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Abstract

Question: What is the precision of five methods of measuring vegetation struc-

ture using ground-based digital imagery and processing techniques?

Location: Lincoln, Nebraska, USA.

Methods: Vertical herbaceous cover was recorded using digital imagery tech-

niques at two distinct locations in a mixed-grass prairie. The precision of five

ground-based digital imagery vegetation analysis (DIVA)methods for measuring

vegetation structurewas tested using a split-split plot analysis of covariance. Var-

iability within each DIVA technique was estimated using coefficient of variation

of mean percentage cover.

Results: Vertical herbaceous cover estimates differed among DIVA techniques.

Additionally, environmental conditions affected the vertical vegetation obstruc-

tion estimates for certain digital imagery methods, while other techniques were

more adept at handling various conditions. Overall, percentage vegetation cover

values differed among techniques, but the precision of four of the five tech-

niques was consistently high.

Conclusions: DIVA procedures are sufficient for measuring various heights and

densities of standing herbaceous cover. Moreover, digital imagery techniques

can reducemeasurement error associated withmultiple observers’ standing her-

baceous cover estimates, allowing greater opportunity to detect patterns associ-

ated with vegetation structure.

Introduction

In terrestrial ecosystems, estimates of vegetation character-

istics are an important means of predicting species–habitat

relationships (Daubenmire 1959; Wiens 1969, 1973; Robel

et al. 1970; Nudds 1977; Fisher & Davis 2010) with impli-

cations as to how natural systems are managed (Catchpole

& Wheeler 1992; Ganguli et al. 2000; Ammann & Nyberg

2005; Davies et al. 2008). Although collecting and weigh-

ing vegetation provides the most precise estimates of vege-

tation cover, it has limited application in large-scale

ecological studies or when destructive sampling is not

an option (Harmoney et al. 1997; Benkobi et al. 2000; Ver-

meire & Gillen 2001). As such, visual obstruction estimates

arewidely used to quantify vegetation structure (e.g. Robel

et al. 1970) and are successful in a variety of systems (Ro-

bel et al. 1970; Ganguli et al. 2000; Vermeire & Gillen

2001; Vermeire et al. 2002; Uresk & Juntti 2008; Schmer

et al. 2010; Toledo et al. 2010). Despite their ubiquity, tra-

ditional visual obstruction techniques that rely on ocular

estimates are often criticized as being unstandardized

(Fisher & Davis 2010) and subject to observer error that

maymask important ecological patterns (Gotfryd &Hansell

1985; Collins & Becker 2001; Higgins et al. 2005; Limb

et al. 2007). A lack of confidence in traditional visual

obstruction estimates has led to the development of new

techniques using ground-based digital photography (Va-

nha-Majamaa et al. 2000; Boyd& Svejcar 2005; Limb et al.

2007; Carlyle et al. 2010). Rather than depending on ocu-

lar estimates of vegetation density and structure, digital
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imagery vegetation analysis (DIVA) techniques often rely

on the ability of computer software to ‘count’ the number

of pixels in a digital photograph associated with vegetation

and produce a digital estimate of vegetation cover (Fig. 1).

Analysis of digital imagery from satellite or aerial photogra-

phy is a long-standing and common practice in large-scale

ecological studies (e.g. Lefsky et al. 2002; Welch et al.

2002; Horning et al. 2010), but DIVA has only recently

gained favour as a means to differentiate small-scale vege-

tative variation (Booth et al. 2005, 2006; Luscier et al.

2006; Seefeldt & Booth 2006; Limb et al. 2007; Cagney

et al. 2011). In theory, quantifying visual obstruction by

means of digital processing could reduce observer error and

increase the accuracy, precision and repeatability of visual

obstruction estimates (Booth et al. 2005; Limb et al. 2007).

The DIVA technique has produced remarkably accurate

and precise results relative to traditional methods, such as

the Robel Pole or the Nudds cover board (Limb et al.

2007), and illustrates the potential for this new technique

to become a common method for analysing vegetation

characteristics in ecology. Despite the apparent benefits,

the interpretation and classification of digital imagery is

susceptible to error from different sources, a number of

which are novel in ecological study. For example, differ-

ences in cloud cover or overhead vegetation, date or time,

and/or camera settings or sensor sensitivity among samples

may alter the degree to which shadows and highlights

occur, which potentially causes misclassified pixel values.

Similarly, light conditions may influence the degree to

which pixel values associated with vegetation merge with

the backdrop. Such inconsistencies in reflectance can lead

to misclassification of pixels by image processing software

and severely reduce the accuracy and precision of esti-

mates. Although previous examinations of DIVA tech-

niques have explored the benefits of reduced observer

error (e.g. Limb et al. 2007), the importance of other

sources of error remain largely unknown. Moreover, the

ever-expanding number of image processing programs and

processing techniques, each with varying levels of cost,

effort required and degree of accuracy and precision,

makes choosing a DIVA approach increasingly challenging.

Determining which methods are acceptable and cost effi-

cient is essential if DIVA techniques are to be widely imple-

mented.

Broadly, DIVA techniques fall within three categories:

arbitrary threshold classifications (Limb et al. 2007),

(a) (b)

(c) (d)

Fig. 1. An example of two digital images, black backdrop (a) and white backdrop (c), and their respective binary images (b and d), which were converted

using digital imagery vegetation analysis (DIVA) techniques.
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human-based selection (Cagney et al. 2011) and

machine-training techniques (Booth et al. 2005). While

often simple to use, arbitrary threshold classification

techniques use software to split pixel values into binary

data, where any pixel value over the threshold value is

assigned as one, or zero otherwise. One major limita-

tion of this type of technique is that shadows or high-

lighted areas of vegetation may be over the threshold

limit and mistaken as the backdrop. Human-based

selection techniques can be more accurate than arbi-

trary threshold methods because the user directly

supervises the software to correctly classify vegetation

and therefore can account for threshold variability asso-

ciated with temporal and environmental factors (e.g.

time of day, clouds); however, these techniques require

more processing time. Machine-training techniques also

account for variable thresholds, but they rely heavily

on the software to correctly classify vegetation in an

image based on a set of user-specified pixel values.

Once the set of pixel values is assigned, the process of

identifying the percentage vegetation cover in the

image can often be automated, analysing potentially

hundreds of images in a matter of minutes. Yet, if pixel

values are wrongly assigned prior to the automation

processes, errors will be replicated throughout the

entire sample of images, thus drastically increasing error

rather than minimizing it. Here we evaluate five

ground-based DIVA techniques, each technique falling

within one of the three general DIVA method catego-

ries, for differences in (1) estimates; (2) measurement

error; and (3) time and cost.

Methods

Study system and photo stations

We examined five visual obstruction digital imagery and

processing techniques during November 2010 in a mixed-

grass prairie composed of a mixture of bunch and rhizoma-

tous grasses generally ranging in height from 15 to 100 cm

in Lincoln, Nebraska, USA. The study site is located at

358 m a.s.l. and has an average monthly precipitation

range of 1.60–12.12 cm annually. The annual average pre-

cipitation is 71.88 cm, of which 65% falls during the

May–September growing season.

We constructed photo stations using 1 9 1 m backdrops

constructed from tempered hardboard (0.476-cm thick,

spray-painted black) and white fiberglass reinforced wall

panelling (Fig. 2). In order to capture sufficient variation

in vegetation cover, we randomly placed two pairs of cover

boards, each pair containing one black and one white

board, in areas with variable grass height. Backdrops were

secured vertically in a fixed position, facing south to maxi-

mize light exposure. A metal rod was driven into the

ground, extending 1 m from the ground and positioned

4 m directly south of each board, creating a permanent ref-

erence point to stabilize the cameras (following Robel et al.

1970; Limb et al. 2007).

We recorded digital images of the standing vegetation in

front of the backdrops using four Polaroid� t1031, 10.0

megapixel digital cameras (one camera for each observer)

with standardized settings at each of the four photo sta-

tions over a 2-wk period. The locations of the backdrops

and the four photo stations remained constant for the

duration of the study. Because the vegetationwas in senes-

cence, the amount of vegetation within the confines of the

backdrop was assumed to remain constant throughout the

2-wk period. Four observers visited each photo station 21

times, taking a total of 84 photos. Visits were distributed

evenly throughout the day in order to measure the influ-

ence of lighting and temporal conditions on estimates. We

recorded time of day, wind speed and cloud cover. Images

were imported into Adobe Photoshop� CS3 (Adobe

Systems Inc, San Jose, CA, US) and cropped such that only

the 1 9 1 m backboard was visible in the image (as

outlined in Limb et al. 2007).

Image processing

Image processing was completed using three software

programs, Adobe Photoshop� (Adobe Systems), Intelligent

Perception Pixcavator�(Intelligent Perception Co., Hun-

tington, WV, US) and GNU Image Manipulation Program�

(GIMP) (Kimball & Mattis 2006, an open-source software

package). A total of five DIVA techniques were analysed:

Grid, GIMP and Pixcavator (human-based selection),

Threshold (arbitrary threshold classification) and Photo-

Training (machine-training). For each technique we esti-

mated the per photo effort based on time and cost of analy-

sing 100 photos.

Fig. 2. An example showing the medal rod placement and backdrop set-

up for a digital imagery vegetation analysis.
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Grid

Using Adobe Photoshop�, we conducted a human-

based vegetation selection DIVA by overlaying an

evenly spaced 50 9 50 lattice grid on each image and

manually counting the number of cells that contained

>50% vegetation present (similar to cover board esti-

mates; Jones 1968). Vegetation cover was estimated as

the number of cells containing >50% vegetation divided

by the total number of cells. Because of the large

amount of time and effort required, we sampled a ran-

dom subset of 11 of the 21 images per backdrop for a

total of 44 images.

GIMP

Carlyle et al. (2010) devised a human-based vegetation

selection method using the open source image software

GNU Image Manipulation Program� (Kimball & Mattis

2006), which we modified to fit our study design. Using

the color select tool on each individual image, we selected

all pixels that matched the cover board. Different light-

ing conditions caused the cover board in each image to

have a range of black or white hues, so we used a simi-

larity threshold of 40.0 (Carlyle et al. 2010) and

employed the add to selection option by selecting multiple

pixel values in each image. The number of selected pix-

els was then subtracted from the total number of pixels

in each image, resulting in the number of pixels repre-

senting vegetation. Percentage vegetation cover was cal-

culated for each image as the ratio of vegetation pixels

to total pixels.

Pixcavator

The third human-based selection approach we tested

used Pixcavator IA Standard Edition. Pixcavator identi-

fies edges and objects in images based on changes in

value of each pixel. Cropped photos were imported into

the software and the vegetation in the image was

selected using the Green colour channel (Appendix S1).

We adjusted the amount of vegetation selected in each

photo by adjusting the intensity, dark adjustment. Total

percentage vegetation cover was obtained by subtracting

the area of classified dark objects (the vegetation) from

100 (Appendix S1).

Threshold

We followed the arbitrary threshold method as outlined in

Limb et al. (2007), with the addition of using both white

and black boards as backdrops. Using the Adobe Photo-

shop� software threshold function, images were converted

to binary form (i.e. 1 or 0) based on a standardized lumi-

nance threshold value of 128 (following Limb et al. 2007),

such that all pixels above 128 were converted to white,

and all pixels below 128 were converted to black. Photos

containing white backdrops converted vegetation to black

pixels, while photos with black backdrops converted vege-

tation to white pixels (Fig. 1). We obtained the percentage

vegetation cover by recording the percentage of black pix-

els in the image as indicated in the histogram window of

the software. For images containing black backdrops, the

histogram window provided the inverse of percentage

vegetation cover; therefore we subtracted the value from 1

in order to obtain the percentage cover estimates.

Photo-Training

We used the replace color tool in Adobe Photoshop� to

train the program to correctly identify which pixel values

in each photo were associated with vegetation, and

which ranges were associated with the backdrop. We

limited the training process to five photos randomly

selected from each photo station. Using the eyedropper,

eyedropper plus and eyedropper minus tools within the

replace color tool, we selected the vegetation in the image

and converted it to black (or white depending on the

colour of the backdrop) using the lightness adjustment

bar (detailed methods are provided in Appendix S2). The

image was saved as a layer mask in a separate folder. For

each additional image in the photo subset, the layer

mask was imported and the vegetation selection process

was repeated. The process was identical for training the

backdrop pixel values except that the lightness bar was

moved in the opposite direction. The final layer masks

were used to inform the software as to which pixel val-

ues were associated with vegetation and which values

were of the backdrop prior to implementing the Threshold

tool. We automated the process of converting all

84 photos to binary pixel values by creating an action

and a droplet in Adobe Photoshop� (Appendix S2).

Statistical analyses

In analysing the data, our goals were to quantify the varia-

tion within DIVA techniques and compare it among the

techniques. Thus, the variability within each DIVA tech-

nique was estimated using coefficient of variation (CV) of

mean percentage cover. The coefficient of variation is a

normalized measure of dispersion from the mean

(CV = SD/mean), which is a particularly useful measure-

ment when comparing the dispersion of two or more vari-

ables when their means are substantially different

(Shahbaba 2012). For each survey location, a CV of per-

centage obstruction was calculated for each board colour
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within the analysis technique. To test whether the variance

differed among DIVA techniques by backdrop colour

arrangements, we used a one-tailed F test for homogeneity

of variance (Levene 1960; Fox 2008). CV values were plot-

ted and visually inspected to compare precision among

DIVA techniques.

The measurement variability among DIVA techniques

and locations was tested using a split-split plot analysis

of covariance (Pinheiro & Bates 2000; R Foundation for

Statistical Computing). Prior to analysis, we assessed

normality and applied an arcsine square root transfor-

mation on percentage cover to help normalize the

response variable (normality was met; Gotelli & Ellison

2004). In the model, each black and white board combi-

nation was treated as a block, where board colour and

DIVA technique were considered to be the split-plot and

split-split plot, respectively.

We considered the Grid method as our null DIVA tech-

nique, which has previously been credited by other studies

using similar methods to successfully quantify vegetation

structure (Jones 1968; Peterson & Cooper 1987; Maxson &

Riggs 1996; Coates & Delehanty 2010; Fisher & Davis

2010). We used a random intercept model parameteriza-

tion at each of the block, split-plot and split-split plot levels

to account for the nesting of the experimental design (Pin-

heiro & Bates 2000). Because board colour (split-plot) and

DIVA technique (split-split plot) were nested as random

effects inside the block, we were also able to consider them

as fixed effects in trial models to test for systematic differ-

ences in percentage cover (Pinheiro & Bates 2000). We

added environmental and temporal variables to the model

as fixed effects, specifying time of day, wind speed and

Julian date as continuous variables and cloud cover as a

factor with three levels (sunny, partly sunny and cloudy).

We included two-way interactions between DIVA tech-

niques and environmental and temporal conditions. Non-

significant terms and interactions from trial models were

excluded from the final model. Post-hoc two-way compari-

sons of DIVA techniques were conducted using Tukey’s

honest significance test (Hothorn et al. 2008). All statistical

analyses were done using R (R Foundation for Statistical

Computing, Vienna, AT).

Results

The DIVA techniques provided different estimates of per-

centage cover, even after accounting for nested effects in

the study design (DIVA: F4,12 = 22.34, P < 0.001). Envi-

ronmental effects of cloud cover did not have any effect on

percentage cover estimates (cloud cover: F2,350 = 2.15,

P = 0.12), but the interaction between DIVA technique

and cloud cover was statistically significant (DIVA * cloud

cover: F8,350 = 2.05, P = 0.04). Of the five DIVA tech-

niques, the Threshold method had the lowest mean per-

centage cover estimate after accounting for variation in the

random and fixed effects. It differed significantly from

the other methods, but there were no differences among

the other four methods (Fig. 3).

The Threshold method preformed the worst, with the

highest averaged CV values of 27.87% and 58.56% for the

black and white backdrops, respectively. The Pixcavator

method had the lowest average CV values of 5.74% and

5.65% for the black and white backdrops (Fig. 4). CV val-

ues varied slightly among cover estimates from the Photo

Training, Pixcavator, GIMP and Grid methods, but each

performed better than the Thresholdmethod, with average

CV values below 20% (Fig. 4). Variance was significantly

different among the five DIVA techniques and backdrop

colour arrangements (F19,360 = 7.52, P < 0.001).

Cost of the software packages varied substantially by

DIVA technique (Table 1). Of the five techniques, the

GIMP and the Grid methods were the least expensive, uti-

lizing open-source software packages such as the GNU

Image Manipulation Program. The Photo Training tech-

nique was the most expensive method, costing roughly US

$700 for the full Adobe Photoshop licence. However, a

month-to-month licence can be purchased from Adobe for

a more economical approach (US$49 mo�1).

Field measurements and photo cropping were rapid,

about 90 s per photo, but the per photo processing time

based on a batch size of 100 photos varied greatly among

DIVA techniques (Photo Training ~0.6 s; Threshold 1 min;

GIMP 1–3 min; Pixcavator 2–3 min; Grid 10–15 min).

Discussion

Although percentage vegetation cover estimates varied

among the five image processing techniques in our study

Fig. 3. Percentage vegetation cover estimates differed among the digital

imagery vegetation analysis (DIVA) techniques. Columns represent the

estimated marginal means after controlling for nested random effects in

the study design and variation in cloud cover. Columns denoted by

different letters are significantly different at the 0.05 level according to a

Tukey post-hocmultiple comparison test.
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(Fig. 3), all but the Threshold technique measured per-

centage vegetation cover consistently, regardless of back-

drop colour or vegetation height (Fig. 4). Low

measurement variation is ideal for multi-year studies,

eliminating the variability associated with multiple observ-

ers and ocular estimation. However, DIVA estimates were

sensitive to lighting conditions, as noted by the significant

effects of the interaction between DIVA technique and

cloud cover, which may lead to high CV values for some

approaches (Fig. 4). Shadows increase measurement vari-

ation by introducing overlap between vegetation and

backdrop pixel values. Using a set value for the threshold

function within the Adobe Threshold technique made it

especially sensitive to lighting conditions, as over-exposed

photos were prone tomisclassify vegetation as non-vegeta-

tion on white backboards and under-exposed photos were

prone to misclassify the backboard as vegetation. The simi-

lar but opposite pattern occurred if the backboard was

black instead of white. The level of error associated with

the Threshold technique is somewhat surprising, given

that others have found it reliably predicts clipped herba-

ceous biomass (Limb et al. 2007), but the previous work

controlled for environmental and temporal variation by

recording all images in ‘rapid sequential order’ (Limb et al.

2007), an approach which is highly impractical in field

studies. Because our analysis was done across a range of

conditions, the use of a set threshold caused pixel values

associated with vegetation (or the backdrop) to shift back

and forth over this value, increasing our measurement

error (Fig. 4). Image processing techniques that vary

among images, either via human judgement or machine

training, are therefore necessary when light conditions

vary.

Trade-offs between precision and processing time are

important to consider when choosing any sampling

method, as available time and resources may limit pro-

cessing choices. Fortunately, with the exception of the

Threshold technique, all the DIVA methods we tested

were relatively precise, enabling users to focus on the

time and cost constraints associated with each methodol-

ogy. Not surprisingly, at up to 15 min per photo, the Grid

method was the most time consuming, but it was also

the easiest of the techniques to explain to personnel.

Moreover, although we used Adobe Photoshop, this

method could be implemented in a variety of software

packages, some of which are inexpensive or even free

(i.e. Adobe Photoshop Elements 10; GNU Image Manipu-

lation Program (GIMP); PhotoScape Image Editing Soft-

ware 3.5). The Pixcavator method was considerably faster

(2–3 min per photo) but did require more time to learn

and is dependent on a for-cost software package (Intelli-

gent Perception Pixcavator�, US$29 mo�1). The Thresh-

old and GIMP techniques were even faster, averaging

1 min per photo, but low precision made the Threshold

technique undesirable. By contrast, the GIMP technique

was precise and also the least expensive of the DIVA

methods, as the GNU Image Manipulation Program� is

available online as a free, open-source software package.

Perhaps the most interesting of the DIVAs from a logistics

perspective was the Photo Training technique. Although

it was dependent on costly software (Adobe Photoshop

CS5�, ~US$700), by automating the photo analysis pro-

Table 1. The software package options and estimated costs (US$, February 2012), as well as the processing time of the five digital imagery vegetation anal-

ysis (DIVA) techniques.

DIVA Technique Software options Software cost (US$) Min per 100 Photos Batch processing

GIMP GNU image manipulation program 0 100 No

Grid Adobe photoshop elements 10 0 1500 No

GNU image manipulation program 0 No

PhotoScape image editing software 3.5 100 No

Photo training Adobe photoshop CS5 700* ~1 Yes

Pixcavator Intelligent perception pixcavator 300* 200 No

Threshold Adobe photoshop elements 10 100 100 No

Adobe photoshop CS5 700* Yes

*Monthly licence available.

Fig. 4. The amount of variation differed among digital imagery vegetation

analysis (DIVA) techniques and backdrop colours, with the Threshold

method having the highest variation. Columns represent the coefficient of

variation (CV) in percentage vegetation cover estimates for each DIVA

technique and backdrop colour.
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cess and utilizing batch-processing techniques, the Adobe

Photo Training method took considerably less time and

was capable of making precise estimates of percentage

cover at a rate of 100 photos min�1. Automation enabled

the software to analyse the entire folder of cropped pho-

tos in a matter of seconds, making it convenient for the

investigator to quickly open the image in Adobe Photo-

shop�, click on the histogram and identify the percentage

cover. The capacity to analyse numerous photos rapidly

may be particularly advantageous for large studies, but it

is important to note that less expensive versions of

Photoshop (Adobe Photoshop Elements 10, ~US$100) do
not have the capacity to allow the user to record ‘actions’

for batch processing, which adds considerable time to

processing large numbers of photos.

In addition to processing approaches, field implemen-

tation is also important to successfully record percentage

vegetation cover. The size, shape and construction of

backdrops must be considered prior to fieldwork. A

black or white 1 9 1 m board was sufficient for our

study design and was capable of quantifying a range of

vegetation heights associated with mixed-grass prairie.

In other systems it may be more appropriate to use

smaller or larger board sizes, depending on vegetation

height and the variation in height among samples.

Rigidity is also important, as a rigid backdrop can be

propped upright on a set of posts, enabling the investiga-

tor to quickly move to and from each survey plot. In

addition, a rigid backdrop minimizes shadows caused by

sagging of the top edge and is capable of surviving being

carried through thick vegetation over the course of mul-

tiple field seasons. White fiberglass reinforced wall pan-

elling was excellent in maintaining structural integrity

throughout the investigation and was completely water-

proof. On the other hand, tempered hardboard was

more prone to warping when wetted and dried repeat-

edly. Other studies have used bed sheeting (Limb et al.

2007) or painted plywood (Boyd & Svejcar 2005) as

effective backdrops and may be more or less mobile

depending on the type of vegetation.

The techniques outlined in this study are a sample of

the potential ways to analyse vegetation cover using

digital processing techniques (see Booth et al. 2005,

2006; Luscier et al. 2006; Seefeldt & Booth 2006; Cag-

ney et al. 2011), of which many are suitable for esti-

mating vegetation quickly and effectively. Our results

suggest that DIVA techniques that allow adjustment for

environmental conditions are the most capable of mea-

suring vertical vegetation cover, and that human-based

selection and machine training methods for making

these adjustments provide similar precision (Fig. 4). This

finding is congruent with other tests that have shown

human-based selection and machine-training techniques

to be extremely effective at reducing pixel misclassifica-

tion due to environmental effects (Booth et al. 2005;

Seefeldt & Booth 2006). By using DIVA techniques to

estimate vertical vegetation cover, error commonly

associated with multiple observers’ visual obstruction

estimates can be greatly reduced. Minimizing variation

will allow more opportunity to detect patterns associ-

ated with vegetation structure and increase the power

of a study.
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