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Abstract. First-order dynamic occupancy models (FODOMs) are a class of state-space
model in which the true state (occurrence) is observed imperfectly. An important assumption
of FODOMs is that site dynamics only depend on the current state and that variations in
dynamic processes are adequately captured with covariates or random effects. However, it is
often difficult to understand and/or measure the covariates that generate ecological data,
which are typically spatiotemporally correlated. Consequently, the non-independent error
structure of correlated data causes underestimation of parameter uncertainty and poor ecolog-
ical inference. Here, we extend the FODOM framework with a second-order Markov process
to accommodate site memory when covariates are not available. Our modeling framework can
be used to make reliable inference about site occupancy, colonization, extinction, turnover, and
detection probabilities. We present a series of simulations to illustrate the data requirements
and model performance. We then applied our modeling framework to 13 yr of data from an
amphibian community in southern Arizona, USA. In this analysis, we found residual temporal
autocorrelation of population processes for most species, even after accounting for long-term
drought dynamics. Our approach represents a valuable advance in obtaining inference on pop-
ulation dynamics, especially as they relate to metapopulations.

Key words: colonization; extinction; hidden Markov occupancy model; imperfect detection probability;
second-order Markov process; site history; site-occupancy model; species–environment relationship; temporal
autocorrelation; turnover.

INTRODUCTION

Determining species–environment relationships has
long been a central theme in ecology (Grinnell 1917, Elton
1927). The quantification of such species–environment

relationships represents the core of modern species distri-
bution modeling (e.g., Phillips et al. 2006) and predictive
spatial modeling (e.g., Guisan and Zimmermann 2000,
Anderson et al. 2002). One of the central tenets of this
research is the recognition that patterns of site occupancy
(quantified as the probability that a species occupies a site)
are driven by spatial and temporal variation in biotic and
abiotic factors. However, it can be difficult to understand
and measure all of the relevant covariates a priori, which
themselves are often spatiotemporally correlated (Ives
and Zhu 2006, Hoeting 2009). Consequently, the non-in-
dependent error structure of correlated ecological data
may lead to underestimating parameter uncertainty (Sch-
abenberger and Gotway 2005), excluding important
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covariates during model selection (Hoeting et al. 2006),
and generating inaccurate species occurrence maps (Lati-
mer et al. 2006). While ecologists have long recognized
these issues (Hoeting et al. 2006), models that accommo-
date autocorrelation are infrequently applied to the esti-
mation of population dynamics because it is often unclear
how to accommodate for structural dependencies (but see
Bled et al. 2011, Yackulic et al. 2012, Guélat and Kéry
2018).
To estimate population dynamics using site-occu-

pancy data, researchers routinely use first-order dynamic
occupancy models (hereafter FODOMs; MacKenzie
et al. 2002, 2003; Tyre et al. 2003). First-order dynamic
occupancy models are a class of state-space models in
which the true state (occurrence) is observed imperfectly.
In this instance, observation error is attributed to the
inability to detect a species that is present at a site (i.e., a
false negative). An important assumption of FODOMs
is that dynamic processes, such as colonization and
extinction, only depend on the current state of the site
and that any variations are captured by fixed or random
effects. In other words, these models assume a first-order
temporal dependence structure, even though ecological
data are often temporally correlated (Hoeting 2009). In
the absence of fixed or random effects, FODOMs can
produce biased parameter estimates, similar to the
effects of unaccounted for spatial autocorrelation
(Legendre 1993, Bled et al. 2011, Yackulic et al. 2012,
Guélat and Kéry 2018).
The effects of temporal autocorrelation have impor-

tant ecological implications. For example, temporal
autocorrelation in habitat quality can influence site colo-
nization probability (e.g., Bulluck et al. 2019, Che-Cas-
taldo et al. 2019). In this case, some sites may be more
likely to be occupied because of species’ site fidelity or
resource availability (e.g., Hoover 2003, Broderick et al.
2007); alternatively, some sites may not be colonized as
readily because resources are depleted, predators are
present, or habitat quality is poor (e.g., Leps et al. 2016).
In both cases, temporal autocorrelation of species’ site
occupancy can be attributed to covariates pertaining to
either spatial or temporal characteristics. However, pre-
dicting and quantifying which spatial or temporal char-
acteristics influence population dynamics is not always
possible.
Here, we extend FODOMs with a second-order Mar-

kov process to include site memory (i.e., site history)
when covariates are not available (Fig. 1A). The process
of site memory accommodates the phenomena of tem-
poral dependency (e.g., Sollmann et al. 2015, Fay et al.
2020) and site heterogeneity by incorporating informa-
tion on the state of site occupancy during previous sea-
sons as a covariate on dynamic parameters. We
investigate the performance of our modeling approach
through a series of simulations, and we demonstrate its
utility using a 13-yr data set of six amphibian species in
southern Arizona, USA. Our model provides a useful
framework for understanding site fidelity, habitat

preferences, and resource availability in ecological data
sets when covariates are not available.

METHODS

Memory model

We modified the FODOM to include a second-order
Markov process (i.e., the probability of occupancy in
season t depends on the occupancy at season t − 1 and
t − 2; Fig. 1A). Similar to other dynamic occupancy
models, the data consist of species detection or non-de-
tection at site i during survey j and season t.

For the first season, we define the occupancy of site i,
zi,1, as a Bernoulli trial

zi,1 ∼Bernoulli ψð Þ

where z = 1 if the site is occupied, and 0 otherwise. z is a
latent state variable and represents true site occurrence,
and ψ is defined as the probability of occupancy.
For the second season, we define that the occupancy

of site i, zi,2, depends on the occupancy of site i the previ-
ous season, t − 1, such that

zi,2 ∼Bernoulli μi,1
� �

μi,1 ¼ zi,1� 1� ɛi,1ð Þþ 1� zi,1ð Þ�γi,1

logit ɛi,1ð Þ¼ α0

logit γi,1
� �¼ β0

where ɛ is the extinction probability (i.e., the probabil-
ity that an occupied site at time t − 1 becomes unoc-
cupied at t), γ is the colonization probability (i.e., the
probability that an unoccupied site at time t − 1
becomes occupied at t), and α0 and β0 represent the
first-order effects of site occupancy (t − 1) on current
occupancy (t).
After the second season (i.e., t > 2), the occupancy of

site i depends on both the occupancy at site i during the
previous season, t − 1, and the season before that, t − 2,
such that

zi,t ∼Bernoulli μi,t�1

� �

μi,t�1 ¼ zi,t�1� 1� ɛi,t�1ð Þþ 1� zi,t�1ð Þ�γi,t�1

logit ɛi,t�1ð Þ¼ α0þα1� zi,t�2

logit γi,t�1

� �¼ β0þβ1� zi,t�2

Here, α1 and β1 represent the second-order effects of site
occupancy (t − 2) on current occupancy (t). Note that
other covariates can be added to ɛ or γ using the logit-
link function.
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Last, we consider components related to the sampling
process. Species observations at the ith site during the
jth survey and tth year, yi,j,t, are assumed to be Bernoulli
random variables dependent on true site occurrence, zi,t

yi,j,t ∼Bernoulli p� zi,tð Þ

where p is the probability of detecting a species given it
is present at a site (zi,t= 1). For an alternative explana-
tion of the model, see Appendix S1. Code to simulate
data can be found in the Dryad repository associated
with this paper. For an alternative parameterization
using a hidden Markov model, see Appendix S2. The
model parameterization presented in the main text is a
special case of this more general second-order hidden

Markov occupancy model, which can easily be extended
to an Nth-order Markov dependence.

Simulation studies

We developed a series of simulations to (1) examine
patterns of model accuracy, precision, and bias for a
range of parameter values, (2) provide general sampling
design guidelines when no information is known about
parameter values, and (3) compare model performance
when site memory and heterogeneity does and does not
occur. To do this, we simulated data across a range of
scenarios, study designs, and parameter values. We
assumed independence and population closure for
within-season sampling events (MacKenzie et al. 2002,

FIG. 1. (A) Summary of model structure and (B) the case study, where 44 sites were surveyed in Arizona, USA for (C) six
amphibian species. In panel A, we depict the differences between the FODOM (blue dashed arrows only) and the memory model
(black solid and blue dashed arrows). (D) We used these two models to estimate species colonization (top) and extinction (bottom).
The plot depicts mean (point) and 90% CI (line range) parameter estimates on the logit scale. Covariates in the model include water
body type (i.e., intermittent, permanent, semipermanent [semi]) and long-term drought dynamics (PDSI). (E) Last, we examined
how turnover probabilities differed between the two models (FODOM vs. memory model). Values above the one-to-one line
(dashed line) represent estimates that are higher for the FODOM than the memory model, whereas values below the one-to-one line
represent turnover probabilities that are higher for the memory model than the FODOM. Photos: USGS ARMI (https:// www.
usgs.armi.gov) or by the authors.
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2003, Tyre et al. 2003). Parameters were drawn indepen-
dently to guarantee ample coverage across parameter
space (Appendix S3). All data sets were simulated with
site memory unless otherwise mentioned. We analyzed
data using a Bayesian approach with Markov chain
Monte Carlo in R (R Core Team 2019) and JAGS
(Plummer 2003; Appendix S3).

Parameter accuracy, precision, and bias

We examined patterns of model accuracy, precision,
and bias for a range of parameter values. We generated
9,849 simulated data sets and analyzed them using the
memory model. Then, we grouped the simulated data
sets depending on their true parameter value (Appen-
dix S4). We used post hoc linear models to examine
patterns of parameter accuracy (i.e., how close are
model estimates to true values?), precision (i.e., how
large is the 95% credible interval?), and bias (i.e., what
are patterns of over- vs. underestimation?). We defined
accuracy as the log absolute error (Appendix S4), preci-
sion as the width of the 95% CI (Appendix S5), and
bias as the difference between the model estimate and
the true parameter value (Appendix S6). In each post
hoc linear model, we used either accuracy, precision, or
bias as the response variable, and log number of sites,
surveys, and seasons as covariates. For more details,
see Appendix S4, S5, and S6, code in Data S1: Mod-
elS1.R and the Dryad repository associated with this
paper.

Sampling design guidelines

To provide general sampling design guidelines when
no information is known about the parameter values,
we set out to determine the number of sites, surveys,
and seasons that need to be sampled to achieve an
acceptable threshold of absolute error. We used the same
simulated data sets and model runs from above, but we
did not group parameters by their true values. Again,
we fit post hoc linear models to examine patterns of
parameter accuracy, and we set an acceptable threshold
of absolute error equal to either 0.1 or 0.01. We gener-
ated different combinations of number of sites and sur-
veys sampled, and using these values, we solved for the
number of seasons to be sampled to achieve the set level
of acceptable error. Last, using these sampling designs,
we plugged them into the precision and bias post hoc
models to calculate predicted mean values for each met-
ric (Appendix S7).

Comparison between the memory model and FODOM

To compare the performance of the memory model
and FODOM, we ran the memory model and the
FODOM side by side under three simulation scenarios
(Data S1: ModelS1.R, S2: ModelS2.R). Under the first

scenario, we generated data without site memory and
without site heterogeneity (total number of simulations =
9,911). Under the second scenario, we generated data
with site memory and without site heterogeneity (total
number of simulations = 9,849), and under the third sce-
nario, we generated data with site memory and with site
heterogeneity (total number of simulations = 9,915). Site
heterogeneity was added as a site-level random-effect
term to site occupancy (ψ), extinction (ɛ), and coloniza-
tion (γ) probabilities using a logit-link function and a
Gaussian distribution with mean = 0 and standard devi-
ation = 1. With this specification, particular sites consis-
tently had higher occupancy, extinction, and
colonization probabilities than other sites.
To compare the performance of each model under

each scenario to truth, we calculated the root mean
squared error (RMSE) of turnover probabilities (Appen-
dix S8). When site memory was used to generate the
data (i.e., second and third scenarios), we also examined
if the true magnitude of site memory (i.e., absolute val-
ues of α1 and β1) influenced model accuracy (as defined
above) of turnover probabilities (Appendix S8).

Case study

To test the utility and performance of the memory
model, we applied it to a data set where 44 sites were sur-
veyed for six species up to three times annually every
year for 13 yr (2007–2019), except for one year (2018;
Appendix S9, Appendix S10: Table S2). The study area
was located on the Buenos Aires National Wildlife
Refuge and the adjoining State Trust land to the west in
Arizona, USA (Fig. 1B and C). Our goals were twofold.
First, we sought to evaluate evidence for including a
memory term in the statistical analysis, and second, we
aimed to determine how our inference would have dif-
fered between the memory model and FODOM. There-
fore, we describe a two-part analysis.
In the first part, we used indicator variable selection

to evaluate evidence for adding a second-order memory
term to species extinction and colonization probabilities
(Hobbs and Hooten 2015). Then, using the resulting
memory model from the first part, we compared param-
eter estimates between the memory model and the
FODOM. We allowed all parameters to be species spe-
cific. We included water body type and the Palmer
Drought Severity Index (PDSI) as covariates on colo-
nization and extinction probabilities, which we expected
to drive occupancy dynamics in this desert system. We
expected that a pond might be colonized in a year with
abundant precipitation (i.e., colonization event) and a
pond would not persist occupied in a year with poor
monsoon rains (i.e., extinction event). We also included
wind speed, temperature, and water presence/absence as
covariates on detection probability. We report posterior
means and the 90% CI. For more details, see Appendix
S9 and Data S3: ModelS3.R.
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RESULTS

Parameter accuracy, precision, and bias

In general, the memory model recovered fairly accu-
rate (absolute difference between model estimated mean
and true value = 0.27 � 0.001 [mean � SE] logit scale;
Appendix S10: Fig. S1) and precise (mean width of 95%
credible interval = 0.19 � 0.001 probability scale;
Appendix S10: Fig. S2) parameter estimates with low
bias (estimate� truth = −0.001 � 0.002 logit scale;
Appendix S10: Fig. S3). Our simulations show that the
ability of the memory model to recover parameters
(when site memory is present) is dependent on the true
parameter values and the amount of available data
(Appendix S10: Figs. S1–S3). Specific recommendations
on sampling design depend on true parameter values
(Appendix S10: Figs. S1–S3), but typically, model esti-
mates were more accurate and precise when more sites
and seasons were analyzed (Appendix S10: Figs. S1–S3).

Sampling design guidelines

Depending on the investigator’s acceptable level of
error for parameter estimates, we found that a variety of
sampling designs can be used (Table 1). With these sam-
pling designs, the average predicted precision across

parameters is between 0.27 and 0.60 on the probability
scale, and the average predicted bias is between −0.004
and 0.003 on the logit scale.

Comparison between the memory model and FODOM

The memory model on average predicted slightly
lower turnover probabilities than the FODOM under
each scenario (difference between memory model turn-
over probability and FODOM under first scenario =
−0.001 � 0.001 [mean � SE]; second scenario
−0.004 � 0.001; third scenario = −0.002 � 0.001). We
also found that the memory model predicted turnover
probabilities more closely to truth than the FODOM,
indicated by lower RMSE values (Fig. 2), except when
data were simulated without site memory and without site
heterogeneity (i.e., first scenario). However, even in this
case, the RMSE values from the memory model were
extremely low (i.e., < 0.005; Fig. 2), suggesting that the
model still performs well. When data were simulated with
site memory (i.e., second and third scenarios), parameter
accuracy increased as the magnitude of the memory
effects increased using the memory model, whereas
parameter accuracy tended to decrease or remain con-
stant as the magnitude of the memory effects increased
using the FODOM (Appendix S10: Figs. S4, S5,
Table S3).

TABLE 1. General sampling design guidelines to achieve an acceptable level of parameter error (i.e., absolute difference between
the model estimate and true parameter value).

Sites Surveys Seasons

Average predicted mean

Precision Bias

Acceptable error = 0.1
20 2 7 0.60 0.0013
50 2 6 0.51 −0.0003
100 2 6 0.43 −0.0010
20 4 7 0.54 −0.0006
50 4 6 0.45 −0.0022
100 4 5 0.39 −0.0037
20 6 6 0.52 −0.0023
50 6 6 0.41 −0.0033
100 6 5 0.35 −0.0048

Acceptable error = 0.01
20 2 12 0.53 0.0034
50 2 11 0.44 0.0021
100 2 11 0.36 0.0013
20 4 12 0.47 0.0015
50 4 11 0.37 0.0001
100 4 10 0.31 −0.0010
20 6 11 0.44 0.0000
50 6 11 0.34 −0.0010
100 6 10 0.27 −0.0021

Notes: Using these sampling designs, we calculated the average predicted mean precision and bias across dynamic parameters.
Average predicted mean precision is on the probability scale, and the average predicted mean bias is on the logit scale. See Appendix
S7 for details.
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Case study

Although most parameter estimates were similar
between the memory model and FODOM (Appendix
S10: Tables S4, S5), we detected an effect of site memory
for most species even after accounting for long-term

drought dynamics (Fig. 1D). Site occupancy two sea-
sons prior decreased the extinction probability of three
species (Anaxyrus cognatus, Gastrophryne olivacae, Incil-
ius alvarius) and tended to increase the extinction proba-
bility of one species (Scaphiopus couchii; Fig. 1D). In
contrast, site occupancy two seasons prior showed ten-
dencies of decreasing the colonization probability of A.
cognatus and increasing the colonization probability of
S. couchii (Fig. 1D). Last, the FODOM predicted lower
turnover probabilities by an average of 0.03 � 0.01
(probability scale; Fig. 1E) than the memory model.

DISCUSSION

We demonstrate the improved inference of dynamic
population processes, including colonization, extinction,
and turnover probabilities, when temporal dependencies
are accounted for using the memory model. The model
accommodates temporal autocorrelation generated by
site heterogeneity and only requires detection/non-detec-
tion data collected over multiple seasons across sites,
with repeated surveys within each season.
The accuracy, precision, and bias of dynamic parame-

ters estimated by the memory model depend on both true
parameter values and the amount of available data
(Appendix S10: Figs. S1, S2, S3). As with most other mul-
ti-parameter models, the model performed better with
more data. When few sites were sampled (n = 5), the mod-
el’s parameter accuracy (average difference of 0.72
between truth and model estimate on the logit scale;
Appendix S10: Fig. S1) and precision (95% CI was 0.58
on the probability scale; Appendix S10: Fig. S2) were
poor. In general, the recommended number of seasons to
sample will be greater either in the absence of covariates
that explain temporal dependencies or if dynamic pro-
cesses are second-order Markovian rather than first order.
However, keep in mind that sampling effort should be
allocated according to research objectives, where the sam-
pling design is dictated by parameters of interest.
In our analysis of an amphibian community in Ari-

zona, USA, we found that site memory influenced the
site colonization and extinction probabilities of most
species. In an effort to account for temporal dependen-
cies in the data, we included the Palmer Drought Sever-
ity Index (PDSI) as a covariate on dynamics processes.
However, we found residual temporal autocorrelation of
population processes for most species, even after
accounting for long-term drought dynamics. This sug-
gests that there are other biotic or abiotic mechanisms
not accounted for in the model that influence dynamic
processes and that covariates may not always adequately
capture temporal dependencies.
We also found that turnover probabilities across

amphibian species estimated by the FODOM were on
average lower than those estimated by the memory
model (Fig. 1D), suggesting that site occupancy is more
dynamic than previously predicted. In contrast, when
data were simulated, we found that the memory model

FIG. 2. Comparison of model accuracy with respect to
truth. We calculated the root mean squared error (RMSE; y-
axis) under scenarios where data were generated (A) without
memory and without site heterogeneity, (B) with memory and
without site heterogeneity, and (C) with memory and with site
heterogeneity. The black line (fitted post hoc linear model with
quadratic term) and points (RMSE estimates from simulations)
show the performance of the memory model, whereas the gray
line and points show the performance of the FODOM (see
methods in Appendix S8).
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estimated turnover probabilities lower than the
FODOM and that the memory model typically outper-
formed the FODOM, as demonstrated by lower RMSE
estimates (Fig. 2). In addition, when site memory and
heterogeneity were present in the simulated data (i.e.,
third scenario), the memory model was able to accom-
modate the extra source of heterogeneity via the memory
component (i.e., α1 and β1) more readily than the
FODOM. Collectively, these results indicate that the
memory model produces more reliable estimates of turn-
over probabilities than the FODOM, which could result
in either more static or dynamic conclusions of species
distributions than truth.
In practice, researchers should keep in mind several

constraints and practicalities before employing the mem-
ory model. First, researchers should consider their goals
and objectives, as well as considering if the memory
model would improve their ecological inference. In gen-
eral, our simulations suggest that the memory model
typically outperforms the FODOM. Second, researchers
should consider if covariates can adequately describe the
source of temporal dependencies in the data. In the case
where covariates are available, there may still be residual
autocorrelation, where the magnitude of the residual
autocorrelation may depend on the strength of the
covariates driving the temporal autocorrelation. Last,
along those same lines, users should consider the trade-
offs in spending time and money collecting extra data
(e.g., across sites and seasons) to fit the memory model
vs. spending time a priori determining biologically
meaningful covariates to measure and collect. For exam-
ple, the run times for the memory model were on average
three times greater than the FODOM (memory model =
49.29 � 1.16 minutes; FODOM = 16.14 � 0.34 min-
utes [mean � SE]). Future users of the memory model
should base modeling decisions on the ecology of their
system, results from simulation studies, and computa-
tional considerations.
We foresee the memory model being useful in a num-

ber of applications where inference is made difficult by
processes operating over time, similar to the applications
of memory in multistate mark–recapture models (e.g.,
Pradel 2005). For example, the memory model can be
used to estimate species arrival or extinction times (e.g.,
Williamson 2006), decision rules associated with species
site fidelity (e.g., Hoover 2003), habitat choice (e.g.,
Johnson and Gillingham 2008), resource availability
(e.g., Johnson et al. 2010), examining species–environ-
ment relationships (e.g., De’ath 2002), applications to
metapopulation turnover and lifetimes (e.g., Moilanen
2002), and identifying abiotic refugia (e.g., Keppel et al.
2015). Across all of these applications, species’ life his-
tory, behavior, the environment, or their interactions
influence population dynamics, making parameter esti-
mation and inference difficult. By accommodating tem-
poral dependencies and site heterogeneity, the memory
model makes it possible to more easily account for mem-
ory processes using detection/non-detection data when

covariates are not available. Under each of these pro-
posed applications, we also foresee the ability to more
accurately predict and forecast species distributions. In
this way, incorporating temporal autocorrelation in sta-
tistical models can more readily move us closer to accu-
rately estimating population dynamics.
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