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Abstract
1.	 Conservation managers rely on accurate estimates of disease parameters, such as 
pathogen prevalence and infection intensity, to assess disease status of a host pop-
ulation. However, these disease metrics may be biased if low-level infection inten-
sities are missed by sampling methods or laboratory diagnostic tests. These false 
negatives underestimate pathogen prevalence and overestimate mean infection 
intensity of infected individuals.

2.	 Our objectives were two-fold. First, we quantified false negative error rates of 
Batrachochytrium dendrobatidis (Bd) on non-invasive skin swabs collected from an 
amphibian community in El Copé, Panama. We swabbed amphibians twice in se-
quence, and we used a recently developed hierarchical Bayesian estimator to as-
sess disease status of the population. Second, we developed a novel hierarchical 
Bayesian model to simultaneously account for imperfect pathogen detection from 
field sampling and laboratory diagnostic testing. We evaluated the performance of 
the model, using simulations and varying sampling design to quantify the magni-
tude of bias in estimates of pathogen prevalence and infection intensity.

3.	 We show that Bd detection probability from skin swabs was related to host infec-
tion intensity, where Bd infections <10 zoospores have <95% probability of being 
detected. If imperfect Bd detection was not considered, then Bd prevalence was 
underestimated by as much as 71%. In the Bd-amphibian system, this indicates a 
need to correct for imperfect pathogen detection in enzootic host populations per-
sisting with low-level infections. More generally, our results have implications for 
study designs in other disease systems, particularly those with similar objectives, 
biology, and sampling decisions.

4.	 Uncertainty in pathogen detection is an inherent property of most sampling proto-
cols and diagnostic tests, where the magnitude of bias depends on the study sys-
tem, type of infection, and false negative error rates. Given that it may be difficult 
to know this information in advance, we advocate that the most cautious approach 
is to assume all errors are possible and to accommodate them by adjusting sampling 
designs. The modelling framework presented here improves the accuracy in esti-
mating pathogen prevalence and infection intensity.
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1  | INTRODUCTION

Epidemiologists and wildlife managers rely on accurate estimates of 
disease parameters, such as pathogen prevalence and infection in-
tensity, to assess the risk of disease emergence in wild host popula-
tions (e.g. Langwig et al., 2015). Traditionally, disease ecologists have 
recognised that imperfect host detection (i.e., false negatives) affects 
the inferences made on disease dynamics, leading to the adoption of 
capture-mark-recapture methods to correct for imperfect host de-
tection (e.g., Cooch, Conn, Ellner, Dobson, & Pollock, 2011). More 
recently, however, there has been growing awareness that imperfect 
pathogen detection biases the estimation of pathogen prevalence and 
infection intensity (e.g. Lachish, Gopalaswamy, Knowles, & Sheldon, 
2012; Miller, Talley, Lips, & Campbell Grant, 2012). Pathogen preva-
lence tends to be underestimated, whereas mean infection intensity is 
overestimated when sampling methods or diagnostic tests miss low-
level pathogen infections, causing the misclassification of infected 
hosts as uninfected (e.g. Lachish et al., 2012; Miller et al., 2012). This 
growing awareness has led to new quantitative methods that provide 
a platform to correct for disease state misclassification, improving the 
quality of inference by reducing bias (e.g. Lachish et al., 2012; Miller 
et al., 2012).

Imperfect pathogen detection has been widely acknowledged in 
both veterinary and medical fields and is likely present in most sam-
pling and diagnostic methods used by disease ecologists. Veterinary 
and medical fields have long used statistical tools to adjust pathogen 
prevalence estimates by correcting for the accuracy of diagnostic tests 
(reviewed in Enoe, Georgiadis, & Johnson, 2000; Greiner & Gardner, 
2000; Toft, Jørgensen, & Højsgaard, 2005). However, the stringent 
assumptions and requirements of these statistical tools make them 
impractical for disease ecologists. For example, most methods used 
in veterinary and medical fields involve determining the accuracy of a 
diagnostic test by comparing it to an independent reference test (e.g. 
Drewe, Dean, Michel, & Pearce, 2009; Greiner & Gardner, 2000). In 
the realm of disease ecology, most disease diagnostics are obtained 
from a single test or from visual inspections when no diagnostic tools 
are available (e.g. facial tumour disease of Tasmanian devils, Sarcophilus 
harrisii; Lachish, Jones, & McCallum, 2007).

In the case of pathogen presence, uncertainty is related to the 
specificity (i.e. the probability an uninfected individual is correctly 
classified as uninfected) and sensitivity (i.e. the probability an infected 
host is correctly classified as infected) of the sampling and diagnostic 
methods. Typically, specificity is assumed maximised when strict pro-
tocols are used in the field and lab to decrease the odds of contaminat-
ing samples that lead to false positives. False negatives, alternatively, 
occur during a survey event when the pathogen is present but is not 
detected (e.g. Colvin, Peterson, Kent, & Schreck, 2015; Thompson, 

2007). Sensitivity, therefore, is the product of two processes: (1) sam-
pling methods (e.g. blood, swab, histology sample, etc.) and (2) lab-
oratory diagnostic testing (e.g. qPCR, ELISA, etc.). For example, the 
causative agent of whirling disease, Myxobolus cerebralis, infects the 
brain of a fish, and infections can be missed when an uninfected area 
of the brain is examined (Thompson, 2007). In this case, it is also likely 
that imperfect pathogen detection is related to pathogen infection 
intensity (e.g. Valkiunas et al., 2008), where low-level infections are 
more likely missed than high-level infections. Few field studies, how-
ever, consider false negative error rates of sampling methods, and 
even fewer directly estimate them (e.g. Colvin et al., 2015; Thompson, 
2007).

Thus far, the primary focus of disease ecologists investigating 
false negative error rates of pathogens has occurred with respect to 
laboratory diagnostic tests. For example, several studies have inves-
tigated how the sensitivity of quantitative PCR depends on host in-
fection intensity; as host infection intensity increases, the probability 
of detecting the pathogen also increases (e.g. Gómez Díaz, Doherty, 
Duneau, & McCoy, 2010; Lachish et al., 2012; Miller et al., 2012). This 
pattern has been detected across several disease systems using differ-
ent diagnostic tests, including: qPCR to detect the causative agent of 
malaria, Plasmodium sp., in birds (Knowles et al., 2011; Lachish et al., 
2012); qPCR to detect Batrachochytrium dendrobatidis on amphibian 
skin (Miller et al., 2012); γ interferon and ELISA tests to detect the 
causative agent of tuberculosis, Mycobacterium bovis, in cattle (Ritacco 
et al., 1991); and qPCR to detect the causative agent of Lyme disease, 
Borrelia species complex, in Ixodes uriae ticks (Gómez Díaz et al., 2010). 
Cumulatively, this evidence strongly suggests that host infection in-
tensity affects the probability of detecting the pathogen using several 
different diagnostic tests, but it remains unclear if host infection inten-
sity affects the probability of detecting the pathogen during sampling.

As a motivating example, we focus on the emerging infectious fun-
gal pathogen Batrachochytrium dendrobatidis (hereafter Bd; Longcore, 
Pessier, & Nichols, 1999), the causative agent of chytridiomycosis 
in amphibians. Bd is one of the greatest threats to amphibian biodi-
versity; it has been detected on over 700 amphibian species; and it 
has been found on every continent where amphibians occur (Cheng, 
Rovito, Wake, & Vredenburg, 2011; Fisher, Garner, & Walker, 2009; 
Lips et al., 2006; Olson et al., 2013; Wake & Vredenburg, 2008). To 
date, the most sensitive sampling and diagnostic methods to test for 
the presence of Bd are non-invasive skin swabs and qPCR (Kriger, 
Hero, & Ashton, 2006). While it has been shown that, like most other 
diagnostic tests, qPCR sensitivity to Bd is <1 and correlates with host 
infection intensity (e.g. Miller et al., 2012), it remains unclear if host 
infection intensity also impacts Bd sampling sensitivity of non-invasive 
skin swabs (i.e., replication frequency, number of swab strokes, pres-
sure of swab, etc.). Abundance-induced detection heterogeneity is 
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well-known to affect the estimation of occurrence and abundance (e.g. 
Royle & Nichols, 2003), so it is expected that if two swabs were col-
lected in sequence from the same amphibian, the likelihood that both 
swabs would detect the pathogen and quantify the same infection in-
tensity should be lower at low-level infection intensities (e.g. Lachish 
et al., 2012; Miller et al., 2012).

In this paper, our objectives were two-fold. First, we quantified 
false negative error rates from imperfect host sampling (via non-
invasive skin swabbing) of Bd in an amphibian community in El Copé, 
Panama. To do this, we swabbed amphibians twice in sequence, 
and we used a recently developed hierarchical Bayesian estimator 
formulated by Miller et al. (2012), originally used to examine qPCR 
false negative rates of Bd on amphibians. We expected that as host 
infection intensity increased, the probability of detecting Bd on a skin 
swab would increase, similar to the relationship between Bd infection 
intensity and qPCR Bd detection probability (Miller et al., 2012). We 
also assessed the variation in Bd prevalence and infection intensity 
between habitats (stream vs. trail) and seasons (wet vs. dry) because 
previous studies have shown that these variables explain differences 
in host disease susceptibility (e.g. Brem & Lips, 2008; Kriger & Hero, 
2006). Second, we developed a novel hierarchical Bayesian model 
that simultaneously accounted for imperfect pathogen detection from 
both field sampling and diagnostic tests. We simulated and analysed 
data under a variety of sampling design scenarios to quantify the mag-
nitude of parameter bias of pathogen prevalence and infection inten-
sity estimates.

Our modelling approach and results provide tools for disease ecol-
ogists to refine and optimise pathogen-sampling procedures and re-
duce the bias of parameter estimates, which will improve inference 
and the application of epidemiological models to understand and fore-
cast host–pathogen dynamics. We provide an appendix with R code to 
facilitate the application of these methods. However, we highlight that 
the biases introduced in estimating parameters of interest and meth-
odological recommendations is highly dependent on details of the 
study system and objectives. Our driving motivation in the develop-
ment and applications of this method is to understand how imperfect 
pathogen detection from samples and diagnostic tests contribute to 
biases in population-level inferences, which should guide the efficient 
allocation of resources in epidemiological studies.

2  | MATERIALS AND METHODS

2.1 | Field surveys

We sampled four-200 m stream and three-400 m trail transects in 
Parque Nacional G. D. Omar Torríjos Herrera, Coclé Province, El Copé, 
Panama (8°40′ N, 80°37′17″ W; Lips, Reeve, & Witters, 2003) dur-
ing two wet seasons (2012, 2013) and one dry season (2013). The 
park spans elevations between 500 and 1,000 m and is located on the 
Continental Divide. This site experiences both dry (December–April) 
and wet (May–November) seasons.

We surveyed each transect six to eight times during each sea-
son. Field teams of two to three people conducted nocturnal visual 

encounter surveys by slowly walking each transect and using visual and 
audio cues to locate amphibians within two metres of the stream bank 
or trail. Upon capture, we swabbed the abdomen and each limb five 
times (total = 30 strokes) per animal following the swabbing protocol 
by Hyatt et al. (2007) using a sterile cotton-tipped swab (Dry Swab 
MW113, Medical Wire). We collected at least one swab per individual 
captured, and a subset of individuals was swabbed twice in sequence 
from the same location on the animal’s body (see Table 1a in Appendix 
S1). We used a fresh pair of latex powder-free gloves when handling 
each individual. We stored all swabs in individually capped 2 ml tubes 
with 30 μl of 70% ethanol. Because we did not uniquely mark all indi-
viduals that we captured and swabbed, it is possible that we repeatedly 
swabbed the same individual within a season, making some samples 
pseudo-replicates. Pseudo-replicates, in this case, will decrease the 
variability around our reported naïve and adjusted estimates of patho-
gen prevalence and infection intensity. All individuals were released 
at the original point of capture. We include Bd infection intensity data 
from all amphibian species captured (see Table 1a in Appendix S1) with-
out discriminating among species in the model because <10 individuals 
per species were captured for c. 56% of the 39 total species detected.

2.2 | Molecular analysis

We used PrepMan Ultra® for DNA preparation of swabs tested 
for Bd. We tested swabs for Bd in singlicate, using Taqman qPCR 
(Boyle, Boyle, Olsen, Morgan, & Hyatt, 2004; Hyatt et al., 2007) 
running 50 cycles. We ran each plate with JEL 423 standards of 0.1, 
1, 10, 100, and 1,000 Bd zoospore genomic equivalents (ZGE) to 
determine Bd presence and infection intensity. Isolate JEL 423 was 
originally isolated at El Copé, Panama during the epizootic of 2004. 
We categorised individuals as Bd-positive when infection intensity 
was greater than zero (Briggs, Knapp, & Vredenburg, 2010). The 
qPCR assay consistently detects very small Bd infections (0–1 ZGE), 
likely representing very low levels of infection. To ensure that false 
positives were negligible, we included multiple negative controls in 
each qPCR plate.

2.3 | Sampling detection-adjusted model

We used a slightly modified version of the hierarchical Bayesian 
estimator developed by Miller et al. (2012) to account for hetero-
geneity in pathogen detection probability due to host infection in-
tensity. We assumed that there was no error associated with the 
diagnostic test. Instead, we focus on the sensitivity of the swabbing 
procedure. We did not use the multi-season formulation of the oc-
cupancy model because we did not track the individuals that were 
swabbed across seasons. Alternatively, we assumed that infection 
intensity solely depended on habitat and season and not an indi-
vidual’s previous infection history.

We modelled the true, but unobservable, Bd infection state (zi) on 
the ith individual as:

(1)zi ∼ Bernoulli(Ψhabitati ,seasoni
)
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where an individual was either infected (zi = 1) or not (zi = 0), and Ψ, the 
probability of the ith individual being infected, depends on habitat type 
(trail vs. stream) and season (dry vs. wet). Note that the parameter Ψ gives 
rise to the estimate of pathogen prevalence, i.e., the proportion of hosts 
infected, which is the outcome from the repeated Bernoulli process.

We modelled the observed Bd infection on the ith individual and 
the jth swab, yij, as:

where an infection was either detected (yij = 1) or not (yij = 0). We 
modelled the detection probability, pi, as a function of true, but unob-
servable, Bd infection intensity, xi, on the ith individual as:

where α is the log odds of pathogen detection when infection inten-
sity xi is zero, and β is the scaling coefficient representing how de-
tection log odds changes with respect to host infection intensity. We 
modelled the true log Bd infection intensity, xi, on the ith host as:

where the true mean log infection intensity, μi, was a function of habi-
tat, season, and true Bd infection state, zi, for the ith host:

Above, σ2 represents the standard deviation in Bd infection inten-
sities across the host population.

Lastly, we modelled the observed infection intensity, wij, on the ith 
individual and the jth swab as:

In this case, σ2
error
 represents the measurement error of the esti-

mates for Bd infection intensity produced by the non-invasive swab-
bing technique.

2.4 | Unadjusted model

To estimate the parameter bias caused by pathogen non-detection, 
we fit the same model outlined above after removing the detection 
probability and measurement error portions of the model (Equations 2 
and 6). We modified our data by collapsing the host by swab matrix 
in two key ways: (1) if Bd was detected on any swab collected for 
an individual then that individual was considered infected, and (2) we 
averaged the infection intensities across all swabs for each host that 
was considered infected.

2.5 | Model fit

We fit all models using Bayesian methods and estimated the posterior 
distributions for all parameters and latent states using Markov chain 
Monte Carlo (MCMC) implemented in JAGS 4.0.0 with the jagsUI pack-
age (Kellner, 2015) in the R environment (R Core Team, 2015). We used 
vague priors (i.e., normal(0, 0.01) or normal(0, 0.368); Lunn, Jackson, 
Best, Thomas, & Spiegelhalter, 2012) for all parameters. We computed 

three chains for each random variable with diffuse initial values. After 
a burn-in of 10,000 iterations, we accumulated 40,000 samples from 
each chain, keeping every 50th sample. We assessed convergence 
by visually inspecting trace plots and using the diagnostics of Gelman 
(Brooks & Gelman, 1998). We used a posterior predictive check (here-
after Bayesian p-value) to compare the observed data to simulated 
datasets generated from the parameter estimates at each step in the 
MCMC algorithm. We confirmed that the Bayesian p-value, defined as 
the probability that the simulated data were more extreme than the 
observed data, was indicative of a good model fit (e.g. Gelman et al., 
2013; Kéry & Schaub, 2012). Our observed data fit both the sampling 
detection-adjusted and unadjusted models well (see Figure 1a, Bayesian 
p-value = .79; Figure 2a, Bayesian p-value = .41 in Appendix S1).

To quantify effects, we calculated the differences between 
parameters of interest at each MCMC iteration following Ruiz-
Gutiérrez, Zipkin, and Dhondt (2010). We computed the proportion 
of iterations where one parameter was greater than the other, which 
is directly interpreted as the probability (Pr) that one parameter is 
greater than the other. We considered effects with large credible in-
tervals to be either unimportant to the process being modelled, or to 
have been estimated too imprecisely to draw conclusive inference.

2.6 | Bd-specific methodological guidance

Given that Bd infection may be overlooked on an infected host, we 
followed Kery (2002) and calculated the probability of detecting Bd, 
P*, on n identical and independent swabs or qPCR runs using the bi-
nomial argument:

(2)yij ∼ Bernoulli(pi × zi),

(3)logit(pi) = α + β × xi

(4)log (xi) ∼ normal(μi, σ
2)

(5)μi = log (0.001 + ωhabitati ,seasoni
× zi)

(6)log (wij) ∼ normal( log (xi + 0.001), σ2
error

) (7)P
∗
= 1 − (1 − p)n,

FIGURE  1 The relationship between Batrachochytrium 
dendrobatidis (Bd) detection probability and host infection intensity 
caused by laboratory (black line; qPCR error; Miller et al., 2012) and 
swabbing (dark grey line) methods. This graph indicates that as host 
infection intensity increases, pathogen detection probability also 
increases. The dark lines are mean posterior distribution estimates, and 
light grey lines represent the 95% credible interval around the mean
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where p was either obtained from the sampling detection-adjusted model 
outlined above (i.e., imperfect Bd detection from swabbing) or from Miller 
et al. (2012; i.e., imperfect Bd detection from qPCR). We modelled the 
probability of detecting 1 ZGE, 3 ZGE, 5 ZGE, and 10 ZGE. Our recom-
mendations were based on the minimum number of swabs and qPCR 
runs to be 95% certain that if Bd were present then it would be detected.

2.7 | Sampling and diagnostic detection-
adjusted model

To provide general methodological guidance, we developed a novel 
Bayesian hierarchical model that simultaneously accounts for im-
perfect sampling and diagnostic detection of the pathogen (see 
Appendix S2 for the full model outline and R code). We performed 
a simulation study to explore the ability of this hierarchical model to 
estimate pathogen prevalence and infection intensity under scenar-
ios of imperfect sampling and diagnostic testing for a pathogen. We 
set average infection intensity as either low (μ = 2) or high (μ = 20) 
and the probability of pathogen infection as either low (Ψ = 0.20) 
or high (Ψ = 0.80). We assumed low population infection intensity 
standard deviation (σ2 = 1), infection intensity measurement error 
in sampling (σ2

error
 = 1), and infection intensity measurement error of 

the diagnostic test (σ2
diagnostic

 = 1). We set the log odds scaling co-
efficient of pathogen detection for sampling and diagnostic testing 
as either low (-1.38) or high (1.38). We did not consider the case 
where detection probability for either pathogen sampling or diag-
nostic testing varied with respect to true infection intensity (i.e., 
changing the slopes of the relationships). We explored how varying 
the number of samples collected per host (i.e., 1, 2, 3, 4) and the 
number of diagnostic runs per sample (i.e., 1, 2, 3, 4) affected the 
bias in estimated parameters of interest (i.e. pathogen prevalence 
[Ψ] and average infection intensity [μ]). This resulted in 256 param-
eter combinations (see Table 2a in Appendix S1). For each parameter 
combination, we simulated 50 datasets of 500 individuals each be-
fore fitting the model using the same methods outlined above. To 

quantify the magnitude of parameter bias under each scenario, we 
calculated the root mean squared error between the posterior mean 
and the actual parameter value.

3  | RESULTS

3.1 | Field summary

We captured and swabbed 865 individuals of 39 species at least once 
(see Table 1a in Appendix S1). We collected 148 and 99 swabs on 
streams and trails, respectively, during the dry season, and 288 and 

TABLE  1 Summary of the posterior distributions from the 
sampling detection-adjusted model. All parameters were back 
transformed to their original scale, except detection probability (logit 
scale) and error estimates

Definition Mean 95% credible interval

ω

Stream dry 0.13 0.04 0.43

Trail dry 0.40 0.11 1.39

Stream wet 0.13 0.02 1.12

Trail wet 0.16 0.07 0.39

Process error (σ2) 3.17 2.66 3.63

Measurement error 
(σ2

error
)

1.03 0.81 1.29

Ψ

Stream dry 0.86 0.57 0.98

Trail dry 0.67 0.46 0.91

Stream wet 0.64 0.31 0.95

Trail wet 0.92 0.73 0.99

Detection probability

α 0.22 −0.23 0.68

β 0.93 0.67 1.20

F IGURE  2 Given that pathogen 
infection may be overlooked on an infected 
individual, we calculated the probability of 
detecting Batrachochytrium dendrobatidis 
(Bd) on n identical and independent (a) 
swabs or (b) qPCR runs, using a binomial 
argument, as P* = 1 − (1 − p)n (Kery, 2002). 
We model the probability of detecting 
1 ZGE, 3 ZGE, 5 ZGE, and 10 ZGE. The 
dashed line indicates 95% certainty of 
detecting the pathogen when it is present
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302 swabs on streams and trails, respectively, during the two wet 
seasons. Of the 865 individuals, we double swabbed 205 individuals, 
where 102 were double swabbed during the dry season and 103 were 
double swabbed during the two wet seasons. Of these 205 double 
swabbed individuals, we detected Bd DNA on only one swab from 51 
individuals, and on both swabs from 25 individuals.

3.2 | Sampling detection-adjusted model

Under the sampling detection-adjusted model, the probability of 
being infected with Bd did not differ between streams and trails during 
the wet season (Pr(Ψstream,wet > Ψtrail,wet) = 0.10) nor the dry season  
(Pr(Ψstream,dry > Ψtrail,dry) = 0.93; Table 1). When comparing the 
probability of being infected with Bd in particular habitat types be-
tween seasons, the probability of being infected with Bd did not 
differ between wet and dry seasons for streams (Pr(Ψstream,wet > 
Ψstream,dry) = 0.38), but it did differ for trails (Pr(Ψtrail,wet > Ψtrail,dry

) = 0.98).
Average infection intensity did not differ between streams and 

trails during the wet season (Pr(ωstream,wet > ωtrail,wet) = 0.85) nor the dry 
season (Pr(ωstream,dry > ωtrail,dry) = 0.14). When comparing average in-
fection intensity in particular habitat types between seasons, average 
infection intensity differed between wet and dry seasons for streams 
(Pr(ωstream,wet > ωstream,dry) = 0.99) but not for trails (Pr(ωtrail,wet > 
ωtrail,dry) = 0.49).

Bd detection probability increased as host infection intensity 
increased (Figure 1). Bd detection probability was c. 99.99% at an in-
fection intensity of 10 ZGE (Figure 1).

3.3 | Unadjusted model

Contrary to the sampling detection-adjusted model, the unadjusted 
model revealed that the probability of being infected with Bd differed 
between streams and trails only during the wet (Pr(Ψstream,wet > Ψtrail,we
t) = 0.03) but not during the dry season (Pr(Ψstream,dry > Ψtrail,dry) = 0.84; 
Table 2). In contrast, when comparing habitat types between seasons, 

the probability of being infected with Bd did not differ between wet 
and dry seasons for streams (Pr(Ψstream,wet > Ψstream,dry) = 0.12) nor 
trails (Pr(Ψtrail,wet > Ψtrail,dry) = 0.92), which is similar to the sampling 
detection-adjusted model.

Again, similar to the sampling detection-adjusted model, average 
infection intensity from the unadjusted model did not differ between 
streams and trails during the wet season (Pr(ωstream,wet > ωtrail,wet) = 0
.91) nor the dry season (Pr(ωstream,dry > ωtrail,dry) = 0.49). In contrast to 
the sampling detection-adjusted model, average infection intensity did 
not differ between wet and dry seasons for streams (Pr(ωstream,wet > 
ωstream,dry) = 0.93) nor trails (Pr(ωtrail,wet > ωtrail,dry) = 0.60).

3.4 | Sampling detection-adjusted model vs. 
unadjusted model

All four of the Ψ parameters estimates, quantifying the probability 
of being infected with Bd, from the unadjusted model were lower 
than the parameter estimates from the sampling detection-adjusted 
model (all Pr(Ψadjusted > Ψunadjusted) < 0.05). Likewise, all of the param-
eter estimates for average infection intensity, ω, from the unadjusted 
model were higher than the sampling detection-adjusted model (all  
Pr(ωadjusted > ωunadjusted) > 0.95).

3.5 | Bd-specific methodological guidance

To be 95% certain that 1 ZGE is present on a host and that it is de-
tected using non-invasive skin swabs, at least four swabs need to 
be collected. While, to be 95% certain that 3 or 5 ZGE are present 
and detected, at least two swabs need to be collected (Figure 2). 
On the contrary, non-invasive skin swabs can detect 10 ZGE with 
greater than 95% certainty using only a single skin swab. To be 95% 
certain that 1, 3, 5, or 10 ZGE are present on a host and detected 
using qPCR, at least two qPCR runs need be performed per sample 
collected (Figure 2).

3.6 | Sampling and diagnostic detection-
adjusted model

The estimated probability of pathogen infection, Ψ, was less biased 
and more precise when average infection intensity, μ, was high and 
when both contributors to pathogen detection probability—sampling 
methods and laboratory diagnostic testing—were high (Figure 3; see 
Figure 3a in Appendix S1). In general, the root mean squared error 
of pathogen prevalence decreased more rapidly when the number of 
samples increased rather than the number of diagnostic tests in most 
scenarios (Figure 3).

Similarly, estimated average infection intensity, μ, was less biased 
and more precise when the probability of pathogen infection, Ψ, was 
high and at high values of pathogen detection probability (Figure 4; 
see Figure 4a in Appendix S1). In general, the root mean squared error 
of the estimated infection intensity was similarly impacted if either 
the number of samples collected or the number of diagnostic runs in-
creased (Figure 4).

TABLE  2 Summary of the posterior distribution from the 
unadjusted model. All parameters were back transformed to their 
original scale

Definition Mean 95% credible interval

ω

Stream dry 0.71 0.38 1.34

Trail dry 1.77 1.18 2.65

Stream wet 1.33 0.50 3.36

Trail wet 1.32 0.91 1.96

Ψ

Stream dry 0.30 0.23 0.37

Trail dry 0.28 0.23 0.34

Stream wet 0.21 0.14 0.30

Trail wet 0.33 0.28 0.39
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4  | DISCUSSION

4.1 | Implications for wildlife disease ecology

Our results demonstrate that non-invasive skin swabbing imperfectly 
detects Bd and that Bayesian hierarchical models can adjust preva-
lence and average infection intensity for low-level pathogen infec-
tions that are missed. The bias caused by pathogen non-detection can 
affect disease inference, especially in regions where hosts harbour 
low-level Bd infections, such as in enzootic populations.

Imperfect pathogen detection threatens the success of dis-
ease monitoring programs intended to prevent pathogen invasion 
(e.g. Langwig et al., 2015). For example, the recent emergence of 
Batrachochytrium salamandrivorans (hereafter Bsal; Martel et al., 
2013), the only known sister taxa of the amphibian-killing fungus, 
Bd (Longcore et al., 1999), threatens salamander biodiversity world-
wide and is lethal to some of the New World salamandrid species 
(genera: Taricha and Notophthalmus; Martel et al., 2014). The United 
States has taken precautionary measures to prevent the arrival of 
Bsal into its borders by restricting the movement of salamanders 
under the Lacey Act (18 U.S.C. 42). The techniques used to sample 
and diagnose Bsal are similar to those used to test for Bd, such as 
non-invasive skin swabs tested by qPCR (Hyatt et al., 2007; Martel 

et al., 2013). At some point, a second precautionary step would be 
to require that salamanders obtain health certificates to move across 
borders. But, given the results of this study, there is a chance that 
low-level Bsal infections will be missed. If Bsal detection probabil-
ity is similar to Bd, then we expect that Bsal infections less than 5 
ZGE will likely be missed up with a certainty of 95% by a single non-
invasive skin swab; similarly, qPCR will detect infections less than 10 
ZGE approximately 81% of the time if only one qPCR run were per-
formed. This is especially concerning when importing salamanders 
from Eastern Asia, where salamanders typically have Bsal infection 
intensities less than 30 zoospores (Martel et al., 2014) and Bsal prev-
alence is low (i.e., <10%; Laking, Ngo, Pasmans, Martel, & Nguyen, 
2017; Martel et al., 2014).

In El Copé, Panama, where Bd is now enzootic, most individuals 
were infected (average Bd prevalence c. 64%–92%) and carried low-
level infections (<10 ZGE), which is similar to other regions in the 
Americas (James et al., 2015). In the 1990s, as Bd spread worldwide, 
many amphibian populations experienced mass mortality events and 
population declines (e.g. Berger, Hyatt, Speare, & Longcore, 2005; 
Lips et al., 2006; Muths, Corn, Pessier, & Green, 2003; Vredenburg, 
Knapp, Tunstall, & Briggs, 2010). In many of these areas today, am-
phibians persist with enzootic Bd infections, and disease ecologists 
are interested in explaining the ecological patterns of infection and 

F IGURE  3 Root mean square error of estimated pathogen prevalence (Ψ) over different scenarios of known high and low pathogen 
prevalence (Ψ), average infection intensity (μ), pathogen log odds of detection by sampling method (β0), and pathogen log odds of detection by 
laboratory diagnostics (γ0) as the number of samples (1–4) and number of diagnostic runs (1–4) vary
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host–pathogen coexistence. If disease ecologists do not correct 
for imperfect pathogen detection, then estimates of disease will 
be biased, and in some cases, covariates that affect the sampling 
process may end up in the ecological process model (e.g. Kéry & 
Schaub, 2012). In this study, our conclusions on Bd probability of 
infection and infection intensity with respect to habitat and seasons 
were predominately similar regardless of whether we accounted 
for imperfect pathogen detection, which is not surprising given the 
“noisy” estimates for these covariates. However, the parameter esti-
mates from the sampling detection-adjusted and unadjusted model 
differed significantly with respect to precision and bias, which em-
phasises the importance of accounting for imperfect pathogen sam-
pling. If overlooked, even small frequencies of false negatives can 
lead to inaccurate inference and biased conclusions.

4.2 | Bd-specific methodological guidance

In the case of Bd, we found that the greatest pathogen detection bias 
was caused when host infection intensity was low, as expected. We 
highlight that pathogen detection probability is lower than reported 
from only the double swab data because total imperfect pathogen de-
tection depends on both pathogen detection probability of the labo-
ratory diagnostic tests (i.e., qPCR; Lachish et al., 2012; Miller et al., 
2012) and sampling methods (i.e., swabbing; e.g. Thompson, 2007; 

Figure 1). These results indicate that replication of samples in both 
sampling and laboratory methods are critical to minimise observa-
tional uncertainty, especially when pathogen prevalence and infection 
intensity are expected to be low. This is the case in both enzootics and 
in the invasion phase of an epizootic (Langwig et al., 2015).

We recognise the increase cost and effort needed to analyse more 
swab samples in replicate; therefore, we suggest collecting replicate 
swabs when possible because if the results from the first swab set 
shows few pathogen detections, low pathogen prevalence, and low 
host infection intensity, it may be worth analysing the second set to 
calculate false negative error rates.

4.3 | General methodological guidance

Applying the sampling and diagnostic detection-adjusted model, we find 
that there are trade-offs, for a fixed effort, in precision and accuracy of 
pathogen prevalence and average infection intensity estimates. Although 
our simulation study provides general methodological guidance under 
different sampling scenarios, these results must be considered in combi-
nation with common sense and expert knowledge of the study system. 
For example, researchers must consider the cost and time constraints of 
collecting multiple samples per individual and running multiple diagnos-
tic tests per sample, as well as the trade-offs between sampling breadth 
and accuracy. Given that the magnitude of bias depends on the study 

F IGURE  4 Root mean square error of estimated average infection intensity (μ) over different scenarios of known high and low pathogen 
prevalence (Ψ), average infection intensity (μ), pathogen log odds of detection by sampling methods (β0), and pathogen log odds of detection by 
laboratory diagnostics (γ0) as the number of field samples (1–4) and number of diagnostic runs (1–4) vary
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system, type of infection, and false negative error rates, we advocate 
that the most cautious approach is to assume all errors are possible and 
to accommodate them by adjusting sampling designs. Using the R code 
provided in Appendix S2 as a foundation, it may be worthwhile to simu-
late study-specific scenarios to understand the trade-offs between ef-
ficiency and robustness of particular study designs.

The models we present here can be applied to designing studies 
and analysing data for other emerging infectious fungal diseases, such 
as white-nose syndrome (Langwig et al., 2015), snake fungal disease 
(Tetzlaff, Allender, Ravesi, & Smith, 2015), and the salamander fun-
gus (Bsal; Martel et al., 2014). Similar to detecting Bd on amphibian 
skin, each of these study systems is typified by the collection of non-
invasive skin samples and using qPCR analysis to test for pathogen 
presence and infection intensity, subjecting them to similar kinds of 
detection errors as the Bd-amphibian system. Should these infectious 
diseases spread from their initial distributions, it will be critical to be 
able to compare disease status and dynamics across studies with re-
spect to biotic and abiotic covariates. This will require unbiased and 
precise estimates of key epidemiological parameters, such as patho-
gen prevalence and infection intensity. By accounting for detection 
errors arising from sampling and diagnostic tests, we can more readily 
compare disease inference among systems and species.
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