations
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Fig. 1. Relative bias (mean and 95th quantile) of eastern indigo snake annual (Highlands 12 month) home range size (95% volume
contour) by bandwidth at 3, 6, 9 and 12 month sampling durations with 1, 2, 3, 4 or all fixes per month. A value of one indicates no
bias and the dark line indicates one, while the grey lines indicate 0.90 and 1.10. Estimator codes denote the bandwidth selector
(REF =reference, LCV =likelihood cross-validation, PI=plug-in, SCV =smoothed cross-validation) and matrix type (s=single-

parameter, uc =unconstrained, f= full).

(0.5—1.5 months) the relative bias was generally negative (Fig. 3).
Likewise, reducing fix rate generally led to greater relative
bias and reduced precision compared with reducing sampling
duration, although the results were less clear than with the indigo
snake data, and the trends were again most pronounced for LCV
estimators (Fig. 3). As with the vast majority of indigo snake data,
no estimator had mean VI >0.90, although REF always had the
highest VI (Fig. 4). Lastly, as with the indigo snake data, for most
sampling intensities, home range size and VI were more sensitive
to bandwidth selector than matrix type (Figs 3, 4).

Home range size

For indigo snakes, home range size differed by estimator, number
of fixes and sex for both annual and seasonal home ranges
(Table 2). These patterns were consistent across volume
contours (see Table S1 and Fig. S13 for 80% volume contour
results), so we discuss results from the 95% volume contours
for brevity. Neither season nor its interactive effect with sex
was significant (P >0.1448). Annual and seasonal home range
estimates were 4.3 times larger for males than females. The
reference bandwidth produced the largest estimates while LCV

produced the smallest (Fig. 5). The effect of number of fixes on
home range size varied among estimators and between annual
and seasonal home ranges. The effect was more pronounced
among bandwidth selectors than matrix types with a 1.0—1.7 fold
difference in annual home range size and 1.0-2.0 fold difference
in seasonal home range size across estimators over the range of
fixes we obtained (Fig. 5). With increasing number of fixes, home
range size consistently increased for REF and decreased for LCV,
whereas trends differed between annual and seasonal home range
size for PI and SCV. Plug-in and SCV showed the least sensitivity
to fix rate for annual and seasonal home range size, respectively.
Unconstrained matrices produced smaller home range sizes than
single-parameter matrices for REF (Fig. 6) while there was virtually
no difference in home range size between the single-parameter and
full matrices for LCV.

Rattlesnake home range size also differed significantly by
estimator (P<0.0001) but the effect of sex was marginal
(P=0.0756) and the conclusions equivocal, so we excluded sex
from further analyses. Results were again consistent across volume
contours, so we only discuss results from the 95% volume contours
(see Table S2 and Fig. S14 for 80% volume contour results). As
with the indigo snake home ranges, REF generally produced the
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Fig. 2. Volume of intersection (mean and 95th quantile) of eastern indigo snake annual (Highlands 12 month) home ranges (95%
volume contour) by bandwidth at 3, 6, 9 and 12 month sampling durations with 1, 2, 3, 4 or all fixes per month. A value of one indicates
identical utilisation distributions and the dark line indicates one, while the grey line indicates 0.90. Estimator codes denote the
bandwidth selector (REF =reference, LCV =likelihood cross-validation, PI=plug-in, SCV = smoothed cross-validation) and matrix

type (s = single-parameter, uc =unconstrained, f=full).

largest home range estimates (Fig. 6). Most estimators were
relatively insensitive to sampling intensity, except for the single-
parameter REF and both LCV estimators, which varied 4.2—
12.2 fold across our range of observed sampling intensities
(Fig. 7; Table 3). The effect of sampling intensity was also
more pronounced between single-parameter and unconstrained
or full matrix types for rattlesnake home ranges than for indigo
snake home ranges (Fig. 7). In addition, in contrast to the indigo
snakes, with increasing number of fixes home range size generally
decreased or stayed roughly the same.

Number of disjunct volume contours

For indigo snakes, trends in the mean number of disjunct volume
contours for annual and seasonal home ranges were similar, so
we only discuss results from the annual data (see Fig. S15 for
seasonal home range results). The mean number of disjunct
volume contours generally decreased with increasing contour
size, although the effect was most pronounced for LCV (Fig. 8).
Only the single-parameter REF (at the 99% and 90% volume
contours for the Brevard annual and the 99% volume contour for
the Brevard seasonal data) produced a single contiguous volume
contour for every individual. The largest differences in the

number of disjunct volume contours were among bandwidth
selectors and between datasets, with relatively little difference
among matrix types. The Highlands data generally produced
more disjunct volume contours than the Brevard data for all
estimators except REF. Within the Highlands data, LCV
produced substantially more disjunct volume contours than all
other bandwidth matrices at all volume contour sizes. The REF
estimators produced the fewest disjunct volume contours across
all datasets at all volume contour sizes, and thus were the least
sensitive estimators based on this criterion; PI and SCV were
intermediate in this regard.

The mean number of disjunct volume contours produced
for rattlesnake home ranges also decreased with increasing
volume contour size, and was similarly more pronounced for
LCV than other estimators (Fig. 9). The mean number of disjunct
volume contours also varied by estimator and REF always
produced the fewest disjunct volume contours. As with indigo
snakes, only the single-parameter REF at the 99% volume
contour produced a single contiguous volume contours for
every individual. Likelihood cross-validation always produced
the greatest number of disjunct volume contours, while PI and
SCV were intermediate in this regard.
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Fig. 3. Relative bias (mean and 95th quantile) of western rattlesnake seasonal (2 month) home range size (95% volume contour)
by estimator at 0.5, 1.0, 1.5 and 2.0 month sampling durations sampling durations with 1, 2, 3, 4 or all fixes per block. A value of one
indicates no bias and the dark line indicates one, while the grey lines indicate 0.90 and 1.10. Estimator codes denote the bandwidth
selector (REF =reference, LCV =likelihood cross-validation, PI=plug-in, SCV =smoothed cross-validation) and matrix type
(s=single-parameter, uc=unconstrained, f=full). Mean bias for all LCV estimators was >7 for 1.5 and 2.0 month sampling
durations with 1 fix per month. Points without error bars have 95th quantiles that exceeded the scale of the y-axis.

Proportion of fixes not included within
the volume contour(s)

The 99% volume contour included all telemetry fixes across all
estimators and datasets except the full LCV for the rattlesnake
data. At the 95% volume contour, only the single-parameter and
unconstrained REF, the unconstrained SCV for the indigo snake
Highlands annual data and the full LCV for the rattlesnake data
did not include all fixes; all telemetry fixes were included in
the 95% volume contour for all other estimators and datasets.
For the former cases, the percentage of points outside the 95%
volume contours ranged from 0—2% for the single-parameter and
unconstrained REF, 0—-1% for the unconstrained SCV and 0-28%
for the full LCV. Within the indigo snake data, the 90% volume
contour only included all telemetry fixes for the single-parameter
LCV and unconstrained PI for the Brevard seasonal data. Within
the rattlesnake data, the 90% volume contour only included all
telemetry fixes for the single-parameter LCV and unconstrained
Pland SCV. The highest percentage of points not included in the
volume contours for any individual across all datasets did not
exceed 4% and 16% for the 90% and 80% volume contours for the

indigo snake data respectively, or 28% for the 90% and 80%
volume contours for the rattlesnake data (Table S3).

Autocorrelation analysis

Telemetry fixes in the Highlands data were autocorrelated up to
amean of ~7 days apart, which corresponds to approximately four
fixes per month (Table 1). In contrast, 43 of the 66 (65%) 6 month
seasons comprising the 33 Brevard annual home ranges were
notautocorrelated at the 7 day lag distance. Similarly, 16 ofthe 35
(46%) Brevard seasonal home ranges were not autocorrelated
at the 7 day lag distance. Among seasons showing significant
autocorrelation within the Brevard datasets, mean duration to
autocorrelation was ~13 days (Table 1). Telemetry fixes from the
rattlesnake data showed an intermediate degree of autocorrelation
(Table 1).

Discussion

Although other studies have evaluated the performance of
different kernel bandwidths, several aspects of our study allow
it to make a unique contribution to estimating wildlife home
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Fig. 4. Volume of intersection (mean and 95th quantile) of western rattlesnake seasonal (2 month) home ranges (95%
volume contour) by estimator at 0.5, 1.0, 1.5 and 2.0 month sampling durations sampling durations with 1, 2, 3, 4 or all fixes
per block. A value of one indicates identical utilisation distributions and the dark line indicates one, while the grey line indicates 0.90.
Estimator codes denote the bandwidth selector (REF =reference, LCV =likelihood cross-validation, PI=plug-in, SCV =smoothed
cross-validation) and matrix type (s = single-parameter, uc =unconstrained, f= full).

Table2. Beta estimates, standard errors (s.e.) and P values for fixed effects in the linear mixed-effects models for eastern
indigo snake annual and seasonal home range size at the 95% volume contour
Estimator codes denote the bandwidth selector (REF=reference, LCV =likelihood cross-validation, PI=plug-in,
SCV =smoothed cross-validation) and matrix type (s=single-parameter, uc =unconstrained, f=full). The reference levels
were the single-parameter REF and females and the response variable (home range size) was log-transformed

Annual home range Seasonal home range

Beta s.e. P value Beta s.e. P value
(Intercept) 4.1644 0.1580 0.0000 4.1708 0.1492 0.0000
REF-uc -0.1330 0.0359 0.0003 -0.2253 0.0434 0.0000
LCV-s -0.5288 0.0672 0.0000 -0.6734 0.0437 0.0000
LCV-f -0.5171 0.0648 0.0000 -0.6563 0.0437 0.0000
DPI-uc -0.3747 0.0309 0.0000 —0.4924 0.0434 0.0000
SCV-uc —0.2429 0.0316 0.0000 -0.3373 0.0434 0.0000
Number of fixes 0.0010 0.0034 0.7752 0.0071 0.0057 0.2154
Sex (males) 1.4585 0.2341 0.0000 1.2585 0.2080 0.0000
REF-uc X fixes 0.0001 0.0008 0.8926 0.0005 0.0024 0.8369
LCV-s x fixes -0.0057 0.0015 0.0002 -0.0137 0.0024 0.0000
LCV-f x fixes —0.0055 0.0015 0.0003 -0.0134 0.0024 0.0000
DPI-uc x fixes -0.0011 0.0007 0.1160 -0.0027 0.0024 0.2715

SCV-uc x fixes —0.0021 0.0007 0.0043 —0.0046 0.0024 0.0552
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codes denote the bandwidth selector (REF =reference, LCV =likelihood
cross-validation, PI=plug-in, SCV=smoothed cross-validation) and matrix
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ranges. First, our study was the first, to our knowledge, to compare
unconstrained bandwidth matrices against different forms of
constrained bandwidth matrices. We not only compared different
bandwidth matrices but did so with data from a migratory and
non-migratory species, therefore evaluating scenarios where the
advantages of using an unconstrained bandwidth matrix may vary.
However, we acknowledge that the low fix rates present in our
rattlesnake data limited our ability to make comparisons between
these two movement patterns. Second, while other studies have
evaluated REF, LSCV and, to a lesser extent, PI bandwidths, our
study also included LCV and SCV, which have received
comparatively less attention in studies evaluating home range
estimators (Horne and Garton 2006). Finally, our study
used field data collected with handheld VHF telemetry over
different sampling durations in two species that regularly exhibit
repeated use of multiple refugia. Although use of field data itself
is not unique in studies comparing different home range estimators
(Hemson et al. 2005; Borger et al. 2006b; Wauters et al. 2007,
Pellerin et al. 2008), previous studies primarily compared REF and
LSCYV and predominately used higher fix rates made possible with
GPS telemetry. Additionally, these studies primarily used data
from large mammals, which may limit the applicability of the
results to small-bodied taxa (Wauters et al. 2007). While higher
fix rates allow for greater flexibility in evaluating different sampling
designs, the sample sizes and intensities used in our study are typical
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of many studies employing handheld VHF telemetry. It is therefore
important to understand how different bandwidth selectors and
bandwidth matrices perform in studies with limited numbers of
telemetry fixes and/or sampling duration. This helps to inform the
choice of ahome range estimator that will best address aresearcher’s
objectives.

Our rates of failure for LSCV were much higher than
previously reported. Gitzen et al. (2006) reported LSCV
failures of 13% for simulations representing broad home
ranges with a single patch of highly concentrated use. Hemson
et al. (2005) reported LSCV failures of 61% with subsampled
GPS telemetry datasets with over 100 fixes. Counter-intuitively,
both of these studies found that failure rates increased with
increasing sample size. Other studies have reported even lower
LSCYV failure rates using field (Wauters et a/. 2007) and simulated
data (Gitzen and Millspaugh 2003). The higher failure rates in
our study were likely due in large part to multiple sets of identical
fixes in each individual. Such movement patterns may be
common across multiple taxa, particularly herpetofauna (Beck
and Jennings 2003; Row and Blouin-Demers 2006). Simulated
data may fail to adequately represent such movement patterns,
thereby highlighting the importance of using field data to evaluate
home range estimators. Removing duplicate fixes may alleviate
this problem (Wauters et al. 2007; Hyslop et al. 2014), although
doing so removes relevant biological information about the
intensity of space use. Adding a small amount of random
variation to identical coordinates may help reduce LSCV failure
rates, but this will not eliminate the clustered nature of the fixes.
Ensuring that LSCV finds a solution does not eliminate the inherent
variability of this approach (Silverman 1986; Sain et al. 1994;
Wand and Jones 1995; Hemson et al. 2005). Many wildlife home
range studies do not discuss LSCV failure or the lack thereof.
Additionally, some studies reporting poor performances (relative
to other home range estimators) of kernel home range estimators
used LSCV (Row and Blouin-Demers 2006; Downs ef al. 2012).
The default options of many contemporary home range software
products vary from reporting the reference bandwidth to the smallest
bandwidth value in the score function. Uncritically accepting
LSCV bandwidth values could lead to erroneous conclusions,
making it important that researchers assess their data for the
presence of LSCV failure.

Our indigo snake data showed greater sensitivity to fix rate
than sampling duration and still produced relatively unbiased
home range estimates with data from as little as 75% of the total
sampling duration. We suspect that the greater sensitivity to fix
rate exists because, even though fixes were subsampled evenly
from throughout the home range, lower fix rates resulted in
smaller sample sizes than all fixes within a shorter sampling
duration. The full 12 month Highlands annual data had a mean
122 fixes per individual. Using 4 fixes per month resulted in 48
fixes, while using all fixes from 9 months resulted in a mean of 94
fixes. The greater bias for our subsampled rattlesnake home
ranges may be due in part to the smaller number of fixes per
individual. Seaman et al. (1999) suggested that >50 fixes were
preferable for kernel home range estimation, but recent studies
have suggested that <20 fixes can still produce accurate estimates
(Said et al. 2005; Borger et al. 2006b). Indigo snakes in our study
generally traversed most or all of their home range (annual or
seasonal) throughout our sampling duration, which means that
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Fig. 6. Kernel home range estimates (95% volume contour) for one female eastern indigo snake (Highlands 12 month annual home
range, a and b) and one male western rattlesnake (c and d) illustrating the differences in home range size between different estimators.
Telemetry fixes are denoted by the black points. Bandwidths illustrated are the reference (REF), likelihood cross-validation (LCV),
plug-in (PI) and smoothed cross-validation (SCV) while matrices include single-parameter (s) and unconstrained (uc).

subsampled data were more likely to approximate the full home
range. In contrast, parts of our rattlesnake home ranges were only
used during migration, making our home range estimates more
sensitive to both fix rate and sampling duration. This also explains
the negative relative bias at reduced sampling durations for
rattlesnakes compared with a generally positive relative bias at
reduced fix rates for indigo snakes. These results suggest that
home range estimates for species exhibiting strong seasonal
variation in space use may be more sensitive to sampling
regime than species exhibiting uniform space use throughout
the study period. Although the absolute value of the relative bias
was greater for subsampled rattlesnake home ranges, the trends in
bandwidth selector and matrix sensitivity to sampling intensity
were also consistent across volume contours. This consistency
across higher volume contours runs counter to previous studies
reporting more variable estimates at higher volume contours
(Seaman et al. 1999; Borger et al. 2006b).

Alternatively, the increase in relative bias with decreasing fix
rate may reflect the fact that our Highlands and rattlesnake data

were autocorrelated at durations of shorter length than our
subsampled fix rates. Some authors have reported that
increasing autocorrelation may lead to smaller kernel home
range estimates (Swihart and Slade 1985a; De Solla et al.
1999). However, the fact that eastern indigo snakes are capable
of moving >1km per day and that most of our fixes were
>2 days apart suggests that many of our fixes were biologically
independent (Lair 1987). Moreover, several studies have reported
that autocorrelated fixes result in more accurate home range
estimates than statistically independent fixes do (Reynolds and
Laundre 1990), or have minimal effects on home range estimates
(Andersen and Rongstad 1989; Gese et al. 1990; Blundell et al.
2001) orthe accuracy or precision of those estimates (Swihart and
Slade 1997; De Solla et al. 1999). Additionally, many researchers
suggest increasing the number of fixes within an a priori specified
and biologically meaningful time period in order to more
accurately characterise an individual’s pattern of space use
within that period (De Solla et al. 1999; Otis and White 1999;
Fieberg 2007). Finally, autocorrelation in telemetry data reflects
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Fig. 7. Predicted western rattlesnake home range sizes (ha at the 95%
volume contour) as a function of estimator and number of telemetry fixes.
Estimator codes denote the bandwidth selector (REF =reference,
LCV =likelihood cross-validation, PI=plug-in, SCV=smoothed cross-
validation) and matrix type (s = single-parameter, uc = unconstrained, f=full).

Table 3. Beta estimates, standard errors (s.e.) and P values for fixed
effects in the linear mixed-effects model for rattlesnake home range size
at the 95% volume contour
Estimator codes denote the bandwidth selector (REF =reference,
LCV =likelihood cross-validation, PI=plug-in, SCV=smoothed cross-
validation) and matrix type (s=single-parameter, uc=unconstrained,
f=full). The reference level was the single-parameter REF and the
response variable (home range size) was log-transformed

Beta s.e. P value
(Intercept) 4.7061 0.2861 0.0000
REF-uc -0.4735 0.1050 0.0000
LCV-s —1.3246 0.1873 0.0000
LCV-f —-1.1412 0.2331 0.0000
DPI-uc -1.0117 0.0973 0.0000
SCV-uc -0.8375 0.0967 0.0000
Number of fixes -0.0605 0.0394 0.1529
REF-uc x fixes 0.0457 0.0145 0.0026
LCV-s x fixes 0.0054 0.0258 0.8366
LCV-f x fixes -0.0357 0.0322 0.2722
DPI-uc x fixes 0.0356 0.0134 0.0105
SCV-uc x fixes 0.0375 0.0133 0.0068

biologically meaningful patterns of movement and space use
(Cushman et al. 2005). Thus, while the issue of autocorrelation on
home range estimation is equivocal, our principal objective was
to compare the performance of different home range estimators
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for any given fix rate, in which case any bias in home range
estimates should not substantially affect the comparison across
estimators.

We concur with previous researchers in stressing the
importance of defining a biologically relevant sampling period
and standardising the entire sampling regime within that
period (Otis and White 1999; Borger et al. 2006b; Fieberg
2007). We also recognise that there are other techniques
for modelling animal space use or movement pathways that
are well suited for autocorelated movement data, such as
Brownian bridge models (Horne et al. 2007), time-geographic
density estimation (Downs et al. 2011), elliptical time-density
models (Wall et al. 2014) and autocorrelated kernel density
estimators (Fleming et al. 2015). However, these techniques
have generally been implemented with high frequency GPS
telemetry data collected at fine (e.g. 15 min) intervals, which
are better able to represent the actual movement pathway than
handheld VHF telemetry. It is unclear how these techniques
perform with the lower resolution data typically collected with
handheld VHF telemetry data.

At high sampling intensities (i.e. >4 fixes per month or
>75% of total sampling duration), all bandwidth selectors and
matrices produced relatively unbiased and precise estimates of
indigo snake annual home range size. These trends were also
consistent for our other indigo snake datasets. However, precision
was generally lower in the seasonal and Brevard annual datasets;
we suspect this was due to lower absolute sample sizes because
data were collected during shorter sampling durations (seasonal
datasets) and at lower fix rates (Brevard datasets). Bandwidth
selectors and matrices only varied in their performance at lower
sampling intensities, particularly low fix rates. However, matrix
type was relatively robust to sampling intensity while most of the
variation in performance occurred among bandwidth selectors.
Likelihood cross-validation exhibited the greatest sensitivity to
sampling intensity, producing the most biased and least precise
estimates at reduced sampling intensities. Smoothed cross-
validation was second to LCV in increased bias and lost
precision, albeit only at moderate to low sampling intensities,
while REF and PI were most robust to low sampling intensities.
Although relative bias was greater for rattlesnake home ranges
at all sampling intensities, the relative performance of different
bandwidth selectors and matrices was similar to those of the
indigo snake data.

As expected, we found wide variation in the estimates of
home range size among estimators, but the differences among
different matrices for a given bandwidth selector were generally
smaller than the differences among bandwidth selectors. There
was virtually no difference among matrix types for LCV, with the
exception of the full LCV for rattlesnake data. However, this
was not a true unconstrained bandwidth matrix because we only
estimated a single parameter using pre-transformed data. Such
data transformations are generally ill-advised (Wand and Jones
1993) and did not appear to result in markedly different home
range estimates with LCV. The single-parameter matrix for
REF consistently produced larger home range estimates than
the unconstrained matrix and the proportional increase in
predicted home range size was greater for the rattlesnake data
(0.61) than for the indigo snake annual and seasonal data (0.14
and 0.25, respectively). We would expect a greater effect of
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Fig. 8. Mean number of volume contours (£1s.e.) for eastern indigo snake annual
home ranges at the 80%, 90%, 95% and 99% volume contours for each estimator. The
black horizontal line indicates one. Estimator codes denote the bandwidth selector
(REF =reference, LCV =likelihood cross-validation, PI=plug-in, SCV =smoothed
cross-validation) and matrix type (s = single-parameter, uc=unconstrained, f= full).

bandwidth matrix on home range size for data from animals with
predominately linear movements because of nonsymmetrical
orientation of the data distribution (Wand and Jones 1993;
Duong and Hazelton 2003, 2005a). However, we suggest
caution when comparing the home range size results between
our study species because of large differences in how the data
were collected and the low number of fixes in the rattlesnake data.
We encourage additional research to evaluate the performance
of unconstrained bandwidth matrices in estimating wildlife home
ranges from multiple data distributions.

In contrast to matrix type, we observed large differences
in home range size due to bandwidth selector. The reference
bandwidth produced the largest home range estimates in all the
datasets we examined, which made it the most likely to produce a
single contiguous volume contour. These results are consistent
with the well-known tendency for REF to over-smooth wildlife
telemetry data (Worton 1995; Seaman and Powell 1996; Seaman
etal. 1999;Kieetal. 2010), which may reflect the presence and/or
degree of autocorrelation in such data. In contrast, LCV exhibited
the lowest degree of smoothing among our bandwidth selectors
and produced the smallest home range estimates that invariably
consisted of multiple disjunct volume contours. The highly
clustered nature of our data may have caused LCV to under-
smooth our data relative to the other estimators we examined.

Home ranges comprised of multiple disjunct volume contours
may be undesirable for many species because areas of transit
among disjunct volume contours are areas of known use, yet
are excluded from the estimated home range. However, such
estimates may still be useful to wildlife researchers and managers,
depending on their specific objectives. For example, estimates
with disjunct volume contours may be appropriate for birds, for
which the travel routes among patches are arguably not areas
of use (e.g. Barg et al. 2005), or to emphasise discrete resource
patches (Gitzen et al. 2006). Plug-in and SCV produced
intermediate-sized home range estimates.

The presence of a significant estimator-by-number-of-fixes
interaction may suggest we had failed to collect sufficient data to
obtain stable home range estimates (Harris ez al. 1990). However,
our subsampling analyses showed that indigo snake annual
and seasonal home range size did stabilise as the number
of fixes increased. We suspect that the generally positive
relationship between number of fixes and indigo snake home
range size primarily reflected differences in sampling intensity
between the Brevard and Highlands datasets, with greater sample
sizes in the latter producing relatively larger home ranges despite
the greater degree of autocorrelation within the Highlands data.
High sampling intensities in the latter (89—148 fixes) may have
allowed us to obtain a more accurate representation of space
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Fig. 9. Mean number of volume contours (+1 s.e.) for western rattlesnake home ranges
at the 80%, 90%, 95% and 99% volume contours for each estimator. The black horizontal
line indicates one. Estimator codes denote the bandwidth selector (REF =reference,
LCV =likelihood cross-validation, PI=plug-in, SCV =smoothed cross-validation) and
matrix type (s=single-parameter, uc =unconstrained, f= full).
Table 4. Summary of the relative performance of each kernel home range estimator in response to our five criteria

Bandwidth codes are as follows: REF =reference; LCV =likelihood cross-validation; PI=plug-in; SCV =smoothed cross-validation. Home range size refers
to the size of the area within a pre-specified volume contour, number of volume contours refers to the number of contiguous areas produced by the volume
contour(s) and proportion of points excluded refers to the proportion of telemetry fixes within the aforementioned area(s)

Sensitivity to Sensitivity to Home range Number of volume contours Proportion of
fix rate sampling duration size points excluded
REF-single parameter Moderate Moderate Largest Mostly single; robust Very few excluded
REF-unconstrained Moderate-low Moderate Large Mostly single; robust Very few excluded
LCV-single parameter High High Smallest Highly variable, often many None
LCV-full High High Smallest Highly variable, often many None
Pl-unconstrained Moderate-low Moderate Moderate-small ~ Typically one-few depending on volume contour None
SCV-unconstrained Moderate Moderate Moderate Typically one-few depending on volume contour ~ Very few excluded

use, which may have included forays outside of intensively used
areas (Ward et al. 2013). In contrast, our subsampling and home
range size analyses both indicate that rattlesnake home range size
decreased with increasing number of fixes over a certain duration.
This may be the result of a failure to adequately represent
the migration pathway and/or the result of a greater number of
autocorrelated fixes. Many studies have shown that kernel home
range estimates generally decrease in size with increasing number

offixes within a stable area, and studies comparing hand-collected
VHF telemetry with GPS telemetry have found the former to
overestimate home range size (Seaman et al. 1999; Girard et al.
2002; Pellerin et al. 2008). Ward et al. (2013) found that a fix rate
once every 5 days overestimated ratsnake (Pantherophis spp.)
home ranges greater than 2-fold compared with daily fix rates. Our
results again emphasise the importance of standardising telemetry
sampling schedules for estimating wildlife home ranges.
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We reiterate the importance of carefully considering an
estimator’s suitability given the study objectives and life history
of the study organism. The recent proliferation of home
range estimators highlights the importance of interdisciplinary
approaches to wildlife management, to ensure that biologically
relevant objectives are defined and matched with the most
appropriate estimators. Our study can provide guidelines to help
researchers select a home range estimator that accomplishes
this goal. Each of the estimators we considered differed in their
response to our five criteria (Table 4). Despite its widespread use,
we found that LSCV was unsuitable for our data. Our results suggest
that the choice of bandwidth selector is more important than the
matrix type. However, we encourage the use of an unconstrained
matrix because of the greater flexibility it provides. With our
data, LCV generally had the poorest performance particularly
with respect to sampling intensity. Differences among the
remaining three estimators generally reflected their relative
degree of smoothing although SCV was slightly more sensitive
to sampling intensity than REF and PI. The reference bandwidth
was most likely to produce a single contiguous volume contour,
though this came at the cost of greater smoothing. The
unconstrained matrix greatly reduced the degree of smoothing,
relative to the single-parameter matrix. We therefore recommend
the unconstrained PI or REF for kernel home range estimation,
depending on the importance of excluding or including areas of
unobserved use within the home range. For example, REF may
be desirable when the home range is used to define resource
availability (e.g. Johnson’s (1980) level III selection) because it
may be more likely to include areas used by an individual but
undetected (e.g. because of low sampling frequency). Alternatively,
PI may be desirable when the researcher wishes to place emphasis
on areas of observed use. We encourage additional research on
the use of unconstrained bandwidth matrices on telemetry data
from wildlife taxa with other life histories and movement patterns
than those examined here, particularly with data collected using
GPS telemetry. Future research should also compare the effects of
bandwidth matrix type on the inner volume contours as these
are commonly used to delineate core areas (Powell 2000).

Acknowledgements

We thank the USA Fish and Wildlife Service, The Orianne Society, NASA
and The Bailey Wildlife Foundation for financial support, and the Archbold
Biological Station and NASA at Kennedy Space Center for logistical support.
Z. Forsburg, L. Paden and P. Barnhart assisted with data collection, and many
private landowners provided access to their property. We thank the many
scientists, students and volunteers who helped search for eastern indigo snakes.
J. Fieberg provided some of the R code used here and T. Duong provided
helpful discussions about bandwidth estimation. J. Horne provided the R code
for calculating LCV bandwidths. E. Plunkett provided assistance with the
subsampling routines. The USA Fish and Wildlife Service, Florida Fish and
Wildlife Conservation Commission and the Merritt Island National Wildlife
Refuge provided permits. The comments of J. Sanderlin, D. Lancaster, and two
anonymous reviewers greatly improved this manuscript.

References

Andersen, D. E., and Rongstad, O. J. (1989). Home-range estimates of red-
tailed hawks based on random and systematic relocations. The Journal of
Wildlife Management 53, 802—807. doi:10.2307/3809215

Barg, J. J., Jones, J., and Robertson, R. J. (2005). Describing breeding
territories of migratory passerines: suggestions for sampling, choice of

Wildlife Research 451

estimator, and delineation of core areas. Journal of Animal Ecology 74,
139-149. doi:10.1111/4.1365-2656.2004.00906.x

Bauder, J. M., and Barnhart, P. (2014). Factors affecting the accuracy and
precision of triangulated radio telemetry locations of eastern indigo
snakes (Drymarchon couperi). Herpetological Review 45, 590-597.

Beck, D. D., and Jennings, R. D. (2003). Habitat use by Gila monsters: the
importance of shelter. Herpetological Monograph 17, 111-129.
doi:10.1655/0733-1347(2003)017[0111:HUBGMT]2.0.CO;2

Benson, J. F., and Patterson, B. R. (2013). Inter-specific territoriality ina Canis
hybrid zone: spatial segregation between wolves, coyotes, and hybrids.
Oecologia 173, 1539-1550. doi:10.1007/s00442-013-2730-8

Blundell, G. M., Maier, J. A. K., and Debevec, E. M. (2001). Linear home
ranges: effects of smoothing, sample size, and autocorrelation on kernel
estimates. Ecological Monographs 71,469-489. doi:10.1890/0012-9615
(2001)071[0469:LHREOS]2.0.CO;2

Borger, L., Franconi, N., Ferretti, F., Meschi, F., De Michele, G., Gantz, A.,
and Coulson, T. (2006a). An integrated approach to identify
spatiotemporal and individual-level determinants of animal home range
size. American Naturalist 168, 471-485. doi:10.1086/507883

Borger, L., Franconi, N., De Michele, G., Gantz, A., Meschi, F., Manica, A.,
Lovari, S., and Coulson, T. (2006b). Effects of sampling regime on the
mean and variance of home range size estimates. Journal of Animal
Ecology 75, 1393-1405. doi:10.1111/5.1365-2656.2006.01164.x

Borger, L., Dalziel, B. D., and Fryxell, J. M. (2008). Are there general
mechanisms of animal home range behaviour? A review and prospects
for future research. Ecology Letters 11, 637-650. doi:10.1111/j.1461-
0248.2008.01182.x

Breininger, D. R., Bolt, M. R., Legare, M. L., Drese, J. H., and Stolen, E. D.
(2011). Factors influencing home-range sizes of eastern indigo snakes
in central Florida. Journal of Herpetology 45, 484-490. doi:10.1670/10-
176.1

Calenge, C. (2006). The package adehabitat for the R software: a tool for
the analysis of space and habitat use by animals. Ecological Modelling
197, 516-519. doi:10.1016/j.ecolmodel.2006.03.017

Coates, P. S., Casazza, M. L., Blomberg, E. J., Gardner, S. C., Espinosa, S. P.,
Yee, J. L., Wiechman, L., and Halstead, B. J. (2013). Evaluating greater
sage-grouse seasonal space use relative to leks: implications for surface
use designations in sagebrush ecosystems. The Journal of Wildlife
Management 77, 1598-1609. doi:10.1002/jwmg.618

Cushman, S. A., Chase, M., and Griffin, C. (2005). Elephants in space and
time. Oikos 109, 331-341. doi:10.1111/1.0030-1299.2005.13538.x

De Solla, S. R., Bonduriansky, R., and Brooks, R. J. (1999). Eliminating
autocorrelation reduces biological relevance of home range estimates.
Journal of Animal Ecology 68, 221-234. doi:10.1046/j.1365-2656.1999.
00279.x

Downs, J. A., Horner, M. W., and Tucker, A. D. (2011). Time-geographic
density estimation for home range analysis. Annals of GIS 17, 163—171.
doi:10.1080/19475683.2011.602023

Downs, J. A., Heller, J. H., Loraamm, R., Stein, D. O., McDaniel, C., and
Onorato, D. (2012). Accuracy of home range estimators for homogeneous
and inhomogeneous point patterns. Ecological Modelling 225, 66-73.
doi:10.1016/j.ecolmodel.2011.11.010

Duong, T. (2007). ks: kernel density estimation and kernel discriminant
analysis for multivariate data in R. Journal of Statistical Sofiware 21,
1-16.

Duong, T. (2014). R Package ‘ks’: Kernel smoothing. R package version
1.9.2. Available at http://CRAN.R-project.org/package=ks [Verified 15
July 2014]

Duong, T., and Hazelton, M. L. (2003). Plug-in bandwidth matrices for
bivariate kernel density estimation. Journal of Nonparametric Statistics
15, 17-30. doi:10.1080/10485250306039

Duong, T., and Hazelton, M. L. (20054). Cross-validation bandwidth
matrices for multivariate kernel density estimation. Scandinavian
Journal of Statistics 32, 485-506. doi:10.1111/j.1467-9469.2005.
00445.x


dx.doi.org/10.2307/3809215
dx.doi.org/10.1111/j.1365-2656.2004.00906.x
dx.doi.org/10.1655/0733-1347(2003)017[0111:HUBGMT]2.0.CO;2
dx.doi.org/10.1655/0733-1347(2003)017[0111:HUBGMT]2.0.CO;2
dx.doi.org/10.1007/s00442-013-2730-8
dx.doi.org/10.1890/0012-9615(2001)071[0469:LHREOS]2.0.CO;2
dx.doi.org/10.1890/0012-9615(2001)071[0469:LHREOS]2.0.CO;2
dx.doi.org/10.1890/0012-9615(2001)071[0469:LHREOS]2.0.CO;2
dx.doi.org/10.1086/507883
dx.doi.org/10.1111/j.1365-2656.2006.01164.x
dx.doi.org/10.1111/j.1461-0248.2008.01182.x
dx.doi.org/10.1111/j.1461-0248.2008.01182.x
dx.doi.org/10.1670/10-176.1
dx.doi.org/10.1670/10-176.1
dx.doi.org/10.1016/j.ecolmodel.2006.03.017
dx.doi.org/10.1002/jwmg.618
dx.doi.org/10.1111/j.0030-1299.2005.13538.x
dx.doi.org/10.1046/j.1365-2656.1999.00279.x
dx.doi.org/10.1046/j.1365-2656.1999.00279.x
dx.doi.org/10.1080/19475683.2011.602023
dx.doi.org/10.1016/j.ecolmodel.2011.11.010
http://CRAN.R-project.org/package=ks
dx.doi.org/10.1080/10485250306039
dx.doi.org/10.1111/j.1467-9469.2005.00445.�x
dx.doi.org/10.1111/j.1467-9469.2005.00445.�x

452 Wildlife Research

Duong, T.,and Hazelton, M. L. (2005b). Convergence rates for unconstrained
bandwidth matrix selectors in multivariate kernel density estimation.
Journal of Multivariate Analysis 93, 417-433. doi:10.1016/j.jmva.
2004.04.004

Fieberg, J. (2007). Kernel density estimators of home range: smoothing and
the autocorrelation red herring. Ecology 88, 1059-1066. doi:10.1890/06-
0930

Fieberg, J., and Borger, L. (2012). Could you please phrase “home range” as a
question? Journal of Mammalogy 93, 890-902. doi:10.1644/11-MAMM-
S-172.1

Fieberg, J., and Kochanny, C. O. (2005). Quantifying home-range overlap:
the importance of the utilization distribution. The Journal of Wildlife
Management 69, 1346-1359. doi:10.2193/0022-541X(2005)69[1346:
QHOTIO]2.0.CO;2

Fleming, C. H., Fagan, W. F., Mueller, T., Olson, K. A., Leimgruber, P., and
Calabrese, J. M. (2015). Rigorous home range estimation with movement
data: a new autocorrelated kernel density estimator. Ecology 96,
1182-1188. doi:10.1890/14-2010.1

Fukunaga, K. (1972). ‘Introduction to Statistical Pattern Recognition.’
(Academic Press: New York.)

Gardiner, L. E., Somers, C. M., Martino, J. A., Parker, D. L., and Poulin, R. G.
(2013). Balancing the dumbbell: summer habitats need protection in
addition to winter dens for northern snake communities. The Journal
of Wildlife Management 77, 975-982. doi:10.1002/jwmg.555

Gese, E. M., Andersen, D. E., and Rongstad, O. J. (1990). Determining home-
range size of resident coyotes from point and sequential locations. 7he
Journal of Wildlife Management 54, 501-506. doi:10.2307/3809665

Girard, I., Ouellet, J.-P., Courtois, R., Dussault, C., and Breton, L. (2002).
Effects of sampling effort based on GPS telemetry on home-range size
estimations. The Journal of Wildlife Management 66, 1290-1300.
doi:10.2307/3802962

Gitzen, R. A.,and Millspaugh, J.J. (2003). Comparison of least-squares cross-
validation bandwidth options for kernel home-range estimation. Wildlife
Society Bulletin 31, 823-831.

Gitzen, R. A., Millspaugh, J. J., and Kernohan, B. J. (2006). Bandwidth
selection for fixed-kernel analysis of animal utilization distributions. The
Journal of Wildlife Management 70, 1334—1344. doi:10.2193/0022-541X
(2006)70[1334:BSFFA0]2.0.CO;2

Hall, P., Marron, J. S., and Park, B. U. (1992). Smoothed cross-validation.
Probability Theory and Related Fields 92, 1-20. doi:10.1007/BF0120
5233

Harris, S., Cresswell, W. J., Forde, P. G., Trewhella, W. J., Woollard, T., and
Wray, S. (1990). Home range analysis using radio-tracking data —a
review of problems and techniques particularly as applied to the study
of mammals. Mammal Review 20, 97-123. doi:10.1111/j.1365-2907.
1990.tb00106.x

Hemson, G., Johnson, P., South, A., Kenward, R., Ripley, R., and
MacDonald, D. (2005). Are kernels the mustard? Data from global
positioning system (GPS) collars suggests problems for kernel
homerange analyses with least-squares cross-validation. Journal of
Animal Ecology 74, 455-463. doi:10.1111/j.1365-2656.2005.00944.x

Horne, J. S., and Garton, E. O. (2006). Likelihood cross-validation versus
least squares cross-validation for choosing the smoothing parameter
in kernel home-range analysis. The Journal of Wildlife Management
70, 641-648. doi:10.2193/0022-541X(2006)70[641:LCVLSC]2.0.CO;2

Horne, J. S., Garton, E. O., Krone, S. M., and Lewis, J. S. (2007). Analyzing
animal movements using Brownian bridges. Ecology 88, 2354-2363.
doi:10.1890/06-0957.1

Hyslop, N. L., Meyers, J. M., Cooper, R. J., and Stevenson, D. J. (2014).
Effects of body size and sex of Drymarchon couperi (Eastern Indigo
Snake) on habitat use, movements, and home range size in Georgia. The
Journal of Wildlife Management 78, 101-111. doi:10.1002/jwmg.645

Jenkins, C. L. (2007). Ecology and conservation of rattlesnakes in sagebrush
steppe ecosystems: landscape disturbance, small mammal communities,

J. M. Bauder et al.

and Great Basin rattlesnake reproduction. Ph.D. Thesis, Idaho State
University, Pocatello, ID.

Johnson, D. H. (1980). The comparison of usage and availability
measurements for evaluating resource preference. Ecology 61, 65-71.
doi:10.2307/1937156

Kertson, B. N., and Marzluff, J. M. (2011). Improving studies of resource
selection by understanding resource use. Environmental Conservation
38, 18-27. doi:10.1017/S0376892910000706

Kie, J. G., Bowyer, R. T., Nicholson, M. C., Boroski, B. B., and Loft, E. R.
(2002). Landscape heterogeniety at differing scales: effects on spatial
distribution of mule deer. Ecology 83, 530-544. doi:10.1890/0012-9658
(2002)083[0530:LHADSE]2.0.CO;2

Kie, J. G., Matthiopoulos, J., Fieberg, J., Powell, R. A., Cagnacci, F., Mitchell,
M. S., Gaillard, J.-L., and Moorcroft, P. R. (2010). The home-range
concept: are traditional estimators still relevant with modern telemetry
technology? Philosophical Transactions of the Royal Society of London.
Series B, Biological Sciences 365, 2221-2231. doi:10.1098/rstb.2010.
0093

Lair, H. (1987). Estimating the location of the focal center in red squirrel
home ranges. Ecology 68, 1092—1101. doi:10.2307/1938381

Laver, P. N., and Kelly, M. J. (2008). A critical review of home range
studies. The Journal of Wildlife Management 72,290-298. doi: 10.2193/
2005-589

Lichti, N. I, and Swihart, R. K. (2011). Estimating utilization distributions
with kernel versus local convex hull methods. The Journal of Wildlife
Management 75, 413-422. doi:10.1002/jwmg.48

Marzluff, J. M., Millspaugh, J. J., Hurvitz, P., and Handcock, M. S. (2004).
Relating resources to a probabilistic measure of space use: forest
fragments and Stellar’s jays. Ecology 85, 1411-1427. doi:10.1890/03-
0114

McNay, R. S., Morgan, J. A., and Bunnell, F. L. (1994). Characterizing
independence of observations in movements of Columbian black-tailed
deer. The Journal of Wildlife Management 58, 422—429. doi:10.2307/
3809312

Millspaugh, J.J., Gitzen, R. A., Kernohan, B. J., Larson, M. A.,and Clay, C. L.
(2004). Comparability of three analytical techniques to assess joint space
use. Wildlife Society Bulletin 32, 148—157.doi:10.2193/0091-7648(2004)
32[148:COTATT]2.0.CO;2

Morellet, N., Bonenfant, C., Borger, L., Ossi, F., Cagnacci, F., Heurich, M.,
Kjellander, P., Linnell, J. D. C., Nicoloso, S., Sustr, P., Urbano, F., and
Mysterud, A. (2013). Seasonality, weather and climate affect home
range size in roe deer across a wide latitudinal gradient within Europe.
Journal of Animal Ecology 82, 1326-1339. doi:10.1111/1365-2656.
12105

Oksanen, J., Guillaume, F., Kindt, R., Legendre, P., Minchin, P. R.,
O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., and
Wagner, H. (2014). R Package ‘vegan’: Community Ecology Package. R
Package version 2.2-0. Available at http://CRAN.R-project.org/package=
vegan [Verified 01 March 2015]

Otis, D. L., and White, G. C. (1999). Autocorrelation of location estimates
and the analysis of radiotracking data. The Journal of Wildlife
Management 63, 1039—1044. doi:10.2307/3802819

Pellerin, M., Said, S., and Gaillard, J.-M. (2008). Roe deer Capreolus
capreolus home-range sizes estimated from VHF and GPS data.
Wildlife Biology 14, 101-110. doi:10.2981/0909-6396(2008)14[101:
RDCCHS]2.0.CO;2

Pinheiro, J., Bates, D., DebRoy, S., and Sarkar, D. (2013). R Package ‘nlme’:
Linear and Nonlinear Mixed Effects Models. R Package version 3.1-111.
Available at http://CRAN.R-project.org/package=nlme [Verified 6 June
2013]

Powell, R. A. (2000). Animal home ranges and territories and home range
estimators. In ‘Research Techniques in Animal Ecology Controversies
and Consequences.” (Eds L. Boitani and T. K. Fuller). pp. 65-110.
(Columbia University Press: New York.)


dx.doi.org/10.1016/j.jmva.2004.04.004
dx.doi.org/10.1016/j.jmva.2004.04.004
dx.doi.org/10.1890/06-0930
dx.doi.org/10.1890/06-0930
dx.doi.org/10.1644/11-MAMM-S-172.1
dx.doi.org/10.1644/11-MAMM-S-172.1
dx.doi.org/10.2193/0022-541X(2005)69[1346:QHOTIO]2.0.CO;2
dx.doi.org/10.2193/0022-541X(2005)69[1346:QHOTIO]2.0.CO;2
dx.doi.org/10.2193/0022-541X(2005)69[1346:QHOTIO]2.0.CO;2
dx.doi.org/10.1890/14-2010.1
dx.doi.org/10.1002/jwmg.555
dx.doi.org/10.2307/3809665
dx.doi.org/10.2307/3802962
dx.doi.org/10.2193/0022-541X(2006)70[1334:BSFFAO]2.0.CO;2
dx.doi.org/10.2193/0022-541X(2006)70[1334:BSFFAO]2.0.CO;2
dx.doi.org/10.2193/0022-541X(2006)70[1334:BSFFAO]2.0.CO;2
dx.doi.org/10.1007/BF01205233
dx.doi.org/10.1007/BF01205233
dx.doi.org/10.1111/j.1365-2907.1990.tb00106.x
dx.doi.org/10.1111/j.1365-2907.1990.tb00106.x
dx.doi.org/10.1111/j.1365-2656.2005.00944.x
dx.doi.org/10.2193/0022-541X(2006)70[641:LCVLSC]2.0.CO;2
dx.doi.org/10.2193/0022-541X(2006)70[641:LCVLSC]2.0.CO;2
dx.doi.org/10.1890/06-0957.1
dx.doi.org/10.1002/jwmg.645
dx.doi.org/10.2307/1937156
dx.doi.org/10.1017/S0376892910000706
dx.doi.org/10.1890/0012-9658(2002)083[0530:LHADSE]2.0.CO;2
dx.doi.org/10.1890/0012-9658(2002)083[0530:LHADSE]2.0.CO;2
dx.doi.org/10.1890/0012-9658(2002)083[0530:LHADSE]2.0.CO;2
dx.doi.org/10.1098/rstb.2010.0093
dx.doi.org/10.1098/rstb.2010.0093
dx.doi.org/10.2307/1938381
dx.doi.org/10.2193/2005-589
dx.doi.org/10.2193/2005-589
dx.doi.org/10.1002/jwmg.48
dx.doi.org/10.1890/03-0114
dx.doi.org/10.1890/03-0114
dx.doi.org/10.2307/3809312
dx.doi.org/10.2307/3809312
dx.doi.org/10.2193/0091-7648(2004)32[148:COTATT]2.0.CO;2
dx.doi.org/10.2193/0091-7648(2004)32[148:COTATT]2.0.CO;2
dx.doi.org/10.2193/0091-7648(2004)32[148:COTATT]2.0.CO;2
dx.doi.org/10.1111/1365-2656.12105
dx.doi.org/10.1111/1365-2656.12105
http://CRAN.R-project.org/package=vegan
http://CRAN.R-project.org/package=vegan
dx.doi.org/10.2307/3802819
dx.doi.org/10.2981/0909-6396(2008)14[101:RDCCHS]2.0.CO;2
dx.doi.org/10.2981/0909-6396(2008)14[101:RDCCHS]2.0.CO;2
dx.doi.org/10.2981/0909-6396(2008)14[101:RDCCHS]2.0.CO;2
http://CRAN.R-project.org/package=nlme

Kernel bandwidth matrix in home range estimation

R Core Development Team (2013). R: A Language and Environment for
Statistical Computing. R Foundation for Statistical Computing, Vienna,
Austria. Available athttp://www.r-project.org/[Verified 21 January 2014]

Reynolds, T. D., and Laundre, J. W. (1990). Time intervals for estimating
pronghorn and coyote home ranges and daily movements. 7he Journal
of Wildlife Management 54, 316-322. doi:10.2307/3809049

Robert, K., Garant, D., and Pelletier, F. (2012). Keep in touch: does spatial
overlap correlate with contact rate frequency? The Journal of Wildlife
Management 76, 1670-1675. doi:10.1002/jwmg.435

Row, J. R., and Blouin-Demers, G. (2006). Kernels are not accurate
estimators of home-range size for herpetofauna. Copeia 2006,
797-802. doi:10.1643/0045-8511(2006)6[797:KANAEO]2.0.CO;2

Said, S., Gaillard, J.-M., Duncan, P., Guillon, N., Guillon, N., Servanty, S.,
Pellerin, M., Lefeuvre, K., Martin, C., and van Laere, G. (2005).
Ecological correlates of home-range size in spring—summer for female
roe deer (Capreolus capreolus) in a deciduous woodland. Journal of
Zoology 267, 301-308. doi:10.1017/S0952836905007454

Sain, S. R., Baggerly, K. A., and Scott, D. W. (1994). Cross-validation
of multivariate densities. Journal of the American Statistical Association
89, 807-817. doi:10.1080/01621459.1994.10476814

Seaman, D. E., and Powell, R. A. (1996). An evaluation of the accuracy of
kernel density estimators for home range analysis. Ecology 77,
2075-2085. doi:10.2307/2265701

Seaman, D. E., Millspaugh, J. J., Kernohan, B. J., Brundige, G. C., Raedeke,
K. J., and Gitzen, R. A. (1999). Effects of sample size on kernel home
range estimates. The Journal of Wildlife Management 63, 739-747.
doi:10.2307/3802664

Seidel, K. D. (1992). Statistical properties and applications of a new measure
of joint space use for wildlife. M.S. Thesis, University of Washington,
Seattle.

Silverman, B. W. (1986). ‘Density Estimation for Statistics and Data
Analysis.” (Chapman and Hall: London.)

Stevenson, D. J., Enge, K. M., Carlile, L. D., Dyer, K. J., Norton, T. M.,
Hyslop, N. L., and Kiltie, R. A. (2009). An eastern indigo snake
(Drymarchon couperi) mark-recapture study in southeastern Georgia.
Herpetological Conservation and Biology 4, 30-42.

Wildlife Research 453

Swihart, R. K., and Slade, N. A. (1985a). Influence of sampling interval
on estimates of home-range size. The Journal of Wildlife Management
49, 1019-1025. doi:10.2307/3801388

Swihart, R. K., and Slade, N. A. (1985b). Testing for independence of
observations in animal movements. Ecology 66, 1176-1184. doi:10.2307/
1939170

Swihart, R. K., and Slade, N. A. (1997). On testing for independence of
animal movements. Journal of Agricultural Biological & Environmental
Statistics 2, 48—63. doi:10.2307/1400640

Wall, J., Wittemyer, G., LeMay, V., Douglas-Hamilton, I., and Klinkenberg, B.
(2014). Elliptical time-density model to estimate wildlife utilization
distributions. Methods in Ecology and Evolution 5, 780-790. doi:10.1111/
2041-210X.12218

Wand, M. P., and Jones, M. C. (1993). Comparison of smoothing
parameterizations in bivariate kernel density estimation. Journal of
the American Statistical Association 88, 520-528. doi:10.1080/01621
459.1993.10476303

Wand, M. P., and Jones, M. C. (1995). ‘Kernel Smoothing.” (Chapman and
Hall: London.)

Ward, M. P., Sperry, J. H., and Weatherhead, P. J. (2013). Evaluation of
automated radio telemetry for quantifying movements and home ranges
of snakes. Journal of Herpetology 47, 337-345. doi:10.1670/12-018

Wauters, L. A., Preatoni, D. G., Molinari, A., and Tosi, G. (2007). Radio-
tracking squirrels: performance of home range density and linkage
estimators with small range and sample size. Ecological Modelling
202, 333-344. doi:10.1016/j.ecolmodel.2006.11.001

Worton, B. J. (1989). Kernel methods for estimating the utilization
distribution in home-range studies. Ecology 70, 164—168. doi:10.2307/
1938423

Worton, B. J. (1995). Using Monte Carlo simulation to evaluate kernel-
based home range estimators. The Journal of Wildlife Management 59,
794-800. doi:10.2307/3801959

Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., and Smith,
G. M. (2009). ‘Mixed Effects Models and Extensions in Ecology
with R.” (Springer: New York.)

www.publish.csiro.au/journals/wr


http://www.r-project.org/
dx.doi.org/10.2307/3809049
dx.doi.org/10.1002/jwmg.435
dx.doi.org/10.1643/0045-8511(2006)6[797:KANAEO]2.0.CO;2
dx.doi.org/10.1643/0045-8511(2006)6[797:KANAEO]2.0.CO;2
dx.doi.org/10.1017/S0952836905007454
dx.doi.org/10.1080/01621459.1994.10476814
dx.doi.org/10.2307/2265701
dx.doi.org/10.2307/3802664
dx.doi.org/10.2307/3801388
dx.doi.org/10.2307/1939170
dx.doi.org/10.2307/1939170
dx.doi.org/10.2307/1400640
dx.doi.org/10.1111/2041-210X.12218
dx.doi.org/10.1111/2041-210X.12218
dx.doi.org/10.1080/01621459.1993.10476303
dx.doi.org/10.1080/01621459.1993.10476303
dx.doi.org/10.1670/12-018
dx.doi.org/10.1016/j.ecolmodel.2006.11.001
dx.doi.org/10.2307/1938423
dx.doi.org/10.2307/1938423
dx.doi.org/10.2307/3801959

