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Abstract.   Emerging infectious diseases can cause host community disassembly, but the 
mechanisms driving the order of species declines and extirpations following a disease outbreak 
are unclear. We documented the community disassembly of a Neotropical tadpole community 
during a chytridiomycosis outbreak, triggered by the generalist fungal pathogen, Batra-
chochytrium dendrobatidis (Bd). Within the first 11 months of Bd arrival, tadpole density and 
occupancy rapidly declined. Species rarity, in terms of tadpole occupancy and adult relative 
abundance, did not predict the odds of tadpole occupancy declines. But species losses were 
taxonomically selective, with glassfrogs (Family: Centrolenidae) disappearing the fastest and 
tree frogs (Family: Hylidae) and dart- poison frogs (Family: Dendrobatidae) remaining the 
longest. We detected biotic homogenization of tadpole communities, with post- decline 
communities resembling one another more strongly than pre- decline communities. The entire 
tadpole community was extirpated within 22 months following Bd arrival, and we found 
limited signs of recovery within 10 years post- outbreak. Because of imperfect species detection 
inherent to sampling species- rich tropical communities and the difficulty of devising a single 
study design protocol to sample physically complex tropical habitats, we used simulations to 
provide recommendations for future surveys to adequately sample diverse Neotropical 
communities. Our unique data set on tadpole community composition before and after Bd 
arrival is a valuable baseline for assessing amphibian recovery. Our results are of direct 
relevance to conservation managers and community ecologists interested in understanding the 
timing, magnitude, and consequences of disease outbreaks as emerging infectious diseases 
spread globally.

Key words:   amphibians; Batrachochytrium dendrobatidis; disease; extinction; Neotropics; Panama; 
site-occupancy model.

INTRODUCTION

Emerging infectious diseases can cause community 
disassembly (Zavaleta et al. 2009, Fisher et al. 2012), 
defined as the predictable loss of species and population 
declines. During community disassembly, the first 
species extirpated are generally rare species: species with 
small geographic ranges, small population size, or a 
narrow habitat tolerance (Rabinowitz 1981, Larsen 
et al. 2005, Gehring et al. 2014, Rader et al. 2014). 
Subsequent losses tend to include common, generalist 
species that have declined since the initial disturbance 
(e.g., Wright et al. 2007, Larsen et al. 2008). The last 
remaining species reduce patterns of community 
turnover, increasing biotic homogenization (McKinney 
and Lockwood 1999).

In the case of tropical amphibian declines and extirpa-
tions caused by the fungal pathogen Batrachochytrium 

dendrobatidis (hereafter Bd), many amphibian commu-
nities experience rapid, widespread population declines 
and species extirpations following pathogen arrival 
(Berger et al. 1998, Lips 1998, 1999, Lips et al. 2006). A 
species’ susceptibility to Bd is correlated with several host 
characteristics (Lips et al. 2003). First, phylogeny can 
predict species susceptibility to Bd. For example, family- 
level amphibian phylogenies suggest that families with 
similar traits share the same vulnerabilities to threats 
(Corey and Waite 2008), but a species- level phylogenetic 
analysis on the amphibian fauna of El Copé, Panama 
showed no evidence that species with similar traits shared 
the same susceptibility to Bd (Crawford et al. 2010). The 
discrepancy between the results in each study are likely 
caused by differences in taxonomic, spatial, and temporal 
scales, where rapid, widespread, amphibian losses pro-
duced no species- level phylogenetic variation to Bd sus-
ceptibility in El Copé, Panama. Second, species ecology 
(i.e., traits) and rarity (i.e., abundance,  geographic distri-
bution, and habitat specialization; Rabinowitz 1981) 
affects a host’s vulnerability to disturbance- related 
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declines (Lips et al. 2003, Rachowicz and Briggs 2007, 
Briggs et al. 2010). For example, species with small geo-
graphic distributions experience larger Bd- related occu-
pancy declines than widespread species (Smith et al. 
2009). A species’ vulnerability to Bd- related declines can 
be a product of either environmental or demographic sto-
chasticity (Lande 1993) or species- specific traits that pre- 
dispose them to disease (Lips et al. 2003). Host density 
can have the opposite effect, where higher host densities 
increase the number of infections, making population 
declines worse (e.g., Rachowicz and Briggs 2007, Briggs 
et al. 2010). For example, density- dependent Bd pathogen 
transmission of Rana muscosa has led to species extirpa-
tions and population declines across its range. Given that 
species’ Bd susceptibility is correlated to these variables, 
we expect that the community disassembly of tadpoles 
may be correlated to phylogeny, ecological traits, and/or 
rarity.

Distinguishing between ecological rarity (i.e., low 
density, low occupancy, habitat specialization) and obse-
rvational rarity (i.e., cryptic, fossorial, secretive) of hard- 
to- find species is largely overlooked in community 
disassembly studies. For instance, in a Neotropical forest, 
colorful dendrobatid amphibians are much easier to find 
than cryptic species of the genus Eleutherodactylus 
(Duellman and Trued 1986). If imperfect detection is not 
accounted for, species occupancy (i.e., the proportion of 
sites where the species is present) will be underestimated 
(i.e., MacKenzie et al. 2006, Kéry 2010). By underesti-
mating species occupancy pre-  and post-  outbreaks, pop-
ulation occupancy declines will be overestimated and 
extirpations will be biased towards difficult to find 
species, leading to false inference with regards to the 
drivers of occupancy declines.

Here, we describe the disassembly of a stream- dwelling 
tadpole community in response to a Bd outbreak, while 
taking into account imperfect species detection. In this 
system, stream tadpoles occupy semi- isolated microhab-
itats (e.g., leaf packs, isolated pools, and in- stream pools 
and riffles) that allow for the consistent quantification of 
tadpole occupancy, density, and species richness. Prior to 
the arrival of Bd, these tadpole assemblages were diverse 
(McDiarmid and Altig 1999, Crawford et al. 2010), 
abundant (McDiarmid and Altig 1999), and structured 
spatially (Inger et al. 1986) and temporally (Heyer 1976), 
creating an opportunity to compare several species char-
acteristics simultaneously that have been shown to con-
tribute to species losses caused by disease. We address the 
following questions in this study: (1) What are the pat-
terns of community disassembly following an outbreak? 
(2) What factors correlate to the order of species losses? 
(3) And how can we improve the sampling of species rich 
communities when species’ detection is variable and 
imperfect?

We expected that tadpole occupancy would decline fol-
lowing the mass mortality of adult amphibians in El 
Copé, Panama (Lips et al. 2006), and that the magnitude 
of tadpole occupancy declines would depend on their 

microhabitat use and the season of survey. Like most 
other community disassembly studies, we predicted that 
rare species and relatives that share similar traits would 
be extirpated first. We predicted that the tadpole commu-
nities that remained following the Bd outbreak would be 
more similar in species composition, and would be mainly 
comprised of common, generalist species. Finally, we 
expected that Bd arrival would cause rapid changes to the 
tadpole community that would persist several years post- 
invasion. Our results are relevant to conservation man-
agers trying to understand and predict community 
disassembly following outbreaks, especially as generalist 
fungal pathogens spread globally.

MATERIALS AND METHODS

Study site

The study site was located within Parque Nacional G. 
D. Omar Torríjos Herrera in Coclé Province, approxi-
mately 8 km north of the town of El Copé, Panama (8°40′ 
N, 80°37′17″ W; Lips et al. 2003). The park spans eleva-
tions between 500 and 1000 m, and our study sites are 
located at ~775 m elevation. This site experiences both a 
dry (December–April) and wet (May–November) season. 
Mean annual air temperature at the park during 2003–
2005 ranged from 16° to 23°C, and mean annual rainfall 
was ~3709 mm (McCaffery and Lips 2013; KRL unpub-
lished data).

Study system

Starting in 1998, we started monitoring adult amp-
hibian populations in El Copé, Panama (Lips et al. 2006), 
and we were consistently capturing amphibians until 
September 2004 when Bd was first detected in El Copé. 
We started monitoring tadpole populations starting July 
2003, 15 months prior to the September 2004 die- off. The 
El Copé amphibian fauna experienced rapid species 
losses and declines. We, therefore, expect minimal com-
pensatory or evolutionary dynamics to interfere with 
community disassembly inference. This project is part of 
the larger Tropical Amphibians Declines in Streams 
(TADS) project to quantify the consequences of amp-
hibian losses on ecosystem structure and function.

The original El Copé amphibian community consisted 
of 74 species (Lips et al. 2003, Crawford et al. 2010), of 
which ~22 had stream- dwelling tadpoles. The amphibian 
community was diverse with respect to life history (e.g., 
habitat use, reproductive mode), demography (e.g., sur-
vivorship, longevity), and ecology (e.g., clutch size, body 
size, dispersal distance). By 2008, only 44 species remained 
at low population densities (Crawford et al. 2010).

Field surveys

We surveyed tadpole communities in four 200- m 
stream transects: Loop, Silenciosa, Cascada, and Guabal 
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(see map in McCaffery and Lips 2013, Angeli et al. 2015). 
We mapped and measured the area covered by each of 
four microhabitats (riffle, pool, isolated pool, and leaf 
pack) at the beginning of the wet and dry seasons. We 
defined riffles as fast- flowing, shallow sections with gravel 
and cobble substrates, pools as areas of calm water 
deeper than 20 cm in the main channel, isolated pools as 
small, shallow pools spatially separated from the main 
stream channel, and leaf packs as detritus accumulations 
at the bottom of pools. We used a k- means clustering 
analysis to divide streams into segments that were 
repeatedly visited each month throughout the study. To 
determine the appropriate number of stream segments, 
we calculated the within group sum of squares by the 
number of clusters extracted and examined this plot for a 
bend, similar to a scree plot in factor analysis, indicating 
the minimum number of clusters. The k- means analysis 
divided each stream transect into four segments for a 
total of 16 stream sites per microhabitat. Each segment 
was sampled either once, twice, or three times per month 
using the random sampling method described below.

To sample riffles, we used 250- μm D- nets and dis-
turbed substrate with our feet while holding nets immedi-
ately downstream (Barbour et al. 1999). To sample leaf 
packs, we used a modified stovepipe benthic corer (22 cm 
diameter) with a base of rubberized flaps that kept the 
sampler sealed against rough and uneven substrates. We 
drove the corer into the substrate and searched through 
the contents for tadpoles (Colón- Gaud et al. 2010). We 
used a dip net to exhaustively sample pools and isolated 
pools until three consecutive scoops produced no tad-
poles (Heyer et al. 1994, Ranvestel et al. 2004). We also 
measured the length, width, and depth of all microhab-
itats across each 200- m transect to account for variability 
in survey area.

We expected minimal differences in individual-  and 
species- level detection probabilities within microhabitats 
because each microhabitat was searched until no new 
tadpoles were found. Within a given microhabitat, this 
guaranteed that although tadpole species vary in size and 
coloration (e.g., Lithobates warszewitschii, 115 mm, dark 
and heavily mottled [Villa 1990], Espadarana pros-
oblepon, 12.3 mm, bright red dorsal, and pale brown 
ventral [Savage 2002], species detection probability is 
close to 1.0; but within a stream segment, tadpole 
detection probability is less than 1.0 because, tadpoles are 
present in some microhabitat sites and not others. The 
variables that caused the largest difference in detection 
probability among tadpole species were likely to be dif-
ferences in abundance and distribution across microhab-
itats, rather than within microhabitat differences.

For leaf packs, isolated pools, and riffles, we randomly 
sampled three microhabitat sites per stream each month 
for 15 months before (June 2003–August 2004) and 
11 months following (October 2004–August 2005) 
Bd arrival in September 2004. For pools, we ran-
do mly sampled between four and eight pool sites per 
stream each month before Bd arrived. We resampled all 

microhabitats in at least one stream annually between 
2006 and 2011 and again in 2014 (Appendix S1: Table 
S1). All our analyses are based on the first two years of 
intensive sampling (2003–2005) of leaf pack, isolated 
pools, and riffles because no individuals were found in the 
majority of subsequent annual surveys.

We excluded pools from all analyses because logistical 
difficulties prevented the sampling of pools post- decline 
(2004–2005) and the sampling of leaf packs from 
September to December 2003. We report data of pools 
pre- decline to provide baseline data of these understudied 
communities. We also did not include September 2004 in 
analyses to limit biases between pre-  and post-  Bd samples 
because Bd arrived mid- September 2004 (Lips et al. 
2006).

Statistical analyses

Patterns of community disassembly.—1. Tadpole 
 den sity.—To determine if the magnitude of tad-
pole density declines differed among microhabitats 
or  between seasons, we calculated tadpole habitat- 
weighted density (HWD) before and after Bd arrival 
in each microhabitat and stream by pooling monthly 
tadpole abundances across species. We used HWD to 
adjust for spatiotemporal variations in microhabi-
tat availability caused by differences among streams 
and between seasons. HWD was calculated by divid-
ing  total tadpole abundance per microhabitat in each 
stream each month by the total area sampled and mul-
tiplying by the percent area each microhabitat covered 
in each stream that season. Our reformatted data con-
sisted of tadpole HWD per microhabitat per stream 
per month from 2003 to 2005.

To determine if tadpole HWD differed among micro-
habitats or between seasons following Bd arrival, we used 
a generalized linear mixed effects model, with monthly 
tadpole HWD as the response variable and microhabitat, 
season, disease state (Bd present or absent), all two- way 
interactions, and the three- way interaction as the explan-
atory variables. We included month as a fixed effect to 
account for repeated measures of density across months 
and included stream as a random effect to account for 
pseudo- replication of microhabitats within streams 
(Gillies et al. 2006). We used a negative binomial distri-
bution to account for over dispersion of the response 
variable, and we accessed model fit by visually inspecting 
the residuals. We fit this model using package glm-
mADMB (Fournier et al. 2012, Skaug et al. 2015) in 
R version 3.2.1 (R Core Team 2015).

We could not account for biases in tadpole abundance 
caused by imperfect detection because the parameters of 
the species- specific hierarchical N- mixture models we 
tried to fit did not converge. We used stream segments as 
sites and monthly repeated visits to stream segments as 
replicate surveys. The lack of parameter convergence 
was likely caused by large differences in tadpole den-
si ties between the replicate surveys at each site. These 
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differences could be caused by variations in species 
microhabitat use within a given stream segment and not 
necessarily a violation of the closure assumption (i.e., no 
births, deaths, immigration, or emigration). Density esti-
mates that are not adjusted for imperfect detection are 
often underestimates of the true abundance (e.g., Banks- 
Leite et al. 2014) and inappropriately using N- mixture 
models causes abundance overestimates (i.e., Dail and 
Madsen 2011).

2. Species occupancy.—To determine if species occu-
pancy differed before and after Bd arrival, we used a 
hierarchical occupancy model to quantify changes in 
species- specific occupancy. In this analysis, we were able 
to account for imperfect detection, by estimating micro-
habitat specific detection rates. We define occupancy 
as the probability a species occupied a stream segment, 
and we define detection probability as the probability 
we  detect a species in a given stream segment, given that 
the species is present. We included data for all species 
that were detected in three or more microhabitat samples 
within a season (Ferraz et al. 2007, Ruiz- Gutiérrez et al. 
2010; Appendix S1: Table S2). We had sufficient data to 
estimate occupancy for eight of the 13 species identified 
to species level.

We used different microhabitat samples as repeated 
surveys for stream segments (Hines et al. 2010). Since we 
did not know a priori species microhabitat use or breeding 
season, we ran each species occupancy model with the full 
set of microhabitat and season covariates.

For a selected species, we estimated the occupancy 
probability (ψ) of tadpoles as

where z = 1 when the mth species occupies the ith stream 
segment, and z = 0 otherwise. We investigated the associ-
ation between species tadpole occupancy and the covar-
iates microhabitat, season, disease state, and their 
interactions using an effects- parameterized generalized 
linear mixed model where

We included α0,n,m to account for spatial variations of the 
nth stream for the mth species, γi,m ~ normal(0, σ2

γ
) was 

included as a random effect to account for variation in 
stream segment use for the mth species, and ηd,m ~ 
normal(0, σ2

η
) was included as a random effect to account 

for pseudo- replication of stream segments across d months.
We estimated detection probability (p) as

where

When tadpoles of the mth species were observed during 
the jth survey at the ith stream segment site then y = 1, 
and y = 0, otherwise. Detection was modeled as the 
product of pi, the probability of detecting a species, given 
that it is present at the ith stream segment site (i.e., z = 1).

To reduce the number of parameters estimated and to 
increase precision, we combined the detection probability 
of leaf packs and isolated pools as the intercept of the 
model and added riffles as the covariate Hab, since pre-
vious runs of the model showed very similar detection 
probability estimates between leaf packs and isolated 
pools (unpublished model runs). We assumed that tadpole 
detection probability was constant between seasons and 
years because sparse post- decline data prevented us from 
estimating detection probability.

We fit all models using Bayesian methods and esti-
mated the posterior distributions for all parameters using 
Markov chain Monte Carlo (MCMC) methods imple-
mented in JAGS 3.4.0 in R version 3.2.1 (R Development 
Core Team 2015) using the rjags package (Plummer 
2015). For all parameters, we used priors following the 
recommendation of Lunn et al. (2012; i.e., normal[0, 
0.368], gamma[0.01, 0.01], uniform[0, 1]). We ran three 
chains for each parameter, and ran each chain for 100,000 
iterations with a burn- in period of 5,000 iterations. We 
evaluated convergence of chains by visual inspecting 
trace plots and using the diagnostics of Gelman (Brooks 
and Gelman 1998). We also assessed model fits using pos-
terior predictive checks (Appendix S1: Fig. S1; Gelman 
et al. 2014).

To determine how much more likely a species was to 
successfully occupy a microhabitat before Bd than after 
Bd arrival, we calculated the odds ratio, OR (i.e., 
OR = oddspost/oddspre), by dividing the post- Bd logit 
output of the occupancy model by the pre- Bd logit output 
of the occupancy model. If the OR is close to 1, then it 
suggests that there is no change in occupancy. If the OR 
is <1, then it suggests that the odds of occupancy is 
greater pre- Bd than post- Bd. And if the OR is >1, then 
the odds of occupancy is lower pre- Bd than post- Bd. We 
considered the effect of Bd biologically meaningful if the 
95% credible interval fell below or above 1, interpreted as 
a 95% probability that the OR significantly changed.

3. Community composition.—To determine if tadpole 
communities post- Bd invasion were more similar to one 
another than tadpole communities before Bd arrival, we 
used a permutational analysis of multivariate disper-
sion (PERMDISP2; Anderson et al. 2006) in R version 
3.2.1 (R Development Core Team 2015). We used the 
Bray- Curtis metric, which allows dispersion distance to 
reflect variability in community structure. We visual-
ized the data using non- metric multidimensional scaling 
(NMDS). We defined communities as the tadpole assem-
blages sampled in each microhabitat- stream- season- year 

zi,m∼Bernoulli(ψi,m)

logit(ψi,m)=α0,n,m+β0,mWeti+β1,mLeafPacki+β2,mRifflei

+β3,mWetiLeafPacki+β4,mWetiRifflei

+β5,mPosti+β6,mPostiWeti+β7,mPostiLeafPacki

+β8,mPostiRifflei+β9,mPostiWetiLeafPacki

+β10,mPostiWetiRifflei+γi,m+ηd,m

yi,j,m∼Bernoulli(pizi,m)

logit(pi)=α1+βHabi.
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combination, for a total of 48 communities (3 microhabi-
tats × 4 streams × 2 seasons × 2 years). We only included 
data between 2003 and 2005.

 The order of species losses.—1. Species relatedness.—To 
determine if the order of species disappearances was cor-
related with their phylogenetic relationship, we fit several 
macroevolutionary likelihood models to the last day a 
species was seen in El Copé. We fit Brownian, Ornstein- 
Uhlenbeck, Lambda, and white noise models using the 
package geiger in the R version 3.2.1 (Harmon et al. 
2008, R Development Core Team 2015). We used our 
observational field data to determine the last day each 
species was detected in El Copé. We did not interpret re-
sults as the true date of species extirpations because our 
data likely reflect the date of last species detection.

We set 1 January 2003 as day 0, and 31 December 
2005 as day 1095. Bd likely arrived between days 609 
and 638 in September 2004 (Lips et al. 2006). We used a 
rooted, time- calibrated, El Copé amphibian tree 
(Crawford et al. 2010). All species differed from sister 
lineages by a genetic distance at the COI gene or 16S 
gene by at least 8% or 2%, respectively. We excluded any 
individuals that were not classified to species level (e.g., 
Centrolene spp. and Colostethus spp.). We also did not 
include any pool samples or pool habitat specialist (i.e., 
Atelopus zeteki) because the last day those species 
were seen reflects the last day pools were sampled. We 
included all species that were found pre- Bd arrival for a 
total of 11 species, representing four families (i.e., 
Ranidae, Centrolenidae, Hylidae, Dendrobatidae), and 
we compared the fit of each model using AICc. We con-
sidered the model with the lowest AICc as the model of 
best fit.

2. Rarity.—To determine if species ecological rarity was 
a predictor of occupancy decline, we used two metrics 
of rarity: (1) tadpole seasonal microhabitat occupancy 
from the species occupancy model outlined above and 
(2) raw field data from transects of adult relative abun-
dance (Crawford et al. 2010). We used both tadpole 
occupancy and adult relative abundance to reflect spe-
cies’ variations in rarity across life stages. We calculated 
the species- specific habitat- weighted OR as the product 
of the odds ratios for each microhabitat in each sea-
son from the  occupancy model outlined above and the 
 average percent habitat available to adjust for variations 
in microhabitat cover among streams. To quantify the 
strength of the relationships between adult relative abun-
dance vs. OR and between tadpole pre- Bd occupancy vs. 
OR, we tested for an association between paired samples 
by calculating Pearson’s correlation coefficient using the 
function cor.test() in R.

Imperfect detection and sampling biases.—1. Not adjust-
ing for imperfect detection in occupancy models.—We 
compared all the results from our detection- adjusted 
 occupancy model (i.e., species occupancy declines and 

rarity analyses) to the results of a logistic regression, 
which does not adjust for detection probability, using a 
slightly modified data set and the model outlined above. 
We modified the data set by collapsing the stream seg-
ment site by visit matrix for each species, such that if a 
species was ever detected at a stream segment site, it was 
considered present. We assigned the detection probabil-
ity, p, for all microhabitats equal to 1. We then used the 
same statistical approach using Markov chain Monte 
Carlo (MCMC) methods implemented in JAGS 3.4.0 in 
R version 3.2.1. (R Development Core Team 2015) using 
the rjags package (Plummer 2015).

2. Optimizing species sampling.—To determine how to 
improve the sampling of species rich communities when 
species’ detection is variable and imperfect, we used a 
single- season, single- species, occupancy model to analyze 
simulated data under different scenarios (Data S1; Meta-
data S1). We simulated occupancy data for a single species 
under scenarios spanning high to low detection and occu-
pancy probabilities (range 0.1–0.9) and varied the number 
of sites sampled (range 5–200 sites by 20) and the number 
of surveys per site (range 1–9 surveys per site by 2). We 
generated a total of 5000 unique scenarios to test how var-
iations in occupancy, detection, number of sites sampled, 
and number of surveys per site affected the precision of 
occupancy estimates.

We fit all models using the same Bayesian methods 
 outlined above for species occupancy. For each unique 
combination of occupancy, detection, sites, and surveys, 
we simulated 25 occupancy data sets and analyzed each 
data set under a Bayesian framework. For each analysis, 
we ran three chains for each parameter, and ran each 
chain for 10,000 iterations with a burn- in period of 1,000 
iterations.

To determine how well models performed under dif-
ferent sampling schemes, we calculated the root mean 
square error between true and recovered occupancy esti-
mates for each of the 25 data sets per scenario. The root 
mean square error represents the sample standard devi-
ation of the difference between predicted and true esti-
mates. Based on occupancy and the degree of precision we 
wanted in model estimates, we decided a priori that our 
maximum acceptable root mean square error was 0.10 
(Guillera- Arroita et al. 2010, Guillera- Arroita 2011).

RESULTS

Field summary

We captured 2,021 individuals of 14 species across four 
microhabitats 15 months prior to Bd’s arrival. Of those, 
1,123 individuals were found in pools. We found 11 
species during the wet season and 12 species during the 
dry season, with 9 species common to both (Appendix S1: 
Table S2).

Before Bd arrival, average monthly HWD per micro-
habitat ranged from 0.00 to 20.08 individuals/m2 during 
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the dry season and 0.00–6.69 individuals/m2 during the wet 
season (Fig. 1). Species that had >75% of captures during 
the dry season included Atelopus varius, Colo stethus pana-
mensis, Lithobates warszewitschii, Espadarana prosoblepon, 
Sachatamia albomaculata, Hyloscirtus colymba, and 
Hyalinobatrachium colymbiphyllum. Species with >75% of 
captures in the wet season included Colostethus spp., 
Hyloscirtus palmeri, Sachatamia ilex, and Teratohyla 
spinosa. Species with >98% of captures in a single micro-
habitat included Atelopus varius (pools), L. warszewitschii 
(pools), most centrolenid species (leaf packs), and 
Colostethus spp. (isolated pools; Appendix S1: Table S2).

During the 11 months following Bd’s arrival, we cap-
tured 249 individuals of eight species across three micro-
habitats, representing a 72% decrease in captures and a 
43% decrease in species richness. Within 11 months of 
Bd arrival, habitat- weighted density decreased from an 
average HWD of 4.53 ± 1.19 individuals/m2 (mean ± SE) 
to 0.34 ± 0.08 individuals/m2 after Bd (z = 4.12, 
P < 0.001; Fig. 1). The magnitude of density declines did 
not differ between microhabitats or seasons (P > 0.05). 
Post- decline, the highest densities of tadpoles were 
found in isolated pools, mostly of the families 

Dendrobatidae (Silverstoneia flotator, C. panamensis, 
S. nubicola, Allobates talamancae, and Colostethus spp.) 
or Hylidae (H. palmeri, H. colymba). Only two species 
had >75% of captures in the dry season: Allobates tala-
mancae and L. warszewitschii, and only Hyalino-
batrachium colymbiphyllum had >75% of captures 
during the wet season (Appendix S1: Table S2). Five 
species were never seen post- decline (Atelopus varius, 
E. prosoblepon, S. albomaculata, S. ilex, and T. spinosa; 
Appendix S1: Table S2).

We did not detect any tadpoles during any of the 
annual surveys conducted from 2006 to 2011, precluding 
further analyses. In April 2014, we found several pools 
and isolated pools with tadpoles of Silverstoneia nubicola 
and an unidentified species, ranging in HWD between 
0.95 and 4.49 individuals/m2.

 Patterns of community disassembly

Species occupancy.—One- half of the species in any 
 microhabitat and season (24 of 48) declined in occupancy 
after Bd arrival (Fig. 2). Detection probability was signifi-
cantly higher for tadpoles in leaf packs and isolated pools 

FIG. 1. Effects of Batrachochytrium dendrobatidis (Bd) arrival on habitat weighted density of tadpoles in each of three 
microhabitats (leaf pack, isolated pool, riffle) for 15 months before and 11 months after Bd arrival in September 2004 (Lips et al. 
2006). The solid black line represents the rolling average of tadpole habitat weighted density for the entire tadpole community. The 
heavy black horizontal lines represent the dry season, and the heavy black vertical line represents the arrival of Bd in September 
2004.
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(0.41 ± 0.20), than for tadpoles found in riffles during the 
entire study (0.13 ± 0.03; Appendix S1: Table S3).

Community composition.—Tadpole communities were 
 homogenized, where post- decline tadpole communities 
were more similar to one another than the pre- decline 
tadpole communities were to each other (Fig. 3; PER-
MDISP2, F1,46 = 15.02, P < 0.001). Pre- decline tad-
pole community dissimilarity among microhabitat 
and between seasons was 65% greater than their post- 
decline counterparts (pre- decline average distance to 
median = 0.35; post- decline average distance to medi-
an = 0.12).

The order of species losses

Species relatedness.—We found that the Brownian model 
best fit the timing of species disappearance dates, indi-
cating a taxonomic signal to the order of species losses 

and taxonomic homogenization (Fig. 4; Appendix S1: 
 Table S4), with centrolenids disappearing first, some-
times without ever being seen post- Bd arrival, and hylids, 
dendrobatids, and the ranids still seen several months 
post- s arrival. All other models increased the AICc score 
by at least three points ( Appendix S1: Table S4). No tad-
poles were seen during the survey in 2006.

Rarity.—Neither tadpole occupancy nor adult relative 
abundance predicted the odds of  occupancy decline 
among tadpole species (Figs. 2 and 5; Pearson’s correla-
tion coefficient = −0.01, t = −0.05, df  = 46, P = 0.95; 
Pearson’s correlation coefficient = 0.08, t = 0.20, df  = 6, 
P = 0.84, respectively).

 Imperfect detection and sampling biases

Not adjusting for imperfect detection in occupancy 
 models.—Using the logistic regression, we found that 

FIG. 2. Patterns of occupancy by species, microhabitat, and season pre-  (left) and post-  (middle) Bd arrival with the odds ratio 
(OR, i.e., OR = oddspost/oddspre; right). All points represent the mean and 95% credible interval. Tadpole pre- Bd occupancy rarity 
was not a significant predictor of decline (Pearson’s correlation coefficient = −0.01, t = −0.05, df = 46, P = 0.95). Odds ratios <1 
indicate occupancy declines post- Bd. Species codes: Hc, Hyloscirtus colymba; Hp, Hyloscirtus palmeri; Sf, Silverstoneia flotator; 
Sn, S. nubicola; Cp, Colostethus panamensis; Lw, Lithobates warszewitschii; Hcol, Hyalinobatrachium colymbiphyllum; 
Ep, Espadarana prosoblepon.
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over one- half  (~58%) of  tadpole species, regardless of 
microhabitat and season, declined following Bd arriv-
al (Appendix S1: Table S5). Similar to the detection- 
adjusted model results, we found no relationship be-
tween adult relative abundance and the odds of  species 
decline (Pearson’s correlation coefficient = −0.11, 
t = −0.27, df  = 6, P = 0.78). But, in contrast to the 

detection- adjusted model, we found that as tadpole 
pre- Bd occupancy increased, the likelihood of  species 
declined also increased (Pearson’s correlation coeffi-
cient = 0.96, t = 25.69, df  = 46, P < 0.001).

Optimizing species sampling.—When sampling a species- 
rich community with variable and imperfect detection, 
our simulations suggest that the minimum number of 
sites a surveyor should sample is 25 microhabitat sites at 
least three times to obtain an occupancy estimate with 
a maximum error of  0.10 (Appendix S1: Table S6 and 
Fig. S2).

DISCUSSION

Bd caused rapid, widespread abundance and occu-
pancy declines in the tadpole community that was imme-
diate and persistent. Tadpoles declined in abundance and 
occupancy rapidly within the first 11 months of the adult 
outbreak, and by the second year, all tadpoles had been 
extirpated. Sampling between 2006 and 2011 produced 
no tadpoles, even for species with adults that persisted 
post- Bd invasion. In 2014, the first tadpoles were detected 
but at very low densities and in few microhabitats.

Within 11 months of Bd invasion, tadpole community 
disassembly, the order of species declines and losses, was 
marked by taxonomic and ecologic homogenization with 
the disappearance of Centrolenid habitat- specialists, 
resembling the regional pattern of adult community 

FIG. 3. Nonmetric multidimensional scaling (NMDS) 
ordination of tadpole communities (tadpole samples from each 
microhabitat–stream–season combination) pre-  and post- Bd 
using Bray- Curtis dissimilarity. After Bd arrival, tadpole 
communities became more similar to one another, represented 
by the nested circles. Lines connect communities to the centroid 
of each group (i.e., pre-  or post- Bd). Ellipses represent 95% 
confidence intervals around group centroids.
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trimmed phylogenetic tree comes from the El Copé amphibian 
tree (Crawford et al. 2010). Day 0 corresponds to 1 January 
2003 and day 1095 corresponds to 31 December 2005. Bd 
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arrival, while treefrogs and poison- dart frogs remained 
detectable after Bd arrival (model of best fit: Brownian; 
Appendix S1: Table S4).
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disassembly (Smith et al. 2009). Centrolenids were mainly 
found in leaf packs and were the first ones that disap-
peared, likely driving the homogenizing pattern across El 
Copé, whereas at the regional scale, geographically 
restricted endemic species drove the homogenizing 
pattern of adult amphibians (Smith et al. 2009). 
Homogenization in both adults and tadpoles resulted in 
higher than expected taxonomic and ecological similarity 
among communities post- Bd.

The biotic homogenization detected in both adults 
and tadpoles at regional and local scales, respectively, 
has implications for future ecological and evolutionary 
processes (Olden et al. 2004). Ecologically, across space, 
Bd has dissolved historical biogeographical patterns, 
such that increasing distance between sites, even 
>500 km, is not correlated with community compo-
sition dissimilarity (Smith et al. 2009), essentially erasing 
information on why species are in their present loca-
tions. These species losses also decrease functional sta-
bility of communities and ecosystems, where food webs 
may be restructured (Barnum et al. 2015) or ecosystem 
resilience degraded (Petchey and Gaston 2009). 
Evolutionarily, biotic homogenization can decrease 
genetic variability within species, compromising indi-
vidual fitness by disrupting local adaptation and decr-
easing the genetic variability of isolated populations 
and speciation (Olden et al. 2004). Therefore, via the 
mechanism of biotic homogenization, the world may be 
losing more species than appreciated when we combine 
observed species extirpations and decreased speciation 
rates.

Species rarity, both in terms of adult relative abun-
dance and tadpole occupancy, did not predict the odds of 
species occupancy declines caused by Bd, indicating that 
species rarity does not predict community disassembly by 
a generalist pathogen. Rare and common species experi-
enced comparably large occupancy declines from Bd 
invasion. Rarity is a widely accepted indicator of species 
vulnerability for many taxa (Zavaleta et al. 2009), but the 
mechanism (i.e., species ecology vs. low numbers) driving 
species susceptibility can vary by disturbance. In this 
system, where Bd is highly virulent and hosts are naïve to 
infection, species rarity, of either tadpoles or adults, did 
not influence vulnerability to Bd. Host susceptibility to 
pathogen- related declines is more complicated than 
relating them to host population size, where aspects of 
host ecology may also contribute to species vulnerability 
(Lips et al. 2003). For example, riparian species are more 
vulnerable to abundance and occupancy declines than 
terrestrial species (Lips et al. 2003, Brem and Lips 2008). 
In our system, we only examined stream- dwelling 
 tadpoles; if we had surveyed the entire landscape for 
 tadpoles (i.e., bromeliads, canopy, refuges, etc.), we may 
have detected more pronounced variations in suscepti-
bility. Within a single habitat type though, we did not 
find that rarity of tadpole occupancy or adult relative 
abundance predicted the odds of species occupancy 
declines.

For some threats, such as disease, species extinction 
risk may not be predicted by the usual explanations, such 
as rarity (i.e., small geographic range size, low abun-
dance, and ecological specialization; Rabinowitz 1981) 
or species traits (e.g., Lips et al. 2003, Langwig et al. 
2012), because of spatial scale. In this study, we focused 
on stream- dwelling species, which are among the most 
susceptible to Bd (Brem and Lips 2008), and we did not 
find that rarity or species traits correlated to extinction 
risk because all tadpoles declined and disappeared within 
22 months of Bd arrival. These results strongly reinforce 
the hypothesis that, for Neotropical amphibian species 
that live in streams, very little else matters besides whether 
a species survives the initial Bd outbreak or not.

We hypothesize that low adult abundance, low repro-
ductive output, and high metamorph mortality are pre-
venting tadpole community recovery. We found little 
evidence that tadpole communities were recovering 
within the decade after Bd invasion, although we likely 
did not sample enough to detect all species of tadpoles. 
For tadpole abundance to increase, adult abundance and 
reproductive output needs to increase. It is possible that 
infected tadpoles have reduced growth rates (Parris and 
Cornelius 2004, Garner et al. 2009) and higher disease- 
related mortality, or that metamorphs and subadults 
have high mortality rates (Berger et al. 1998, Rachowicz 
et al. 2006, Langhammer et al. 2014) but evidence for the 
latter is lacking.

In this system, recovery almost certainly does not mean 
that the tadpole community will return to their pre- Bd 
state. Stochastic (ecological drift) and deterministic 
(niche- selection) driven processes, as well as priority 
effects, will likely restructure the tadpole community as it 
reassembles, where the relative importance of each 
process may depend on the harshness of the ecological 
filter, in this case Bd (e.g., Chase 2007). In 2014, we 
detected a few individuals of Silverstoneia nubicola, which 
were among the last tadpole species detected in 2005. 
Although there is a parallel between species disassembly 
and reassembly order, the tadpole community is unlikely 
to reassemble in the reverse disassembly order because 
community disassembly was triggered by species’ 
pathogen naivety, whereas reassembly will likely reflect 
the combined effects of amphibian dispersal and ability 
to cope with Bd infection and persistence. We propose 
that more reliable metrics to quantify tadpole community 
resilience and stream ecosystem function is the com-
parison of algal community composition (Connelly et al. 
2008), macroinvertebrate assemblages (Colón- Gaud 
et al. 2010), or nitrogen cycling rates (Whiles et al. 2013) 
before and after the Bd outbreak.

The 100% tadpole abundance declines reported here 
are larger than the adult abundance declines described 
at El Copé, Panama (Crawford et al. 2010). The higher 
tadpole rate of loss is likely driven by both decreased 
recruitment and lower detection probability than adults. 
Tadpoles have naturally high mortality rates (Calef 
1973, Heyer et al. 1975) and when the additional 
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chytrid- related mortality (Garner et al. 2009) is added 
to the system, the likelihood of tadpole survival is slim, 
explaining the discrepancy between tadpole and adult 
relative abundance declines. It may also be that tadpoles 
were still present but we did not detect them, especially 
given that some centrolenid adults are present at El 
Copé and we did not find their tadpoles (Crawford et al. 
2010).

By not sampling pools after Bd arrival, we were unable 
to quantify the impact of Bd invasion on that micro-
habitat. However, our main conclusions would not have 
changed because amphibian adult mass mortality was 
widespread across El Copé (Lips et al. 2006). We resa-
mpled pools in 2006, and we found no individuals, similar 
to the patterns in the other microhabitats.

Sampling recommendations

We provide the first estimates of Neotropical tadpole 
detection probabilities, which could replace vague priors 
traditionally used in Bayesian analyses to make more 
precise occupancy estimates. Most Neotropical regions 
have experienced widespread losses of amphibians from 
Bd (James et al. 2015), making it difficult to estimate 
unbiased tadpole detection probabilities. Tadpoles are 
cryptic, secretive, and difficult to detect (Heard et al. 
2006, Smith et al. 2007), but monitoring tadpoles may 
provide a better solution to monitoring amphibian com-
munity dynamics post- Bd because stream- dwelling tad-
poles are spatially constrained, whereas amphibian adults 
are not.

Our study was not designed with the intent of using 
N- mixture or occupancy models, but we were able to 
analyze the majority of species using hierarchical occu-
pancy models. If we had not accounted for imperfect 
species detection in this analysis, we would have likely 
overestimated occupancy declines and inaccurately inter-
preted the correlation between species odds of decline to 
tadpole pre- Bd occupancy (but see Welsh et al. 2013). 
Observational error, in this case, can lead to misclassi-
fying species as extirpated or having greater odds of 
decline. We recommend that future researchers survey at 
least 25 sites, three times each per season, to adequately 
sample a species- rich community for both rare and 
common species.

Occupancy studies should be designed carefully to 
ensure efficient use of available resources. To avoid 
wasted effort, biologists should anticipate the quality of 
their data (Mackenzie and Royle 2005, Guillera- Arroita 
et al. 2011). The precision and bias of occupancy esti-
mates will also depend highly on the species biology and 
the system in general. For example, when working with 
rare species, the best sampling designs will tend to have 
more replication than in cases where the precision of 
occupancy estimates is of interest. Therefore, thought 
and care should be given to designing sampling schemes 
before collecting data to prevent loss of time, money, and 
resources.

CONCLUSIONS

Phylogeny, ecological traits, and rarity have been asso-
ciated with adult amphibian declines (but see Crawford 
et al. 2010), but we only detected evidence that one of 
these three characteristics predicted tadpole declines, 
where closely related species did share susceptibility to 
Bd. The discrepancy between the order of extirpations 
and declines of adult and tadpoles may be attributed to 
when in the life cycle hosts are gaining infection and 
dying. If hosts are dying before reproduction, the pat-
terns of species abundance and occupancy declines will 
be greater than after they reproduce. For example, the 
mountain yellow- legged frog, Rana muscosa, develops 
fatal Bd infection post- metamorphosis, creating the 
illusion of healthy abundant tadpole populations but 
severely declined juvenile and adult populations.

We found that tadpole communities were taxonomi-
cally homogenized within 11 months of Bd invasion and 
communities collapsed within 22 months. Bd drove hosts 
to extirpation, and we have not seen signs or evidence of 
substantial tadpole community recovery within 10 years 
post-outbreak. Our results are directly relevant to 
researchers interested in improving sampling methods of 
diverse communities, disease ecologists interested in 
understanding how multi- host fungal pathogens impact 
different life stages, community ecologists interested in 
pathogen- driven community disassembly of vertebrates, 
and conservation practitioners in charge of culling, vac-
cinating, and sterilizing wild populations experiencing 
declines and extirpations caused by multi- host fungal 
pathogens.
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Abstract
1.	 Conservation	managers	rely	on	accurate	estimates	of	disease	parameters,	such	as	
pathogen	prevalence	and	infection	intensity,	to	assess	disease	status	of	a	host	pop-

ulation.	However,	these	disease	metrics	may	be	biased	if	low-level	infection	inten-

sities	are	missed	by	sampling	methods	or	laboratory	diagnostic	tests.	These	false	
negatives	 underestimate	 pathogen	 prevalence	 and	 overestimate	mean	 infection	
intensity	of	infected	individuals.

2.	 Our	 objectives	were	 two-fold.	 First,	 we	 quantified	 false	 negative	 error	 rates	 of	
Batrachochytrium dendrobatidis (Bd)	on	non-invasive	skin	swabs	collected	from	an	
amphibian	community	in	El	Copé,	Panama.	We	swabbed	amphibians	twice	in	se-

quence,	and	we	used	a	recently	developed	hierarchical	Bayesian	estimator	to	as-
sess	disease	status	of	the	population.	Second,	we	developed	a	novel	hierarchical	
Bayesian	model	to	simultaneously	account	for	imperfect	pathogen	detection	from	
field	sampling	and	laboratory	diagnostic	testing.	We	evaluated	the	performance	of	
the	model,	using	simulations	and	varying	sampling	design	to	quantify	the	magni-
tude	of	bias	in	estimates	of	pathogen	prevalence	and	infection	intensity.

3.	 We	show	that	Bd	detection	probability	from	skin	swabs	was	related	to	host	infec-
tion	intensity,	where	Bd	infections	<10	zoospores	have	<95%	probability	of	being	
detected.	 If	 imperfect	Bd	detection	was	not	considered,	then	Bd	prevalence	was	
underestimated	by	as	much	as	71%.	In	the	Bd-amphibian	system,	this	indicates	a	
need	to	correct	for	imperfect	pathogen	detection	in	enzootic	host	populations	per-
sisting	with	low-level	infections.	More	generally,	our	results	have	implications	for	
study	designs	in	other	disease	systems,	particularly	those	with	similar	objectives,	
biology,	and	sampling	decisions.

4.	 Uncertainty	in	pathogen	detection	is	an	inherent	property	of	most	sampling	proto-

cols	and	diagnostic	tests,	where	the	magnitude	of	bias	depends	on	the	study	sys-
tem,	type	of	infection,	and	false	negative	error	rates.	Given	that	it	may	be	difficult	
to	know	this	information	in	advance,	we	advocate	that	the	most	cautious	approach	
is	to	assume	all	errors	are	possible	and	to	accommodate	them	by	adjusting	sampling	
designs.	The	modelling	framework	presented	here	improves	the	accuracy	in	esti-
mating	pathogen	prevalence	and	infection	intensity.
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1  | INTRODUCTION

Epidemiologists	and	wildlife	managers	 rely	on	accurate	estimates	of	
disease	 parameters,	 such	 as	 pathogen	 prevalence	 and	 infection	 in-
tensity,	to	assess	the	risk	of	disease	emergence	in	wild	host	popula-
tions	(e.g.	Langwig	et	al.,	2015).	Traditionally,	disease	ecologists	have	
recognised	that	imperfect	host	detection	(i.e.,	false	negatives)	affects	
the	inferences	made	on	disease	dynamics,	leading	to	the	adoption	of	
capture-	mark-	recapture	 methods	 to	 correct	 for	 imperfect	 host	 de-
tection	 (e.g.,	 Cooch,	 Conn,	 Ellner,	 Dobson,	 &	 Pollock,	 2011).	 More	
recently,	however,	there	has	been	growing	awareness	that	imperfect	
pathogen	detection	biases	the	estimation	of	pathogen	prevalence	and	
infection	 intensity	 (e.g.	 Lachish,	Gopalaswamy,	Knowles,	&	Sheldon,	
2012;	Miller,	Talley,	Lips,	&	Campbell	Grant,	2012).	Pathogen	preva-
lence	tends	to	be	underestimated,	whereas	mean	infection	intensity	is	
overestimated	when	sampling	methods	or	diagnostic	tests	miss	low-	
level	 pathogen	 infections,	 causing	 the	 misclassification	 of	 infected	
hosts	as	uninfected	(e.g.	Lachish	et	al.,	2012;	Miller	et	al.,	2012).	This	
growing	awareness	has	led	to	new	quantitative	methods	that	provide	
a	platform	to	correct	for	disease	state	misclassification,	improving	the	
quality	of	 inference	by	reducing	bias	(e.g.	Lachish	et	al.,	2012;	Miller	
et	al.,	2012).

Imperfect	pathogen	detection	has	been	widely	acknowledged	 in	
both	veterinary	and	medical	fields	and	is	likely	present	in	most	sam-
pling	and	diagnostic	methods	used	by	disease	ecologists.	Veterinary	
and	medical	fields	have	long	used	statistical	tools	to	adjust	pathogen	
prevalence	estimates	by	correcting	for	the	accuracy	of	diagnostic	tests	
(reviewed	in	Enoe,	Georgiadis,	&	Johnson,	2000;	Greiner	&	Gardner,	
2000;	 Toft,	 Jørgensen,	 &	 Højsgaard,	 2005).	 However,	 the	 stringent	
assumptions	 and	 requirements	 of	 these	 statistical	 tools	make	 them	
impractical	 for	 disease	 ecologists.	 For	 example,	most	methods	used	
in	veterinary	and	medical	fields	involve	determining	the	accuracy	of	a	
diagnostic	test	by	comparing	it	to	an	independent	reference	test	(e.g.	
Drewe,	Dean,	Michel,	&	Pearce,	2009;	Greiner	&	Gardner,	2000).	 In	
the	realm	of	disease	ecology,	most	disease	diagnostics	are	obtained	
from	a	single	test	or	from	visual	inspections	when	no	diagnostic	tools	
are	available	(e.g.	facial	tumour	disease	of	Tasmanian	devils,	Sarcophilus 
harrisii;	Lachish,	Jones,	&	McCallum,	2007).

In	 the	 case	 of	 pathogen	 presence,	 uncertainty	 is	 related	 to	 the	
specificity	 (i.e.	 the	 probability	 an	 uninfected	 individual	 is	 correctly	
classified	as	uninfected)	and	sensitivity	(i.e.	the	probability	an	infected	
host	is	correctly	classified	as	infected)	of	the	sampling	and	diagnostic	
methods.	Typically,	specificity	is	assumed	maximised	when	strict	pro-
tocols	are	used	in	the	field	and	lab	to	decrease	the	odds	of	contaminat-
ing	samples	that	lead	to	false	positives.	False	negatives,	alternatively,	
occur	during	a	survey	event	when	the	pathogen	is	present	but	is	not	
detected	 (e.g.	 Colvin,	 Peterson,	 Kent,	 &	 Schreck,	 2015;	 Thompson,	

2007).	Sensitivity,	therefore,	is	the	product	of	two	processes:	(1)	sam-
pling	methods	 (e.g.	 blood,	 swab,	 histology	 sample,	 etc.)	 and	 (2)	 lab-
oratory	 diagnostic	 testing	 (e.g.	 qPCR,	 ELISA,	 etc.).	 For	 example,	 the	
causative	agent	of	whirling	disease,	Myxobolus cerebralis,	 infects	 the	
brain	of	a	fish,	and	infections	can	be	missed	when	an	uninfected	area	
of	the	brain	is	examined	(Thompson,	2007).	In	this	case,	it	is	also	likely	
that	 imperfect	 pathogen	 detection	 is	 related	 to	 pathogen	 infection	
intensity	 (e.g.	Valkiunas	 et	al.,	 2008),	where	 low-	level	 infections	 are	
more	likely	missed	than	high-	level	infections.	Few	field	studies,	how-
ever,	 consider	 false	 negative	 error	 rates	 of	 sampling	 methods,	 and	
even	fewer	directly	estimate	them	(e.g.	Colvin	et	al.,	2015;	Thompson,	
2007).

Thus	 far,	 the	 primary	 focus	 of	 disease	 ecologists	 investigating	
false	negative	error	rates	of	pathogens	has	occurred	with	respect	to	
laboratory	diagnostic	 tests.	For	example,	several	studies	have	 inves-
tigated	how	the	sensitivity	of	quantitative	PCR	depends	on	host	 in-
fection	intensity;	as	host	infection	intensity	increases,	the	probability	
of	detecting	the	pathogen	also	 increases	 (e.g.	Gómez	Díaz,	Doherty,	
Duneau,	&	McCoy,	2010;	Lachish	et	al.,	2012;	Miller	et	al.,	2012).	This	
pattern	has	been	detected	across	several	disease	systems	using	differ-
ent	diagnostic	tests,	including:	qPCR	to	detect	the	causative	agent	of	
malaria,	Plasmodium	sp.,	 in	birds	(Knowles	et	al.,	2011;	Lachish	et	al.,	
2012);	qPCR	to	detect	Batrachochytrium dendrobatidis	on	amphibian	
skin	 (Miller	 et	al.,	 2012);	 γ	 interferon	 and	ELISA	 tests	 to	 detect	 the	
causative	agent	of	tuberculosis,	Mycobacterium bovis,	in	cattle	(Ritacco	
et	al.,	1991);	and	qPCR	to	detect	the	causative	agent	of	Lyme	disease,	
Borrelia	species	complex,	in	Ixodes uriae	ticks	(Gómez	Díaz	et	al.,	2010).	
Cumulatively,	 this	evidence	strongly	 suggests	 that	host	 infection	 in-
tensity	affects	the	probability	of	detecting	the	pathogen	using	several	
different	diagnostic	tests,	but	it	remains	unclear	if	host	infection	inten-
sity	affects	the	probability	of	detecting	the	pathogen	during	sampling.

As	a	motivating	example,	we	focus	on	the	emerging	infectious	fun-
gal	pathogen	Batrachochytrium dendrobatidis	(hereafter	Bd;	Longcore,	
Pessier,	 &	 Nichols,	 1999),	 the	 causative	 agent	 of	 chytridiomycosis	
in	amphibians.	Bd	 is	one	of	 the	greatest	 threats	 to	amphibian	biodi-
versity;	 it	has	been	detected	on	over	700	amphibian	species;	and	 it	
has	been	found	on	every	continent	where	amphibians	occur	(Cheng,	
Rovito,	Wake,	&	Vredenburg,	2011;	Fisher,	Garner,	&	Walker,	2009;	
Lips	 et	al.,	 2006;	Olson	et	al.,	 2013;	Wake	&	Vredenburg,	2008).	To	
date,	the	most	sensitive	sampling	and	diagnostic	methods	to	test	for	
the	 presence	 of	 Bd	 are	 non-	invasive	 skin	 swabs	 and	 qPCR	 (Kriger,	
Hero,	&	Ashton,	2006).	While	it	has	been	shown	that,	like	most	other	
diagnostic	tests,	qPCR	sensitivity	to	Bd	is	<1	and	correlates	with	host	
infection	 intensity	 (e.g.	Miller	et	al.,	2012),	 it	 remains	unclear	 if	host	
infection	intensity	also	impacts	Bd	sampling	sensitivity	of	non-	invasive	
skin	swabs	(i.e.,	replication	frequency,	number	of	swab	strokes,	pres-
sure	 of	 swab,	 etc.).	 Abundance-	induced	 detection	 heterogeneity	 is	
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well-	known	to	affect	the	estimation	of	occurrence	and	abundance	(e.g.	
Royle	&	Nichols,	2003),	so	it	is	expected	that	if	two	swabs	were	col-
lected	in	sequence	from	the	same	amphibian,	the	likelihood	that	both	
swabs	would	detect	the	pathogen	and	quantify	the	same	infection	in-

tensity	should	be	lower	at	low-	level	infection	intensities	(e.g.	Lachish	
et	al.,	2012;	Miller	et	al.,	2012).

In	 this	paper,	 our	objectives	were	 two-	fold.	 First,	we	quantified	
false	 negative	 error	 rates	 from	 imperfect	 host	 sampling	 (via	 non-	
invasive	skin	swabbing)	of	Bd	in	an	amphibian	community	in	El	Copé,	
Panama.	 To	 do	 this,	 we	 swabbed	 amphibians	 twice	 in	 sequence,	
and	we	 used	 a	 recently	 developed	 hierarchical	 Bayesian	 estimator	
formulated	 by	Miller	 et	al.	 (2012),	 originally	 used	 to	 examine	 qPCR	
false	negative	rates	of	Bd	on	amphibians.	We	expected	that	as	host	
infection	intensity	increased,	the	probability	of	detecting	Bd	on	a	skin	
swab	would	increase,	similar	to	the	relationship	between	Bd	infection	
intensity	and	qPCR	Bd	detection	probability	(Miller	et	al.,	2012).	We	
also	 assessed	 the	variation	 in	Bd	 prevalence	and	 infection	 intensity	
between	habitats	(stream	vs.	trail)	and	seasons	(wet	vs.	dry)	because	
previous	studies	have	shown	that	these	variables	explain	differences	
in	host	disease	susceptibility	(e.g.	Brem	&	Lips,	2008;	Kriger	&	Hero,	
2006).	 Second,	 we	 developed	 a	 novel	 hierarchical	 Bayesian	 model	
that	simultaneously	accounted	for	imperfect	pathogen	detection	from	
both	field	sampling	and	diagnostic	tests.	We	simulated	and	analysed	
data	under	a	variety	of	sampling	design	scenarios	to	quantify	the	mag-

nitude	of	parameter	bias	of	pathogen	prevalence	and	infection	inten-

sity	estimates.
Our	modelling	approach	and	results	provide	tools	for	disease	ecol-

ogists	 to	refine	and	optimise	pathogen-	sampling	procedures	and	re-

duce	 the	 bias	 of	 parameter	 estimates,	which	will	 improve	 inference	
and	the	application	of	epidemiological	models	to	understand	and	fore-

cast	host–pathogen	dynamics.	We	provide	an	appendix	with	R	code	to	
facilitate	the	application	of	these	methods.	However,	we	highlight	that	
the	biases	introduced	in	estimating	parameters	of	interest	and	meth-

odological	 recommendations	 is	 highly	 dependent	 on	 details	 of	 the	
study	system	and	objectives.	Our	driving	motivation	 in	the	develop-

ment	and	applications	of	this	method	is	to	understand	how	imperfect	
pathogen	detection	from	samples	and	diagnostic	tests	contribute	to	
biases	in	population-	level	inferences,	which	should	guide	the	efficient	
allocation	of	resources	in	epidemiological	studies.

2  | MATERIALS AND METHODS

2.1 | Field surveys

We	 sampled	 four-	200	m	 stream	 and	 three-	400	m	 trail	 transects	 in	
Parque	Nacional	G.	D.	Omar	Torríjos	Herrera,	Coclé	Province,	El	Copé,	
Panama	 (8°40′	N,	80°37′17″	W;	Lips,	Reeve,	&	Witters,	2003)	dur-
ing	 two	wet	 seasons	 (2012,	 2013)	 and	one	dry	 season	 (2013).	 The	
park	spans	elevations	between	500	and	1,000	m	and	is	located	on	the	
Continental	Divide.	This	site	experiences	both	dry	(December–April)	
and	wet	(May–November)	seasons.

We	 surveyed	 each	 transect	 six	 to	 eight	 times	 during	 each	 sea-
son.	 Field	 teams	 of	 two	 to	 three	 people	 conducted	 nocturnal	 visual	

encounter	surveys	by	slowly	walking	each	transect	and	using	visual	and	
audio	cues	to	locate	amphibians	within	two	metres	of	the	stream	bank	
or	 trail.	Upon	capture,	we	swabbed	the	abdomen	and	each	 limb	five	
times	 (total	=	30	strokes)	per	animal	 following	the	swabbing	protocol	
by	Hyatt	 et	al.	 (2007)	 using	 a	 sterile	 cotton-	tipped	 swab	 (Dry	 Swab	
MW113,	Medical	Wire).	We	collected	at	least	one	swab	per	individual	
captured,	and	a	subset	of	individuals	was	swabbed	twice	in	sequence	
from	the	same	location	on	the	animal’s	body	(see	Table	1a	in	Appendix	
S1).	We	used	a	fresh	pair	of	 latex	powder-	free	gloves	when	handling	
each	individual.	We	stored	all	swabs	in	individually	capped	2	ml	tubes	
with	30	μl	of	70%	ethanol.	Because	we	did	not	uniquely	mark	all	indi-
viduals	that	we	captured	and	swabbed,	it	is	possible	that	we	repeatedly	
swabbed	 the	same	 individual	within	a	 season,	making	some	samples	
pseudo-	replicates.	 Pseudo-	replicates,	 in	 this	 case,	 will	 decrease	 the	
variability	around	our	reported	naïve	and	adjusted	estimates	of	patho-

gen	 prevalence	 and	 infection	 intensity.	All	 individuals	were	 released	
at	the	original	point	of	capture.	We	include	Bd	infection	intensity	data	
from	all	amphibian	species	captured	(see	Table	1a	in	Appendix	S1)	with-

out	discriminating	among	species	in	the	model	because	<10	individuals	
per	species	were	captured	for	c.	56%	of	the	39	total	species	detected.

2.2 | Molecular analysis

We	 used	 PrepMan	 Ultra®	 for	 DNA	 preparation	 of	 swabs	 tested	
for	Bd.	We	 tested	swabs	 for	Bd	 in	 singlicate,	using	Taqman	qPCR	
(Boyle,	 Boyle,	 Olsen,	 Morgan,	 &	 Hyatt,	 2004;	 Hyatt	 et	al.,	 2007)	
running	50	cycles.	We	ran	each	plate	with	JEL	423	standards	of	0.1,	
1,	 10,	 100,	 and	 1,000	Bd	 zoospore	 genomic	 equivalents	 (ZGE)	 to	
determine	Bd	presence	and	infection	intensity.	Isolate	JEL	423	was	
originally	isolated	at	El	Copé,	Panama	during	the	epizootic	of	2004.	
We	categorised	individuals	as	Bd-	positive	when	infection	intensity	
was	 greater	 than	 zero	 (Briggs,	 Knapp,	 &	 Vredenburg,	 2010).	 The	
qPCR	assay	consistently	detects	very	small	Bd	infections	(0–1	ZGE),	
likely	representing	very	low	levels	of	infection.	To	ensure	that	false	
positives	were	negligible,	we	included	multiple	negative	controls	in	
each	qPCR	plate.

2.3 | Sampling detection- adjusted model

We	 used	 a	 slightly	 modified	 version	 of	 the	 hierarchical	 Bayesian	
estimator	developed	by	Miller	et	al.	 (2012)	to	account	 for	hetero-

geneity	in	pathogen	detection	probability	due	to	host	infection	in-

tensity.	We	assumed	 that	 there	was	no	error	 associated	with	 the	
diagnostic	test.	Instead,	we	focus	on	the	sensitivity	of	the	swabbing	
procedure.	We	did	not	use	the	multi-	season	formulation	of	the	oc-
cupancy	model	because	we	did	not	track	the	individuals	that	were	
swabbed	across	seasons.	Alternatively,	we	assumed	that	 infection	
intensity	 solely	 depended	on	habitat	 and	 season	 and	not	 an	 indi-
vidual’s	previous	infection	history.

We	modelled	the	true,	but	unobservable,	Bd	infection	state	(zi) on 

the	ith	individual	as:

(1)zi ∼ Bernoulli(Ψhabitati ,seasoni
)
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where	an	individual	was	either	infected	(zi	=	1)	or	not	(zi	=	0),	and	Ψ,	the	
probability	of	the	ith	individual	being	infected,	depends	on	habitat	type	
(trail	vs.	stream)	and	season	(dry	vs.	wet).	Note	that	the	parameter	Ψ	gives	
rise	to	the	estimate	of	pathogen	prevalence,	i.e.,	the	proportion	of	hosts	
infected,	which	is	the	outcome	from	the	repeated	Bernoulli	process.

We	modelled	the	observed	Bd	infection	on	the	ith	individual	and	
the	jth	swab,	yij,	as:

where	 an	 infection	was	 either	 detected	 (yij	=	1)	 or	 not	 (yij	=	0).	We	
modelled	the	detection	probability,	pi,	as	a	function	of	true,	but	unob-

servable,	Bd	infection	intensity,	xi,	on	the	ith	individual	as:

where	α	is	the	log	odds	of	pathogen	detection	when	infection	inten-

sity	xi	 is	 zero,	 and	β	 is	 the	 scaling	 coefficient	 representing	how	de-

tection	log	odds	changes	with	respect	to	host	infection	intensity.	We	
modelled	the	true	log	Bd	infection	intensity,	xi,	on	the	ith	host	as:

where	the	true	mean	log	infection	intensity,	μi,	was	a	function	of	habi-
tat,	season,	and	true	Bd	infection	state,	zi,	for	the	ith	host:

Above,	σ2	represents	the	standard	deviation	in	Bd	infection	inten-

sities	across	the	host	population.
Lastly,	we	modelled	the	observed	infection	intensity,	wij,	on	the	ith	

individual	and	the	jth	swab	as:

In	 this	case,	σ2error	 represents	 the	measurement	error	of	 the	esti-
mates	for	Bd	infection	intensity	produced	by	the	non-	invasive	swab-

bing	technique.

2.4 | Unadjusted model

To	estimate	 the	parameter	bias	caused	by	pathogen	non-	detection,	
we	fit	 the	same	model	outlined	above	after	removing	the	detection	
probability	and	measurement	error	portions	of	the	model	(Equations	2	
and	6).	We	modified	our	data	by	collapsing	the	host	by	swab	matrix	
in	 two	 key	ways:	 (1)	 if	Bd	was	 detected	on	 any	 swab	 collected	 for	
an	individual	then	that	individual	was	considered	infected,	and	(2)	we	
averaged	the	infection	intensities	across	all	swabs	for	each	host	that	
was	considered	infected.

2.5 | Model fit

We	fit	all	models	using	Bayesian	methods	and	estimated	the	posterior	
distributions	 for	 all	 parameters	 and	 latent	 states	using	Markov	chain	
Monte	Carlo	(MCMC)	implemented	in	JAGS	4.0.0	with	the	jagsUI	pack-
age	(Kellner,	2015)	in	the	R	environment	(R	Core	Team,	2015).	We	used	
vague	priors	 (i.e.,	 normal(0,	0.01)	or	normal(0,	0.368);	 Lunn,	 Jackson,	
Best,	Thomas,	&	Spiegelhalter,	2012)	for	all	parameters.	We	computed	

three	chains	for	each	random	variable	with	diffuse	initial	values.	After	
a	burn-	in	of	10,000	iterations,	we	accumulated	40,000	samples	from	
each	 chain,	 keeping	 every	 50th	 sample.	 We	 assessed	 convergence	
by	visually	inspecting	trace	plots	and	using	the	diagnostics	of	Gelman	
(Brooks	&	Gelman,	1998).	We	used	a	posterior	predictive	check	(here-
after	 Bayesian	 p-	value)	 to	 compare	 the	 observed	 data	 to	 simulated	
datasets	generated	from	the	parameter	estimates	at	each	step	in	the	
MCMC	algorithm.	We	confirmed	that	the	Bayesian	p-	value,	defined	as	
the	probability	 that	 the	 simulated	data	were	more	extreme	 than	 the	
observed	data,	was	 indicative	of	a	good	model	 fit	 (e.g.	Gelman	et	al.,	
2013;	Kéry	&	Schaub,	2012).	Our	observed	data	fit	both	the	sampling	
detection-	adjusted	and	unadjusted	models	well	(see	Figure	1a,	Bayesian	
p-value	=	.79;	Figure	2a,	Bayesian	p-value	=	.41	in	Appendix	S1).

To	 quantify	 effects,	 we	 calculated	 the	 differences	 between	
parameters	 of	 interest	 at	 each	 MCMC	 iteration	 following	 Ruiz-	
Gutiérrez,	Zipkin,	and	Dhondt	(2010).	We	computed	the	proportion	
of	iterations	where	one	parameter	was	greater	than	the	other,	which	
is	directly	 interpreted	as	 the	probability	 (Pr)	 that	one	parameter	 is	
greater	than	the	other.	We	considered	effects	with	large	credible	in-

tervals	to	be	either	unimportant	to	the	process	being	modelled,	or	to	
have	been	estimated	too	imprecisely	to	draw		conclusive	inference.

2.6 | Bd- specific methodological guidance

Given	that	Bd	 infection	may	be	overlooked	on	an	 infected	host,	we	
followed	Kery	(2002)	and	calculated	the	probability	of	detecting	Bd,	
P*,	on	n	identical	and	independent	swabs	or	qPCR	runs	using	the	bi-
nomial	argument:

(2)yij ∼ Bernoulli(pi × zi),

(3)logit(pi) = α + β × xi

(4)log (xi) ∼ normal(μi, σ
2)

(5)μi = log (0.001 + ωhabitati ,seasoni
× zi)

(6)log (wij) ∼ normal( log (xi + 0.001), σ2error)
(7)P

∗
= 1 − (1 − p)n,

FIGURE  1 The	relationship	between	Batrachochytrium 
dendrobatidis (Bd)	detection	probability	and	host	infection	intensity	
caused	by	laboratory	(black	line;	qPCR	error;	Miller	et	al.,	2012)	and	
swabbing	(dark	grey	line)	methods.	This	graph	indicates	that	as	host	
infection	intensity	increases,	pathogen	detection	probability	also	
increases.	The	dark	lines	are	mean	posterior	distribution	estimates,	and	
light	grey	lines	represent	the	95%	credible	interval	around	the	mean
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where	p	was	either	obtained	from	the	sampling	detection-	adjusted	model	
outlined	above	(i.e.,	imperfect	Bd	detection	from	swabbing)	or	from	Miller	
et	al.	 (2012;	 i.e.,	 imperfect	Bd	detection	from	qPCR).	We	modelled	the	
probability	of	detecting	1	ZGE,	3	ZGE,	5	ZGE,	and	10	ZGE.	Our	recom-

mendations	were	based	on	 the	minimum	number	of	 swabs	and	qPCR	
runs	to	be	95%	certain	that	if	Bd	were	present	then	it	would	be	detected.

2.7 | Sampling and diagnostic detection- 
adjusted model

To	provide	general	methodological	guidance,	we	developed	a	novel	
Bayesian	 hierarchical	 model	 that	 simultaneously	 accounts	 for	 im-

perfect	 sampling	 and	 diagnostic	 detection	 of	 the	 pathogen	 (see	
Appendix	S2	for	the	full	model	outline	and	R	code).	We	performed	
a	simulation	study	to	explore	the	ability	of	this	hierarchical	model	to	
estimate	pathogen	prevalence	and	infection	intensity	under	scenar-
ios	of	imperfect	sampling	and	diagnostic	testing	for	a	pathogen.	We	
set	average	infection	intensity	as	either	 low	(μ	=	2)	or	high	(μ	=	20)	
and	 the	 probability	 of	 pathogen	 infection	 as	 either	 low	 (Ψ	=	0.20)	
or	 high	 (Ψ	=	0.80).	We	assumed	 low	population	 infection	 intensity	
standard	 deviation	 (σ2	=	1),	 infection	 intensity	 measurement	 error	
in	sampling	(σ2error	=	1),	and	infection	intensity	measurement	error	of	
the	 diagnostic	 test	 (σ2

diagnostic
	=	1).	We	 set	 the	 log	 odds	 scaling	 co-

efficient	of	pathogen	detection	for	sampling	and	diagnostic	testing	
as	 either	 low	 (-1.38)	 or	 high	 (1.38).	We	 did	 not	 consider	 the	 case	
where	 detection	 probability	 for	 either	 pathogen	 sampling	 or	 diag-

nostic	 testing	 varied	 with	 respect	 to	 true	 infection	 intensity	 (i.e.,	
changing	the	slopes	of	the	relationships).	We	explored	how	varying	
the	 number	 of	 samples	 collected	 per	 host	 (i.e.,	 1,	 2,	 3,	 4)	 and	 the	
number	of	diagnostic	 runs	per	 sample	 (i.e.,	1,	2,	3,	4)	 affected	 the	
bias	 in	 estimated	 parameters	 of	 interest	 (i.e.	 pathogen	 prevalence	
[Ψ]	and	average	infection	intensity	[μ]).	This	resulted	in	256	param-

eter	combinations	(see	Table	2a	in	Appendix	S1).	For	each	parameter	
combination,	we	simulated	50	datasets	of	500	individuals	each	be-

fore	 fitting	 the	model	using	 the	 same	methods	outlined	above.	To	

quantify	the	magnitude	of	parameter	bias	under	each	scenario,	we	
calculated	the	root	mean	squared	error	between	the	posterior	mean	
and	the	actual	parameter	value.

3  | RESULTS

3.1 | Field summary

We	captured	and	swabbed	865	individuals	of	39	species	at	least	once	
(see	Table	1a	 in	Appendix	S1).	We	collected	148	and	99	 swabs	on	
streams	and	trails,	 respectively,	during	the	dry	season,	and	288	and	

TABLE  1 Summary	of	the	posterior	distributions	from	the	
sampling	detection-	adjusted	model.	All	parameters	were	back	
transformed	to	their	original	scale,	except	detection	probability	(logit	
scale)	and	error	estimates

Definition Mean 95% credible interval

ω
Stream	dry 0.13 0.04 0.43

Trail	dry 0.40 0.11 1.39

Stream	wet 0.13 0.02 1.12

Trail	wet 0.16 0.07 0.39

Process	error	(σ2
) 3.17 2.66 3.63

Measurement	error	
(σ2

error
)

1.03 0.81 1.29

Ψ
Stream	dry 0.86 0.57 0.98

Trail	dry 0.67 0.46 0.91

Stream	wet 0.64 0.31 0.95

Trail	wet 0.92 0.73 0.99

Detection	probability

α 0.22 −0.23 0.68

β 0.93 0.67 1.20

F IGURE  2 Given	that	pathogen	
infection	may	be	overlooked	on	an	infected	
individual,	we	calculated	the	probability	of	
detecting	Batrachochytrium dendrobatidis 

(Bd) on n	identical	and	independent	(a)	
swabs	or	(b)	qPCR	runs,	using	a	binomial	
argument,	as	P*	=	1	−	(1	−	p)

n	(Kery,	2002).	
We	model	the	probability	of	detecting	
1	ZGE,	3	ZGE,	5	ZGE,	and	10	ZGE.	The	
dashed	line	indicates	95%	certainty	of	
detecting	the	pathogen	when	it	is	present
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302	 swabs	 on	 streams	 and	 trails,	 respectively,	 during	 the	 two	wet	
seasons.	Of	the	865	individuals,	we	double	swabbed	205	individuals,	
where	102	were	double	swabbed	during	the	dry	season	and	103	were	
double	 swabbed	during	 the	 two	wet	 seasons.	Of	 these	205	double	
swabbed	individuals,	we	detected	Bd	DNA	on	only	one	swab	from	51	
individuals,	and	on	both	swabs	from	25	individuals.

3.2 | Sampling detection- adjusted model

Under	 the	 sampling	 detection-	adjusted	model,	 the	 probability	 of	
being	infected	with	Bd	did	not	differ	between	streams	and	trails	during	
the	wet	season	(Pr(Ψstream,wet > Ψtrail,wet)	=	0.10)	nor	the	dry	season	 
(Pr(Ψstream,dry > Ψtrail,dry)	=	0.93;	 Table	1).	 When	 comparing	 the	
probability	of	being	infected	with	Bd	in	particular	habitat	types	be-

tween	 seasons,	 the	probability	of	being	 infected	with	Bd	 did	not	
differ	 between	wet	 and	 dry	 seasons	 for	 streams	 (Pr(Ψstream,wet > 

Ψstream,dry)	=	0.38),	 but	 it	 did	 differ	 for	 trails	 (Pr(Ψtrail,wet > Ψtrail,dry

)	=	0.98).
Average	 infection	 intensity	 did	 not	 differ	 between	 streams	 and	

trails	during	the	wet	season	(Pr(ωstream,wet > ωtrail,wet)	=	0.85)	nor	the	dry	
season	 (Pr(ωstream,dry > ωtrail,dry)	=	0.14).	When	 comparing	 average	 in-

fection	intensity	in	particular	habitat	types	between	seasons,	average	
infection	intensity	differed	between	wet	and	dry	seasons	for	streams	
(Pr(ωstream,wet > ωstream,dry)	=	0.99)	 but	 not	 for	 trails	 (Pr(ωtrail,wet > 

ωtrail,dry)	=	0.49).
Bd	 detection	 probability	 increased	 as	 host	 infection	 intensity	

	increased	(Figure	1).	Bd	detection	probability	was	c.	99.99%	at	an	in-

fection	intensity	of	10	ZGE	(Figure	1).

3.3 | Unadjusted model

Contrary	 to	 the	 sampling	detection-	adjusted	model,	 the	unadjusted	
model	revealed	that	the	probability	of	being	infected	with	Bd	differed	
between	streams	and	trails	only	during	the	wet	(Pr(Ψstream,wet > Ψtrail,we
t)	=	0.03)	but	not	during	the	dry	season	(Pr(Ψstream,dry > Ψtrail,dry)	=	0.84;	
Table	2).	In	contrast,	when	comparing	habitat	types	between	seasons,	

the	probability	of	being	infected	with	Bd	did	not	differ	between	wet	
and	 dry	 seasons	 for	 streams	 (Pr(Ψstream,wet > Ψstream,dry)	=	0.12)	 nor	
trails	 (Pr(Ψtrail,wet > Ψtrail,dry)	=	0.92),	 which	 is	 similar	 to	 the	 sampling	
detection-	adjusted	model.

Again,	similar	to	the	sampling	detection-	adjusted	model,	average	
infection	intensity	from	the	unadjusted	model	did	not	differ	between	
streams	and	 trails	during	 the	wet	 season	 (Pr(ωstream,wet > ωtrail,wet)	=	0
.91)	nor	the	dry	season	(Pr(ωstream,dry > ωtrail,dry)	=	0.49).	 In	contrast	to	
the	sampling	detection-	adjusted	model,	average	infection	intensity	did	
not	 differ	 between	wet	 and	dry	 seasons	 for	 streams	 (Pr(ωstream,wet > 

ωstream,dry)	=	0.93)	nor	trails	(Pr(ωtrail,wet > ωtrail,dry)	=	0.60).

3.4 | Sampling detection- adjusted model vs. 
unadjusted model

All	 four	 of	 the	Ψ	 parameters	 estimates,	 quantifying	 the	 probability	
of	 being	 infected	 with	Bd,	 from	 the	 unadjusted	model	 were	 lower	
than	the	parameter	estimates	 from	the	sampling	detection-	adjusted	
model	(all	Pr(Ψadjusted > Ψunadjusted)	<	0.05).	Likewise,	all	of	the	param-

eter	estimates	for	average	infection	intensity,	ω,	from	the	unadjusted	
model	were	 higher	 than	 the	 sampling	 detection-	adjusted	model	 (all	 
Pr(ωadjusted > ωunadjusted)	>	0.95).

3.5 | Bd- specific methodological guidance

To	be	95%	certain	that	1	ZGE	is	present	on	a	host	and	that	it	is	de-

tected	 using	 non-	invasive	 skin	 swabs,	 at	 least	 four	 swabs	 need	 to	
be	collected.	While,	 to	be	95%	certain	that	3	or	5	ZGE	are	present	
and	 detected,	 at	 least	 two	 swabs	 need	 to	 be	 collected	 (Figure	2).	
On	 the	 contrary,	 non-	invasive	 skin	 swabs	 can	 detect	 10	 ZGE	with	
greater	than	95%	certainty	using	only	a	single	skin	swab.	To	be	95%	
certain	 that	1,	3,	5,	or	10	ZGE	are	present	on	a	host	and	detected	
using	qPCR,	at	 least	two	qPCR	runs	need	be	performed	per	sample	
collected	(Figure	2).

3.6 | Sampling and diagnostic detection- 
adjusted model

The	estimated	probability	of	pathogen	 infection,	Ψ,	was	 less	biased	
and	more	precise	when	average	 infection	 intensity,	μ,	was	high	and	
when	both	contributors	to	pathogen	detection	probability—sampling	
methods	and	laboratory	diagnostic	testing—were	high	(Figure	3;	see	
Figure	3a	 in	Appendix	S1).	 In	general,	 the	 root	mean	 squared	error	
of	pathogen	prevalence	decreased	more	rapidly	when	the	number	of	
samples	increased	rather	than	the	number	of	diagnostic	tests	in	most	
scenarios	(Figure	3).

Similarly,	estimated	average	infection	intensity,	μ,	was	less	biased	
and	more	precise	when	the	probability	of	pathogen	infection,	Ψ,	was	
high	and	at	high	values	of	pathogen	detection	probability	 (Figure	4;	
see	Figure	4a	in	Appendix	S1).	In	general,	the	root	mean	squared	error	
of	 the	 estimated	 infection	 intensity	was	 similarly	 impacted	 if	 either	
the	number	of	samples	collected	or	the	number	of	diagnostic	runs	in-

creased	(Figure	4).

TABLE  2 Summary	of	the	posterior	distribution	from	the	
unadjusted	model.	All	parameters	were	back	transformed	to	their	
original	scale

Definition Mean 95% credible interval

ω
Stream	dry 0.71 0.38 1.34

Trail	dry 1.77 1.18 2.65

Stream	wet 1.33 0.50 3.36

Trail	wet 1.32 0.91 1.96

Ψ
Stream	dry 0.30 0.23 0.37

Trail	dry 0.28 0.23 0.34

Stream	wet 0.21 0.14 0.30

Trail	wet 0.33 0.28 0.39
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4  | DISCUSSION

4.1 | Implications for wildlife disease ecology

Our	results	demonstrate	that	non-	invasive	skin	swabbing	imperfectly	
detects	Bd	 and	 that	Bayesian	hierarchical	models	 can	 adjust	 preva-
lence	 and	 average	 infection	 intensity	 for	 low-	level	 pathogen	 infec-
tions	that	are	missed.	The	bias	caused	by	pathogen	non-	detection	can	
affect	 disease	 inference,	 especially	 in	 regions	where	 hosts	 harbour	
low- level Bd	infections,	such	as	in	enzootic	populations.

Imperfect	 pathogen	 detection	 threatens	 the	 success	 of	 dis-
ease	monitoring	 programs	 intended	 to	 prevent	 pathogen	 invasion	
(e.g.	 Langwig	 et	al.,	 2015).	 For	 example,	 the	 recent	 emergence	 of	
Batrachochytrium salamandrivorans	 (hereafter	 Bsal;	 Martel	 et	al.,	
2013),	 the	only	 known	sister	 taxa	of	 the	amphibian-	killing	 fungus,	
Bd	(Longcore	et	al.,	1999),	threatens	salamander	biodiversity	world-

wide	and	 is	 lethal	 to	 some	of	 the	New	World	 salamandrid	 species	
(genera:	Taricha and Notophthalmus;	Martel	et	al.,	2014).	The	United	
States	 has	 taken	 precautionary	measures	 to	 prevent	 the	 arrival	 of	
Bsal	 into	 its	 borders	 by	 restricting	 the	 movement	 of	 salamanders	
under	the	Lacey	Act	(18	U.S.C.	42).	The	techniques	used	to	sample	
and	diagnose	Bsal	are	similar	 to	those	used	to	test	 for	Bd,	 such	as	
non-	invasive	skin	swabs	tested	by	qPCR	(Hyatt	et	al.,	2007;	Martel	

et	al.,	2013).	At	some	point,	a	second	precautionary	step	would	be	
to	require	that	salamanders	obtain	health	certificates	to	move	across	
borders.	But,	given	the	results	of	this	study,	there	 is	a	chance	that	
low- level Bsal	 infections	will	 be	missed.	 If	Bsal	 detection	probabil-
ity	 is	similar	 to	Bd,	 then	we	expect	 that	Bsal	 infections	 less	than	5	
ZGE	will	likely	be	missed	up	with	a	certainty	of	95%	by	a	single	non-	
invasive	skin	swab;	similarly,	qPCR	will	detect	infections	less	than	10	
ZGE	approximately	81%	of	the	time	if	only	one	qPCR	run	were	per-
formed.	This	 is	 especially	 concerning	when	 importing	 salamanders	
from	Eastern	Asia,	where	salamanders	typically	have	Bsal	 infection	
intensities	less	than	30	zoospores	(Martel	et	al.,	2014)	and	Bsal prev-

alence	is	 low	(i.e.,	<10%;	Laking,	Ngo,	Pasmans,	Martel,	&	Nguyen,	
2017;	Martel	et	al.,	2014).

In	El	Copé,	Panama,	where	Bd	is	now	enzootic,	most	individuals	
were	infected	(average	Bd prevalence c.	64%–92%)	and	carried	low-	
level	 infections	 (<10	ZGE),	which	 is	 similar	 to	other	 regions	 in	 the	
Americas	(James	et	al.,	2015).	In	the	1990s,	as	Bd	spread	worldwide,	
many	amphibian	populations	experienced	mass	mortality	events	and	
population	declines	 (e.g.	Berger,	Hyatt,	Speare,	&	Longcore,	2005;	
Lips	et	al.,	2006;	Muths,	Corn,	Pessier,	&	Green,	2003;	Vredenburg,	
Knapp,	Tunstall,	&	Briggs,	2010).	In	many	of	these	areas	today,	am-

phibians	persist	with	enzootic	Bd	infections,	and	disease	ecologists	
are	interested	in	explaining	the	ecological	patterns	of	infection	and	

F IGURE  3 Root	mean	square	error	of	estimated	pathogen	prevalence	(Ψ)	over	different	scenarios	of	known	high	and	low	pathogen	
prevalence (Ψ),	average	infection	intensity	(μ),	pathogen	log	odds	of	detection	by	sampling	method	(β

0
),	and	pathogen	log	odds	of	detection	by	

laboratory	diagnostics	(γ
0
)	as	the	number	of	samples	(1–4)	and	number	of	diagnostic	runs	(1–4)	vary
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host–pathogen	 coexistence.	 If	 disease	 ecologists	 do	 not	 correct	
for	 imperfect	 pathogen	 detection,	 then	 estimates	 of	 disease	 will	
be	 biased,	 and	 in	 some	 cases,	 covariates	 that	 affect	 the	 sampling	
process	may	 end	 up	 in	 the	 ecological	 process	model	 (e.g.	 Kéry	 &	
Schaub,	2012).	 In	 this	 study,	 our	 conclusions	on	Bd	 probability	of	
infection	and	infection	intensity	with	respect	to	habitat	and	seasons	
were	 predominately	 similar	 regardless	 of	 whether	 we	 accounted	
for	imperfect	pathogen	detection,	which	is	not	surprising	given	the	
“noisy”	estimates	for	these	covariates.	However,	the	parameter	esti-
mates	from	the	sampling	detection-	adjusted	and	unadjusted	model	
differed	significantly	with	respect	to	precision	and	bias,	which	em-

phasises	the	importance	of	accounting	for	imperfect	pathogen	sam-

pling.	 If	overlooked,	even	small	 frequencies	of	 false	negatives	can	
lead	to	inaccurate	inference	and	biased	conclusions.

4.2 | Bd- specific methodological guidance

In	the	case	of	Bd,	we	found	that	the	greatest	pathogen	detection	bias	
was	caused	when	host	infection	intensity	was	low,	as	expected.	We	
highlight	that	pathogen	detection	probability	 is	 lower	than	reported	
from	only	the	double	swab	data	because	total	imperfect	pathogen	de-

tection	depends	on	both	pathogen	detection	probability	of	the	labo-

ratory	 diagnostic	 tests	 (i.e.,	 qPCR;	 Lachish	 et	al.,	 2012;	Miller	 et	al.,	
2012)	 and	 sampling	methods	 (i.e.,	 swabbing;	 e.g.	 Thompson,	 2007;	

Figure	1).	 These	 results	 indicate	 that	 replication	 of	 samples	 in	 both	
sampling	 and	 laboratory	 methods	 are	 critical	 to	 minimise	 observa-
tional	uncertainty,	especially	when	pathogen	prevalence	and	infection	
intensity	are	expected	to	be	low.	This	is	the	case	in	both	enzootics	and	
in	the	invasion	phase	of	an	epizootic	(Langwig	et	al.,	2015).

We	recognise	the	increase	cost	and	effort	needed	to	analyse	more	
swab	samples	 in	replicate;	 therefore,	we	suggest	collecting	replicate	
swabs	when	possible	 because	 if	 the	 results	 from	 the	 first	 swab	 set	
shows	 few	pathogen	detections,	 low	pathogen	prevalence,	 and	 low	
host	infection	intensity,	 it	may	be	worth	analysing	the	second	set	to	
calculate	false	negative	error	rates.

4.3 | General methodological guidance

Applying	the	sampling	and	diagnostic	detection-	adjusted	model,	we	find	
that	there	are	trade-	offs,	for	a	fixed	effort,	in	precision	and	accuracy	of	
pathogen	prevalence	and	average	infection	intensity	estimates.	Although	
our	simulation	study	provides	general	methodological	guidance	under	
different	sampling	scenarios,	these	results	must	be	considered	in	combi-
nation	with	common	sense	and	expert	knowledge	of	the	study	system.	
For	example,	researchers	must	consider	the	cost	and	time	constraints	of	
collecting	multiple	samples	per	individual	and	running	multiple	diagnos-
tic	tests	per	sample,	as	well	as	the	trade-	offs	between	sampling	breadth	
and	accuracy.	Given	that	the	magnitude	of	bias	depends	on	the	study	

F IGURE  4 Root	mean	square	error	of	estimated	average	infection	intensity	(μ)	over	different	scenarios	of	known	high	and	low	pathogen	
prevalence (Ψ),	average	infection	intensity	(μ),	pathogen	log	odds	of	detection	by	sampling	methods	(β

0
),	and	pathogen	log	odds	of	detection	by	

laboratory	diagnostics	(γ
0
)	as	the	number	of	field	samples	(1–4)	and	number	of	diagnostic	runs	(1–4)	vary
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system,	 type	of	 infection,	and	false	negative	error	 rates,	we	advocate	
that	the	most	cautious	approach	is	to	assume	all	errors	are	possible	and	
to	accommodate	them	by	adjusting	sampling	designs.	Using	the	R	code	
provided	in	Appendix	S2	as	a	foundation,	it	may	be	worthwhile	to	simu-

late	study-	specific	scenarios	to	understand	the	trade-	offs	between	ef-
ficiency	and	robustness	of	particular	study	designs.

The	models	we	present	here	can	be	applied	to	designing	studies	
and	analysing	data	for	other	emerging	infectious	fungal	diseases,	such	
as	white-	nose	syndrome	(Langwig	et	al.,	2015),	snake	fungal	disease	
(Tetzlaff,	Allender,	Ravesi,	&	Smith,	2015),	and	 the	salamander	 fun-

gus	(Bsal;	Martel	et	al.,	2014).	Similar	to	detecting	Bd	on	amphibian	
skin,	each	of	these	study	systems	is	typified	by	the	collection	of	non-	
invasive	skin	samples	and	using	qPCR	analysis	to	test	for	pathogen	
presence	and	infection	intensity,	subjecting	them	to	similar	kinds	of	
detection	errors	as	the	Bd-	amphibian	system.	Should	these	infectious	
diseases	spread	from	their	initial	distributions,	it	will	be	critical	to	be	
able	to	compare	disease	status	and	dynamics	across	studies	with	re-

spect	to	biotic	and	abiotic	covariates.	This	will	require	unbiased	and	
precise	estimates	of	key	epidemiological	parameters,	such	as	patho-

gen	prevalence	and	 infection	 intensity.	By	accounting	 for	detection	
errors	arising	from	sampling	and	diagnostic	tests,	we	can	more	readily	
compare	disease	inference	among	systems	and	species.

ACKNOWLEDGEMENTS

We	thank	N.	Angeli,	A.	Cunha,	C.	Johnston,	E.	Kabay,	C.	Muletz,	J.	Ray,	
and	T.	Tunstall	for	help	in	the	field.	We	thank	L.	Browne	and	S.	Saunders	
for	help	on	previous	drafts.	We	also	thank	three	anonymous	review-

ers	and	the	editor	for	greatly	improving	the	quality	of	the	manuscript.	
Animal	use	and	collection	was	approved	by	the	University	of	Maryland	
IACUC	(Protocol	no.:	R-	12-	05),	permits	from	the	Autoridad	Nacional	Del	
Ambiente	 (no.:	 SE/AH-	3-	12),	 and	 the	 Smithsonian	Tropical	 Research	
Institute.	 This	 work	 was	 funded	 by	 a	 National	 Science	 Foundation	
Graduate	Research	Fellowship	to	G.V.D.	and	grants	from	the	University	
of	Maryland	 Latin-	American	 Studies	 office	 and	 the	National	 Science	
Foundation	(DEB	no.	1120161)	to	K.R.L.	and	K.R.Z.	This	is	contribution	
number	602	of	the	Amphibian	Research	and	Monitoring	and	Initiative	
(ARMI).	There	is	no	conflict	of	interest	among	authors.

AUTHORS’ CONTRIBUTIONS

G.V.D.	helped	in	designing	the	study,	collected	and	analysed	sam-

ples	in	the	laboratory,	formulated	the	models,	and	wrote	the	first	
draft	of	the	paper.	K.R.L.	helped	design	the	study	and	collect	sam-

ples.	A.V.L.	and	K.R.Z.	helped	analyze	the	samples	 in	the	 labora-

tory.	C.C.C.	helped	formulate	the	models.	E.H.C.G.	helped	design	
the	study	and	formulate	the	models.	All	authors	contributed	sub-

stantially	to	manuscript	revisions.

DATA ACCESSIBILITY

The	data	used	 in	the	analysis	for	the	main	text	can	be	found	online	
at	the	Dryad	Digital	Repository	https://doi.org/10.5061/dryad.p1006	

(DiRenzo	et	al.,	2017).	Simulation	data	can	be	generated	using	code	
in	Appendix	 S2,	 and	 all	 the	 R	 scripts	 used	 to	 analyse	 the	 data	 and	
create	figures	can	be	found	on	the	Github	repository	https://github.
com/Grace89/ImperfectPathogenDetection_MEES.	This	repository	is	
citable	using:	https://doi.org/10.5281/zenodo.840132.

ORCID

Graziella V. DiRenzo  http://orcid.org/0000-0001-5264-4762

Evan H. Campbell Grant  http://orcid.org/0000-0003-4401-6496

REFERENCES

Berger,	L.,	Hyatt,	A.	D.,	Speare,	R.,	&	Longcore,	J.	E.	(2005).	Life	cycle	stages	
of	 the	 amphibian	 chytrid	Batrachochytrium dendrobatidis. Diseases of 
Aquatic Organisms,	68,	51–63.

Boyle,	D.	G.,	Boyle,	D.	B.,	Olsen,	V.,	Morgan,	J.	A.	T.,	&	Hyatt,	A.	D.	(2004).	
Rapid	 quantitative	 detection	 of	 chytridiomycosis.	Diseases of Aquatic 
Organisms,	60,	141–148.

Brem,	F.,	&	Lips,	K.	 (2008).	Batrachochytrium dendrobatidis	 infection	pat-
terns	among	Panamanian	amphibian	 species,	habitats	and	elevations	
during	epizootic	and	enzootic	stages.	Diseases of Aquatic Organisms,	81,	
189–202.

Briggs,	C.	J.,	Knapp,	R.	A.,	&	Vredenburg,	V.	T.	(2010).	Enzootic	and	epizootic	
dynamics	of	the	chytrid	fungal	pathogen	of	amphibians.	Proceedings of 
the National Academy of Sciences of the United States of America,	107,	
9695–9700.

Brooks,	S.	P.,	&	Gelman,	A.	(1998).	General	methods	for	monitoring	conver-
gence	of	 iterative	simulations.	Journal of Computational and Graphical 
Statistics,	7,	434–455.

Cheng,	T.	L.,	Rovito,	S.	M.,	Wake,	D.	B.,	&	Vredenburg,	V.	T.	(2011).	Coincident	
mass	extirpation	of	neotropical	amphibians	with	the	emergence	of	the	
infectious	fungal	pathogen	Batrachochytrium dendrobatidis. Proceedings 
of the National Academy of Sciences of the United States of America,	108,	
9502–9507.

Colvin,	M.	E.,	Peterson,	J.	T.,	Kent,	M.	L.,	&	Schreck,	C.	B.	(2015).	Occupancy	
modeling	for	improved	accuracy	and	understanding	of	pathogen	prev-
alence	and	dynamics.	PLoS ONE,	10,	e0116605.

Cooch,	E.	G.,	Conn,	P.	B.,	Ellner,	S.	P.,	Dobson,	A.	P.,	&	Pollock,	K.	H.	(2011).	
Disease	dynamics	in	wild	populations:	Modeling	and	estimation:	A	re-

view. Journal of Ornithology,	152,	485–509.
DiRenzo,	 G.	 V.,	 Campbell	 Grant,	 E.	 H.,	 Longo,	 A.	 V.,	 Che-Castaldo,	 C.,	

Zamudio,	K.	R.,	&	Lips,	K.	R.	 (2017).	Data	 from:	 Imperfect	 pathogen	
detection	from	non-	invasive	skin	swabs	biases	disease	inference.	Dryad 
Digital Repository,	https://doi.org/10.5061/dryad.p1006

Drewe,	J.	A.,	Dean,	G.	S.,	Michel,	A.	 L.,	&	Pearce,	G.	P.	 (2009).	Accuracy	
of	 three	 diagnostic	 tests	 for	 determining	Mycobacterium bovis	 infec-
tion	status	in	live-	sampled	wild	meerkats	(Suricata suricatta). Journal of 
Veterinary Diagnostic Investigation,	21,	31–39.

Enoe,	C.,	Georgiadis,	M.	P.,	&	Johnson,	W.	O.	(2000).	Estimation	of	sensi-
tivity	and	specificity	of	diagnostic	tests	and	disease	prevalence	when	
the	true	disease	statue	is	unknown.	Preventive Veterinary Medicine,	45,	
61–81.

Fisher,	M.	C.,	Garner,	T.	W.	J.,	&	Walker,	 S.	 F.	 (2009).	Global	 emergence	
of	Batrachochytrium dendrobatidis	 and	 amphibian	 chytridiomycosis	 in	
space,	time,	and	host.	Annual Review of Microbiology,	63,	291–310.

Gelman,	A.,	Carlin,	J.	B.,	Stern,	H.	S.,	Dunson,	D.	B.,	Vehtari,	A.,	&	Rubin,	D.	
B.	(2013).	Bayesian data analysis.	Boca	Raton,	FL:	CRC	Press.

Gómez	Díaz,	E.,	Doherty,	P.	F.,	Duneau,	D.,	&	McCoy,	K.	D.	(2010).	Cryptic	
vector	 divergence	 masks	 vector-	specific	 patterns	 of	 infection:	 An	
example	 from	 the	 marine	 cycle	 of	 Lyme	 borreliosis.	 Evolutionary 
Applications,	3,	391–401.

https://doi.org/10.5061/dryad.p1006
https://github.com/Grace89/ImperfectPathogenDetection_MEES
https://github.com/Grace89/ImperfectPathogenDetection_MEES
https://doi.org/10.5281/zenodo.840132
http://orcid.org/0000-0001-5264-4762
http://orcid.org/0000-0003-4401-6496
http://orcid.org/0000-0003-4401-6496
https://doi.org/10.5061/dryad.p1006


10  |    Methods in Ecology and Evolu!on DIRENZO Et al.

Greiner,	M.,	&	Gardner,	I.	A.	(2000).	Epidemiologic	issues	in	the	validation	
of	veterinary	diagnostic	tests.	Preventive Veterinary Medicine,	45,	3–22.

Hyatt,	A.	D.,	Boyle,	D.	G.,	Olsen,	V.,	Boyle,	D.	B.,	Berger,	L.,	Obendorf,	D.,	
…	 Colling,	 A.	 (2007).	 Diagnostic	 assays	 and	 sampling	 protocols	 for	
the	 detection	 of	 Batrachochytrium dendrobatidis. Diseases of Aquatic 
Organisms,	73,	175–192.

James,	T.	Y.,	 Toledo,	 L.	 F.,	 Rödder,	 D.,	 da	 Silva	 Leite,	 D.,	 Belasen,	A.	M.,	
Betancourt-Román,	C.	M.,	…	Longcore,	J.	E.	(2015).	Disentangling	host,	
pathogen,	and	environmental	determinants	of	a	recently	emerged	wild-

life	disease:	Lessons	from	the	first	15	years	of	amphibian	chytridiomy-
cosis	research.	Ecology and Evolution,	5,	4079–4097.

Kellner,	 K.	 (2015).	 jagsUI:	A	wrapper	 around	 ‘rjags’	 to	 streamline	 ‘JAGS’	
analyses.	 r	 package	 version	 1.3.7.	 http://CRAN.R-project.org/
package=jagsUI.

Kery,	M.	(2002).	Inferring	the	absence	of	a	species	–	A	case	study	of	snakes.	
Journal of Wildlife Management,	66,	330–338.

Kéry,	M.,	&	Schaub,	M.	(2012).	Bayesian population analysis using WinBUGS: 
A hierarchical perspective.	Oxford,	UK:	Elsevier.

Knowles,	S.	C.	L.,	Wood,	M.	J.,	Alves,	R.,	Wilkin,	T.	A.,	Bensch,	S.,	&	Sheldon,	
B.	C.	(2011).	Molecular	epidemiology	of	malaria	prevalence	and	para-
sitaemia	in	a	wild	bird	population.	Molecular Ecology,	20,	1062–1076.

Kriger,	K.	M.,	&	Hero,	J.	M.	 (2006).	Large-	scale	 seasonal	variation	 in	 the	
prevalence	 and	 severity	 of	 chytridiomycosis.	 Journal of Zoology,	271,	
352–359.

Kriger,	K.	M.,	Hero,	J.,	&	Ashton,	K.	J.	(2006).	Cost	efficiency	in	the	detec-
tion	of	chytridiomycosis	using	PCR	assay.	Diseases of Aquatic Organisms,	
71,	149–154.

Lachish,	S.,	Gopalaswamy,	A.	M.,	Knowles,	S.	C.	L.,	&	Sheldon,	B.	C.	(2012).	
Site-	occupancy	modelling	as	a	novel	framework	for	assessing	test	sen-

sitivity	and	estimating	wildlife	disease	prevalence	from	imperfect	diag-
nostic	tests.	Methods in Ecology and Evolution,	3,	339–348.

Lachish,	S.,	Jones,	M.,	&	McCallum,	H.	(2007).	The	impact	of	disease	on	the	
survival	and	population	growth	rate	of	the	Tasmanian	devil.	Journal of 
Animal Ecology,	76,	926–936.

Laking,	A.	E.,	Ngo,	H.	N.,	Pasmans,	F.,	Martel,	A.,	&	Nguyen,	T.	T.	 (2017).	
Batrachochytrium salamandrivorans	 is	 the	predominant	chytrid	fungus	
in	Vietnamese	salamanders.	Scientific Reports,	7,	44443.

Langwig,	K.	E.,	Frick,	W.	F.,	Reynolds,	R.,	Parise,	K.	L.,	Drees,	K.	P.,	Hoyt,	J.	
R.,	…	Kilpatrick,	A.	M.	(2015).	Host	and	pathogen	ecology	drive	the	sea-
sonal	dynamics	of	a	fungal	disease,	white-	nose	syndrome.	Proceedings 
of the Royal Society B,	282,	20142335.

Langwig,	K.	E.,	Voyles,	J.,	Wilber,	M.	Q.,	Frick,	W.	F.,	Murray,	K.	A.,	Bolker,	
B.	 M.,	 …	 Kilpatrick,	 A.	 M.	 (2015).	 Context-	dependent	 conservation	
responses	 to	 emerging	wildlife	 diseases.	 Frontiers in Ecology and the 
Environment,	13,	195–202.

Lips,	K.	R.,	Brem,	F.,	Brenes,	R.,	Reeve,	J.	D.,	Alford,	R.	A.,	Voyles,	J.,	…	Collins,	
J.	P.	(2006).	Emerging	infectious	disease	and	the	loss	of	biodiversity	in	a	
Neotropical	amphibian	community.	Proceedings of the National Academy 
of Sciences of the United States of America,	103,	3165–3170.

Lips,	K.	R.,	Reeve,	J.	D.,	&	Witters,	L.	R.	 (2003).	Ecological	 traits	predict-
ing	 amphibian	 population	 declines	 in	 Central	 America.	 Conservation 
Biology,	17,	1078–1088.

Longcore,	J.	E.,	Pessier,	A.	P.,	&	Nichols,	D.	K.	(1999).	Batrachochytrium den-
drobatidis	gen	et	sp	nov,	a	chytridpathogenic	to	amphibians.	Mycologia,	
91,	219–227.

Lunn,	D.,	Jackson,	C.,	Best,	N.,	Thomas,	A.,	&	Spiegelhalter,	D.	(2012).	The 
BUGS book: A practical introduction to Bayesian analysis.	Boca	Raton,	FL:	
CRC	Press.

Martel,	A.,	Blooi,	M.,	Adriaensen,	C.,	Van	Rooij,	P.,	Beukema,	W.,	Fisher,	M.	
C.,	…	Pasmans,	F.	(2014).	Recent	introduction	of	a	chytrid	fungus	en-

dangers	Western	Palearctic	salamanders.	Science,	346,	630–631.
Martel,	 A.,	 Spitzen-van	 der	 Sluijs,	 A.,	 Blooi,	 M.,	 Bert,	W.,	 Ducatelle,	 R.,	

Fisher,	M.	C.,	…	Pasmans,	F.	(2013).	Batrachochytrium salamandrivorans 

sp.	 nov.	 causes	 lethal	 chytridiomycosis	 in	 amphibians.	Proceedings of 
the National Academy of Sciences,	110,	15325–15329.

Miller,	D.	A.	W.,	Talley,	B.	L.,	Lips,	K.	R.,	&	Campbell	Grant,	E.	H.	 (2012).	
Estimating	patterns	and	drivers	of	 infection	prevalence	and	 intensity	
when	 detection	 is	 imperfect	 and	 sampling	 error	 occurs.	Methods in 
Ecology and Evolution,	3,	850–859.

Muths,	E.,	Corn,	P.	 S.,	Pessier,	A.	P.,	&	Green,	D.	E.	 (2003).	Evidence	 for	
disease	related	amphibian	decline	in	Colorado.	Biological Conservation,	
110,	357–365.

Olson,	D.	H.,	Aanensen,	D.	M.,	Ronnenberg,	K.	L.,	Powell,	C.	I.,	Walker,	S.	
F.,	 Bielby,	 J.,	…	 Fisher,	M.	C.	 (2013).	Mapping	 the	 global	 emergence	
of	Batrachochytrium dendrobatidis,	the	amphibian	chytrid	fungus.	PLoS 
ONE,	8,	e56802.

R	 Core	 Team.	 (2015).	 R: A language and environment for statistical com-
puting.	 Vienna,	 Austria:	 R	 Foundation	 for	 Statistical	 Computing.	 
http://www.R-project.org/.

Ritacco,	V.,	 Lopez,	 B.,	Dekantor,	 I.	N.,	 Barrera,	 L.,	 Errico,	 F.,	 &	Nader,	A.	
(1991).	Reciprocal	 cellular	 and	humoral	 immune-	responses	 in	bovine	
tuberculosis.	Research in Veterinary Science,	50,	365–367.

Royle,	J.	A.,	&	Nichols,	J.	D.	(2003).	Estimating	abundance	from	repeated	
presence-	absence	data	or	point	counts.	Ecology,	84,	777–790.

Ruiz-Gutiérrez,	V.,	Zipkin,	E.	F.,	&	Dhondt,	A.	(2010).	Occupancy	dynam-

ics	 in	 a	 tropical	 bird	 community:	 Unexpectedly	 high	 forest	 use	 by	
birds	 classified	 as	non-	forest	 species.	 Journal of Applied Ecology,	47,	
621–630.

Tetzlaff,	S.,	Allender,	M.,	Ravesi,	M.,	&	Smith,	J.	(2015).	First	report	of	snake	
fungal	 disease	 from	Michigan,	 USA	 involving	Massasaugas,	 Sistrurus 
catenatus	(Rafinesque	1818).	Herpetology Notes,	8,	31–33.

Thompson,	K.	G.	(2007).	Use	of	site	occupancy	models	to	estimate	preva-
lence	of	Myxobolus cerebralis	infection	in	trout.	Journal of Aquatic Animal 
Health,	19,	8–13.

Toft,	N.,	Jørgensen,	E.,	&	Højsgaard,	S.	(2005).	Diagnosing	diagnostic	tests:	
Evaluating	 the	 assumptions	 underlying	 the	 estimation	 of	 sensitivity	
and	specificity	in	the	absence	of	a	gold	standard.	Preventive Veterinary 
Medicine,	68,	19–33.

Valkiunas,	 G.,	 Iezhova,	 T.	 A.,	 Krizanauskiene,	 A.,	 Palinauskas,	 V.,	 Sehgal,	
R.	N.	M.,	&	Bensch,	S.	(2008).	A	comparative	analysis	of	micropscopy	
and	 PCR-	based	 detection	 methods	 for	 blood	 parasites.	 Journal of 
Parasitology,	94,	1395–1401.

Vredenburg,	 V.	 T.,	 Knapp,	 R.	 A.,	 Tunstall,	 T.	 S.,	 &	 Briggs,	 C.	 J.	 (2010).	
Dynamics	of	an	emerging	disease	drive	large-	scale	amphibian	popula-
tion	extinctions.	Proceedings of the National Academy of Sciences of the 
United States of America,	107,	9689–9694.

Wake,	D.	B.,	&	Vredenburg,	V.	T.	(2008).	Are	we	in	the	midst	of	the	sixth	
mass	extinction?	A	view	from	the	world	of	amphibians.	Proceedings of 
the National Academy of Sciences of the United States of America,	105,	
11466–11473.

SUPPORTING INFORMATION

Additional	 Supporting	 Information	may	 be	 found	 online	 in	 the	 sup-

porting	information	tab	for	this	article.

How to cite this article:	DiRenzo	GV,	Campbell	Grant	EH,	
Longo	AV,	Che-Castaldo	C,	Zamudio	KR,	Lips	KR.	Imperfect	
pathogen	detection	from	non-	invasive	skin	swabs	biases	
disease	inference.	Methods Ecol Evol. 2017;00:1–10.  

https://doi.org/10.1111/2041-210X.12868

http://CRAN.R-project.org/package=jagsUI
http://CRAN.R-project.org/package=jagsUI
http://www.R-project.org/
https://doi.org/10.1111/2041-210X.12868


Fungal Infection Intensity and Zoospore Output of
Atelopus zeteki, a Potential Acute Chytrid Supershedder
Graziella V. DiRenzo1*, Penny F. Langhammer2, Kelly R. Zamudio3, Karen R. Lips1

1 Department of Biology, University of Maryland, College Park, Maryland, United States of America, 2 School of Life Sciences, Arizona State University, Tempe, Arizona,

United States of America, 3 Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, United States of America

Abstract

Amphibians vary in their response to infection by the amphibian-killing chytrid fungus, Batrachochytrium dendrobatidis (Bd).
Highly susceptible species are the first to decline and/or disappear once Bd arrives at a site. These competent hosts likely
facilitate Bd proliferation because of ineffective innate and/or acquired immune defenses. We show that Atelopus zeteki, a
highly susceptible species that has undergone substantial population declines throughout its range, rapidly and
exponentially increases skin Bd infection intensity, achieving intensities that are several orders of magnitude greater than
most other species reported. We experimentally infected individuals that were never exposed to Bd (n = 5) or previously
exposed to an attenuated Bd strain (JEL427-P39; n = 3). Within seven days post-inoculation, the average Bd infection
intensity was 18,213 zoospores (SE: 9,010; range: 0 to 66,928). Both average Bd infection intensity and zoospore output (i.e.,
the number of zoospores released per minute by an infected individual) increased exponentially until time of death
(t50 = 7.018, p,0.001, t46 = 3.164, p = 0.001, respectively). Mean Bd infection intensity and zoospore output at death were
4,334,422 zoospores (SE: 1,236,431) and 23.55 zoospores per minute (SE: 22.78), respectively, with as many as 9,584,158
zoospores on a single individual. The daily percent increases in Bd infection intensity and zoospore output were 35.4% (SE:
0.05) and 13.1% (SE: 0.04), respectively. We also found that Bd infection intensity and zoospore output were positively
correlated (t43 = 3.926, p,0.001). All animals died between 22 and 33 days post-inoculation (mean: 28.88; SE: 1.58). Prior Bd
infection had no effect on survival, Bd infection intensity, or zoospore output. We conclude that A. zeteki, a highly
susceptible amphibian species, may be an acute supershedder. Our results can inform epidemiological models to estimate
Bd outbreak probability, especially as they relate to reintroduction programs.
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Introduction

Differences in amphibian susceptibility to Batrochochytrium
dendrobatidis (Bd) infection were evident since the pathogen was
first described [1,2]. Species-specific responses to infection range
from tolerant [3,4] or resistant [5] to highly susceptible [6,7],
suggesting that a subset of species can disproportionately affect
pathogen spread and disease transmission [8,9]. Yet, we know
relatively little about contact rates, infectivity, and zoospore output
of Bd’s amphibian hosts in either the field or laboratory.

Differences in species transmission rates can cause variations in
pathogen spread and dispersal in the wild [10–12]. One
illustration of the potential effects of variable inter-specific
interactions are superspreaders [8], individuals or species respon-
sible for a greater than average number of secondary infections
[8,12,13]. Superspreading occurs under two scenarios: (1) super-
contacters transmit more disease by making more contacts in the
population per individual, or (2) supershedders transmit more
disease per contact (reviewed by [14]). To date, the primary
evidence for superspreading stems from supercontacters (e.g., [15–
17]); but growing evidence shows that species vary consistently in

pathogen infection intensities (e.g., [18,19]), especially in the
amphibian-Bd system (e.g., [20,21]).

An amphibian’s Bd infection intensity likely determines its
infectivity (i.e., an individual’s ability to infect another individual)
and survival time [6,22,23]. A host’s Bd infection intensity
increases via reinfection by zoospores released onto the surface
of the skin or by infection from zoospores in the environment.
Quantifying host-specific Bd zoospore output, the number of
zoospores released per minute by an infected individual [4], is
critical to understanding differences in infectivity across species
and species-specific contributions to the environmental zoospore
pool.

Highly susceptible amphibian species typically die at high Bd
infection intensities (e.g., [7,22]), suggesting that highly susceptible
species may act as supershedders for a short period of time. In
several cases across Central America [24,25], Bd has caused the
decline and extirpation of harlequin frog (genus: Atelopus)
populations. Of the 113 Atelopus species, as many as 30 species
have been declared Extinct in the Wild [24], and according to the
IUCN, 80% of Atelopus species are Critically Endangered and 70%
have declining populations. Atelopus experience rapid widespread
population declines upon Bd site invasion, demonstrating high
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susceptibility. Here, we refer to Atelopus as a candidate acute
supershedder to better describe the phenomena of high suscep-
tibility and pathogen shedding.

Our goals in this study were to: (1) quantify Bd infection
intensity and zoospore output of Atelopus zeteki, (2) determine the
daily percent increase of Bd infection intensity and zoospore
output on A. zeteki, and (3) determine if prior Bd exposure affects
infection intensity and zoospore output. Our results are important
in understanding species and community responses to Bd invasion
and are relevant to future reintroduction programs.

Methods

Ethics statement
Our research strictly followed the guidelines of and was

approved by the University of Maryland Institute for Animal
Care and Use Committee (protocol #R-12-98) and the Maryland
Zoo in Baltimore Institutional Animal Care and Use Committee.

Experimental procedures
We obtained 13 captive-bred A. zeteki individuals, 15 months

post-metamorphosis, used in an earlier Bd experiment [26]. Ten
animals were uninfected controls, and three were previously
inoculated with JEL 427-P39 23 weeks before the start of our
experiment. During the course of the earlier experiment [26],
individuals were swabbed once every two weeks for 130 days. One
individual consistently tested Bd negative for the duration of that
experiment. The other two individuals tested Bd positive three and
four times, respectively. The last swabbing event was five weeks
before the start of our experiment where two of the three
individuals were mildly infected.

We matched individuals by weight into two groups of five. We
found no difference in weight between the infected and control
groups at the start of the experiment (p.0.05). The three
individuals previously exposed to Bd strain JEL 427-P39 were
assigned to the infected treatment. All individuals were sexed by
examination for eggs, ovaries, or testicles at time of death (12
female and 1 male). The single male had been placed in the
control treatment.

Animals were housed in plastic boxes filled with sphagnum
moss, a hide, and a water dish, in a laboratory maintained at 21–
22uC with a 12:12 light: dark photoperiod. We replaced all
housing materials every seven days, changed water dishes every
three days, fed frogs vitamin-dusted crickets or fruit flies (Drosophila
melanogaster) ad libitum every three days, and misted terraria daily.
We monitored individuals daily for clinical symptoms of Bd and
euthanized all individuals once they lost righting abilities by
applying Benzocaine 20% gel to the venter. All control individuals
were euthanized when the last infected individual was euthanized.

We inoculated individuals with Bd strain JEL 423, a member of
the hypervirulent BdGPL lineage, originally isolated from an
infected Hylomantis lemur during the epidemic at El Copé, Panama
in 2004 [27]. We grew Bd strain JEL 423 on 1% tryptone agar
plates for seven days, flooded plates with 1% trypone broth,
filtered the liquid to obtain a pure zoospore stock solution, and
diluted the pure stock solution with water to achieve the desired
concentration [26]. We individually inoculated the eight infected
treatment frogs with 30,000 Bd zoospores for 10 hours. The five
control individuals were exposed to a sham solution of water and
,1% tryptone broth, roughly the same amount that had been
used for the Bd treatment minus the zoospores, for the same
period.

We used a fresh pair of latex powder-free gloves when handling
each individual. We followed the swabbing protocol of Hyatt et al.

[28]. Immediately post-swabbing, we individually soaked each frog
in 50 mL of distilled water for 15 minutes and added 50 mL of
bovine serum albumen (BSA) to the water solution after removing
each frog [4]. We immediately filtered the solution using a 60 mL
sterile syringe and 0.45 mm filter for each sample. Filters were
plugged with syringe caps and stored in a 4uC refrigerator.
Swabbing individuals before soaking could reduce the number of
Bd zoospores estimated from the soak, thus our estimates are
minimum zoospore output estimates.

We swabbed and soaked all individuals starting on day seven
post-inoculation, thereafter every three to four days, and
immediately prior to euthanasia. We extracted DNA from samples
using PrepMan Ultra and analyzed samples using the standard
real-time quantitative polymerase chain reaction assay [28,29]. Bd
infection intensity was defined as the number of Bd genomic
equivalents detected on a single swab [7]. We categorized
individuals as Bd-positive when Bd infection intensity was greater
than or equal to one zoospore genomic equivalent [30].

We performed all statistical analyses in R [31]. We modeled the
change in Bd infection intensity (N) with respect to time (t) using
dN/dt = y0ert, where y0 is the initial infection intensity, r is the
daily rate of increase of infection intensity, and t is time in days.
We used the same equation to model the change in zoospore
output with respect to time. To calculate parameter estimates, we
fitted two linear mixed models with a first order autoregressive
correlation term to ln transformed response variables (i.e., Bd
infection intensity and zoospore output; package nlme, [32]). We
included prior infection history as an independent variable to
determine if prior Bd exposure affected either response variable.
We used AIC to compare model fit.

To determine if Bd infection intensity and zoospore output were
correlated, we used a generalized linear mixed model with a first
order autoregressive correlation term and a lognormal error
distribution. To determine if survival curves of frogs with different
infection histories differed, we used a logrank-test (package survival,
[33]).

Results

All frogs exposed to Bd lost righting abilities and were
euthanized within 33 days post-inoculation (Figure 1; 100%
mortality, mean: 28.88 days, SE: 1.58). All control animals tested
negative at all sampling events, and no control animal experienced
mortality during the course of the experiment.

At time of death, infected frogs had an average Bd infection
intensity of 4,334,422 zoospores (SE: 1,156,576; range = 520,436
to 9,584,158) and an average zoospore output of 23.55 zoospores
per minute (SE: 22.78; range = 0.00 to 172.61; Table 1).

Bd infection intensity and zoospore output increased exponen-
tially over time (t50 = 7.018, p,0.001; t46 = 3.164, p = 0.001,
respectively). Including prior exposure or higher order polynomi-
als did not improve model fit. The daily percent increase in Bd
infection intensity and zoospore output were 35.4% (SE: 0.05) and
13.1% (SE: 0.04), respectively. Bd infection intensity and zoospore
output were positively correlated (Figure 2; t43 = 3.926, p,0.001).
Prior Bd exposure did not affect Bd infection intensity or zoospore
output (t6 = 1.896, p = 0.106; t6 = 0.624, p = 0.555, respectively).
Survival rates also did not differ between naı̈ve and previously
exposed individuals (p.0.05).

Filtered water from frog soaks produced more false negatives
than skin swabs. Seventeen soaks tested negative, even though skin
swabs tested positive. Only three swabs tested negative during the
entire experiment. At time of death, three individual soaks tested
Bd negative, although swab infection intensity from the same

Atelopus zeteki Fungal Infection Intensity
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sampling period was extremely high (Table 1), suggesting either
zoospores were trapped in the filters or the PCR reaction was
inhibited.

Discussion

Exposing Atelopus zeteki to Bd strain JEL 423 produced
individuals with Bd infection intensities among the highest
reported for any species to date (Table 2). Individuals also had
high zoospore output, indicating A. zeteki were highly infectious
and may contribute disproportionately to the environmental Bd
zoospore pool. Other experimental infections [26,34] and field
studies [35] also show that Atelopus spp. develop high Bd infection
intensities, further suggesting that the genus Atelopus may be acute
supershedders.

Other Atelopus studies have shown similarly high Bd infection
intensities. Experimental infections of A. zeteki with other Bd strains
(another Panamanian isolate JEL408 and a Puerto Rican isolate
JEL427) showed Bd infection intensities ranging between 7.26104

and .106 zoospores at death (Table 2; [26,34]). Field studies also
show high infection intensities in other species of Atelopus. Lampo
et al. [35] reported the Bd infection intensity of a single dying
Atelous crucifer individual as high as 244,000 zoospores. We cannot
rule out Bd identity as the cause of variable high infection
intensities at death because Atelopus were exposed to different Bd
strains. Yet, the infection intensities in all lab and field studies were
very high and caused rapid mortality.

Although we used an unnaturally high inoculation dose in this
experiment, our results and conclusions are applicable to field
scenarios because they mimic late stage infections. Carey et al.
[22] showed that all individuals of Bufo [Anaxyrus] boreas died of
infection at the same Bd infection intensity, those receiving lower
doses only took longer to build infections and die. We used a high
inoculation dose to minimize the duration of the experiment.
Further studies are needed to document Bd infection intensities of
Atelopus in the field and to determine whether Atelopus drives disease
dynamics in other species.

Figure 1. Survival curves of Atelopus zeteki with (n = 3) and without (n = 5) prior Bd exposure (log-rank test: x2 = 0.7, p = 0.40).
doi:10.1371/journal.pone.0093356.g001

Table 1. Summary of Atelopus zeteki infection intensity (number of zoospores on skin swabs) and zoospore output (number of
zoospores released per minute) at death.

Prior exposure Total days survived post-inoculation Bd infection intensity at death Zoospore output at death

Naı̈ve 21 520,436 3.5

Naı̈ve 28 1,697,306 0.0

Naı̈ve 18 4,454,759 4.9

Naı̈ve 31 8,781,016 0.2

Naı̈ve 25 9,584,158 170.6

Previous 18 2,291,631 7.1

Previous 33 2,960,916 0.0

Previous 31 4,385,154 0.0

doi:10.1371/journal.pone.0093356.t001
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We not only found that Bd infection intensity in A. zeteki at time
of death was .106, but that A. zeteki had a high daily rate of
increase in Bd infection intensity and zoospore output. We are only
aware of a few studies that have quantified the daily rate of
increase in Bd infection intensity [22,36] or zoospore output [28].
Bufo [Anaxyrus] boreas had daily percent increases in Bd infection
intensity of 68% and produced individuals with .107 zoospores at
death (Table 2). Interestingly, Rana [Lithobates] muscosa/sierra had
daily percent increases in Bd infection intensity of only 8% and
infection intensities at death were approximately 104 zoospores
[36]. Meanwhile, Litoria caerulae had a daily rate of increase in
zoospore output of 15.43% (SE: 2.29; [28]), but we were unable to
compare the Bd infection intensity at death or mortality rate of this
species to others because it was not reported. Yet, the first three
species mentioned (A. zeteki, B. boreas, and R. muscosa/sierra) have

experienced mass mortality and widespread population declines
[6,7,24,25,37–39], suggesting that where infections build rapidly,
frogs die with higher burdens.

Our study also provides evidence that Bd pre-exposure is
insufficient to change the outcome of infection. This suggests that
either (1) A. zeteki can not mount an effective adaptive immune
response or (2) Bd possibly evades [40] and/or suppresses the
immune system [41–43]. For example, Fites et al. [43] showed that
Bd cells and supernatant impaired lymphocyte proliferation and
induced apoptosis. The three individuals that were inoculated with
JEL427-P39 may have persisted with mild infections during the
first experiment because of several mechanisms acting singly or in
concert: (1) their immune system was able to minimize infections,
(2) the attenuated strain did not reproduce well, or (3) the
inoculation was ineffective. We have no data to inform the first or

Figure 2. Relationship between Bd infection intensity and zoospore output. The solid black line corresponds to the linear regression fitted
to all points (t43 = 3.926, p,0.001). Bd infection intensity and zoospore output were positively correlated and not influenced by prior Bd exposure of
the amphibian.
doi:10.1371/journal.pone.0093356.g002

Table 2. Average Bd infection intensity of adult amphibians at death by several experimental studies.

Species Study Bd strain Average Bd infection intensity at death

Bufo boreas Carey et al. [22] JEL 275* 107 to 108

Atelopus zeteki Becker et al. [34] JEL 408* .106

Atelopus zeteki This study JEL 423* .106

Litoria booroolongensis Cashins et al. [47] Native* 104 to 105

Pseudacris regilla Reeder et al. [4] Unknown 2.26105

Atelopus zeteki Langhammer et al. [26] JEL 427-P9 1.26105

Atelopus zeteki Langhammer et al. [26] JEL 427-P39 7.26104

Rana sierrae Rosenblum et al. [48] Sierra Nevada-Bd* 5.66104

Rana muscosa Rosenblum et al. [48] Sierra Nevada-Bd* 2.26104

Rana muscosa/sierrae Stice and Briggs [36] LJR119* 5.16103

* indicates the Bd strain used occurs within the amphibian species native range.
doi:10.1371/journal.pone.0093356.t002
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second possibility, although the first possibility seems unlikely
given the eventual mortality of those individuals; and the third
possibility can be eliminated, given that all individuals, except one,
tested Bd positive during the experiment.

Ex situ captive assurance Atelopus colonies are used as
conservation tools to prevent extinction of the genus, with the
ultimate goal of returning individuals to their native habitats. Yet,
high Bd infection intensities and zoospore output of A. zeteki may
create challenges for reintroduction programs. Not only do Atelopus
experience high mortality rates when exposed to Bd, but there is
substantial cause for concern if Atelopus are acute supershedders.
To determine the feasibility of Atelopus reintroductions, future
studies should examine Bd infection intensity, zoospore output,
and immune function of Atelopus under different environmental
conditions (e.g., [44–46]). Understanding infectivity, duration of
infectiveness, and transmission heterogeneity among amphibian

species and populations will lead to a more comprehensive
understanding of factors leading to different disease outcomes
among populations following Bd invasion.
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