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ABSTRACT Indices of abundance, such as point counts, commonly are used to monitor trends in bird
populations. In some circumstances, however, an index of abundance provides insufficient information for
making management decisions and accurate density estimates are necessary. Wild ring-necked pheasants
(Phasianus colchicus) were translocated to 10 study areas in Pennsylvania from 2007 to 2014 with the goal of
establishing female densities of 3.86 pheasants/km2. We developed a population density estimator that used
3-minute crowing counts adjusted for probability of detection to estimate male pheasant density and flushing
surveys to estimate the female:male ratio. To account for detection probability, we estimated the probability a
pheasant was available to be detected by monitoring crowing frequency of male pheasants fitted with radio-
transmitters and the probability an observer was able to detect a crowing pheasant at distances from 0 to
0.93 km. We found the probability a pheasant crowed during 3 minutes decreased linearly over our survey
period from 0.66 in mid-April to 0.46 by the end of May. At the farthest distance we were able to accurately
detect a crowing pheasant. We estimated the probability of detecting a pheasant at 0.80 km to be
0.019� 0.005 (SE), which means that we could not assume any fixed distance beyond which crowing birds
could not be detected. Therefore, we replaced the probability of detection in the standard distance sampling
estimator with the effective area of detection. The estimation of the effective area of detection is robust to
choice of radius of the point and did not require observers to estimate the distance to crowing pheasants. We
estimated the female:male ratio to be 1.02:1, despite the ratio of released pheasants being 4.46:1. Only 1 study
area achieved the female density goal (D̂¼ 4.16); the maximum density at all other study areas was <2
females/km2. The estimator we developed incorporated multiple detection probabilities to provide density
estimates and simplified the crowing count protocol by eliminating the need for observers to estimate their
distance from a detected bird, whichmakes the estimator useful for estimation of population abundance when
explicit population density objectives must be evaluated. � 2018 The Wildlife Society.

KEY WORDS density estimation, detection probability, Pennsylvania, Phasianus colchicus, restoration, ring-necked
pheasant.

Ring-necked pheasants (Phasianus colchicus) have been
monitored by roadside point counts, minute-long point
counts, scat counts, and even using detonations to prompt
male pheasants to respond with a crow (McClure 1945).
Point counts, such as the Breeding Bird Survey (Nielson
et al. 2008), commonly are used as an index of abundance
and make the assumption that the individuals detected
are a constant, proportional representation of the actual
population (Luukkonen et al. 1997, Thompson 2002,

Farnsworth et al. 2005). For point counts to provide an
index of abundance and be reliable indicators of change over
time, the detectability of birds has to remain relatively
constant (Johnson 2008) despite potential sources of error
including observer ability to detect birds correctly (Carney
and Petrides 1957, Rosenstock et al. 2002), seasonal trends
(Nelson et al. 1962), differences in the time and duration of
maximum calling (Kimball 1949), and variation and effect of
environmental factors (Buckland et al. 2001). Without
explicitly estimating detection probabilities, it may be unclear
whether a change in an index of abundance is due to differing
detection probabilities, an actual change in population size,
or a combination of detection probability and population
(Farnsworth et al. 2005).
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An index of abundance can be used to monitor population
trends over time, but there are instances when density
estimates with measures of precision are necessary, such as
when assessing success of population restoration efforts
(Farnsworth et al. 2005) or comparing populations (Gates
1966). By adjusting point counts for detection probabilities,
it is possible to estimate population size and density. The
need for accurate density estimates has led to the
development of monitoring techniques that account for
detection probability of <1.0. Some of the methods
developed to estimate detection probability for point counts
include distance sampling (Buckland et al. 2001), double
observer sampling (Nichols et al. 2000), removal models
(Farnsworth et al. 2002), and a combination of these
techniques (Farnsworth et al. 2005, Amundson et al. 2014).
Issues with detection probability, such as differences among
observers in the ability to detect individuals, can increase
variance and lead to less precise population estimates
(Diefenbach et al. 2003). Multiple factors that influence
detection probability likely are important to consider and
account for when estimating abundance, such as the
probability a bird is available to be detected by an observer
and the probability an observer is able to detect a bird given it
is available to be detected (Farnsworth et al. 2005,
Diefenbach et al. 2007).
The Pennsylvania Game Commission (PGC) created wild

pheasant recovery areas (WPRAs) in 2007 and these sites
were closed to pheasant hunting and did not receive pen-
reared pheasants. Because the survival rate of pen-reared
pheasants in the wild is poor (Krauss et al. 1987, Diefenbach
et al. 2000), the PGC translocated wild pheasants from
Montana and South Dakota, USA. To assess if these
pheasant restoration efforts were successful, the PGC needed
density estimates rather than an index of abundance typically
used to monitor population changes over time. The PGC
expected that a minimum population density of 3.86 females/
km2 could be self-sustaining with hunting. Our objective was
to develop methods to estimate density of pheasants on
WPRAs and use the resulting density estimates to assess
whether population density goals were achieved.

STUDY AREA

We monitored wild, translocated pheasant populations at
2–5 study areas in each of 4 WPRAs that had >40.5 km2 of
potentially suitable breeding and overwintering habitat for
pheasants in Pennsylvania from 2013 to 2016 (Table 1,
Fig. 1). The topography of WPRAs consisted of ridges and
valleys and varied in elevation across all WPRAs from 106m
to 818m, but elevation range within WPRAs was 325–
540m (U.S. Geological Survey’s Center for Earth Resources
Observation and Science 2010). The median frost-free
growing days on WPRAs ranged from 143 days to 193 days
(National Oceanic and Atmospheric Administration
[NOAA] 2017a) and the average yearly precipitation ranged
from 104 cm to 117 cm (NOAA 2017b). The study areas are
classified as having a humid continental climate with warm,
hot summers and cold winters; precipitation is consistent
throughout the year. Predators of ring-necked pheasants and

pheasant nests found within the study areas included raccoon
(Procyon lotor), striped skunk (Mephitis mephitis), coyote
(Canis latrans), red fox (Vulpes vulpes), gray fox (Urocyon
cinereoargenteus), Virginia opossum (Dedelphis virginiana),
great-horned owl (Bubo virginianus), and red-tailed hawk
(Buteo jamaicensis).
The majority of the landscape in the Somerset WPRA was

used for agriculture (61.5%) and other major land cover types
were forest (14.1%) and developed (10.7%; U.S. Department
of Agriculture National Agricultural Statistics Service
Cropland Data Layer 2015). The Central Susquehanna
WPRA had a similar landscape composition with 54.4%
agriculture, 16.0% forested, and 10.6% developed. The
Hegins-Gratz WPRA had a large proportion of the area in
agriculture (63.8%) and forest (19.6%) with only 8.8%
developed. The Franklin WPRA was 63.5% agriculture,
13.5% forest, and 12.8% developed. The majority of the land
within WPRAs was privately owned, and the primary
agricultural crop was corn, except 1 WPRA (Somerset)
where hay was the most common crop.

METHODS

We trapped wild pheasants in South Dakota (2007, 2010,
2011, and 2014) and Montana (2007–2009) from January to
March and translocated them to WPRAs. We used standard
wire funnel traps (1m2) and bait (Leopold et al. 1938). We
checked the traps daily and held pheasants in pens until
100–300 birds were available for shipment. Before trans-
porting pheasants, we tested all birds for avian influenza and
parasites. We placed 4–9 pheasants in each crate for
transportation. All birds received a leg band and some
pheasants received necklace-style radio-transmitters (11 g;
Lotek Engineering, Ontario, Canada) upon release. As
control sites, we did not release pheasants in 2 study areas
(Washingtonville South and North Franklin) at 2 different
WPRAs to test if pheasants would naturally establish a
population if habitat was available. All procedures for
trapping and handling pheasants were part of a study plan
approved by the Pennsylvania Game Commission using
protocols recommended by the American Ornithologists’
Union.
We conducted crowing count surveys at the nearest

location on a road to randomly placed points across each
study area. Unlike traditional crowing count surveys, we
did not conduct surveys as a transect of points but as
independent survey points such that the sampling unit was
the point, not the transect (Buckland et al. 2001).
Observers conducted crowing counts between 16 April
and 31 May, 2013–2016. We conducted surveys beginning
30 minutes prior to sunrise and completed them no later
than 0900 hours in acceptable weather and noise
conditions (i.e., low wind speed, temperature >08C, and
no persistent precipitation). Observers conducted surveys
for 3 minutes and recorded the number of individual male
pheasants that crowed during the survey period. Observers
did not attempt to record distance to the crowing
pheasant. We visited each survey point 1–12 times during
the breeding period.
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To increase precision of pheasant density estimates,
crowing counts can be adjusted for 2 factors related to the
probability of detecting a pheasant (Farnsworth et al. 2005,
Diefenbach et al. 2007): the probability a pheasant crowed
during the 3-minute interval and the probability a crowing
pheasant was heard by an observer. To estimate male
pheasant density, we began with the modified distance
sampling estimator (Diefenbach et al. 2007):

D̂males ¼ m

p̂A � p̂DjA � pr2 � t
;

where D̂ is the estimated density;m is the number of detected
males crowing; p̂A is the estimated probability that a male
pheasant will crow during the survey period; p̂DjA is the
estimated conditional probability that the observer detected
the crowing male pheasant given that it is available to be
detected; pr2 was the area surveyed; and t was the number of
surveys completed. We used the estimated male pheasant
density and the estimated population sex ratio from flushing
surveys to estimate female density.
To estimate pA , we observed male pheasants on 2 WPRAs

(Franklin and Central Susquehanna) located via radio-
transmitters during the breeding season (20 Apr–31 May)
in 2014 and 2015 for a 30-minute time interval between a
half hour before sunrise to 0830 hours. Over the course of
the study, 6 different observers recorded the number of
times a bird crowed within a 3-minute survey, yielding 10
3-minute surveys for each observation session per pheasant.
We monitored each male pheasant�3 times throughout the
breeding season under conditions matching the crowing
count protocol. We classified a bird as available to be
detected if it crowed �1 time within a 3-minute period. We
used a generalized linear mixed-effects model and specified
a binomial distribution (Bates et al. 2015) to estimate pA .
To estimate how pA changed over time, we created models
including a linear effect of calendar day, a linear and
quadratic effect of calendar day, and an intercept-only
model. We treated the individual bird as a random effect to

account for heterogeneity in crowing frequencies among
individuals. We stratified the surveys into 3 periods (21
Apr–1 May, 2–12 May, 13–31 May). We estimated pA for
the midpoint of each period and used this in the density
estimator (Equation 1). Because of the large variation in the
number of surveys completed per point, we adjusted the
number of birds heard by the number of visits for each
period.
To estimate pDjA , we monitored the ability of observers

to detect crows of 21 male pheasants at distances of
0.03–0.93 km on 2 WPRAs (Somerset and Central
Susquehanna). During the 2010–2013 breeding season,
2 observers located a male pheasant via its radio-
transmitter and waited for a 2-minute adjustment period.
Subsequently, both observers recorded the number of times
they heard the pheasant crow for 10 minutes. The first
observer remained near the pheasant while the second
observer moved away from the bird at 0.18-km intervals
and the listening periods were repeated. By documenting
which crows the second observer missed, we were able to
estimate pDjA as a function of distance from the observer.
We estimated pDjA using logistic regression with the
logistic function scaled by the probability of detection at
distance 0 so that p̂DjA ¼ 1.0 at distance 0. We used the
logistic detection function to estimate the effective area of
detection (Buckland et al. 2001). Effective area
(EFFAREA) is the area in which the estimated proportion
of detections beyond a specified distance is equal to the
estimated proportion of missed detections within that
distance (Buckland et al. 2001). By using the effective area,
we avoided arbitrarily defining a detection radius for the
crowing counts, which resolved the problem of not
measuring the distance of a crowing pheasant from the
observer during the count surveys. Therefore, we modified
the male density estimator:

EFFAREA ¼ p̂DjA � pr2 D̂males ¼ m

p̂A � EFFAREA � t
:

Table 1. Number of survey points at which we conducted crowing counts and size of the wild pheasant recovery areas (WPRAs), Pennsylvania, USA,
2013–2016.

Number of survey points

WPRA study area 2013 2014 2015 2016 Area (km2)

Central Susquehanna 128 133 133 213 511.6
Greenwood Valley 20 20 20 29 66.0
Pennsylvania Power and Light 24 24 24 48 80.9
Turbotville North 30 30 30 40 78.9
Washingtonville South 24 29 29 41 90.9
Washingtonville West 30 30 30 55 80.2

Hegins-Gratz 60 60 60 80 255.8
Hegins 20 20 20 30 62.2
North Gratz 20 20 20 25 40.5
South Gratz 20 20 20 25 42.1

Somerset 31 31 31 35 69.2
North Somerset 20 20 20 23 51.3
South Somerset 11 11 11 12 17.8

Franklin 34 34 34 45 339.9
North Franklin 15 15 15 15 35.8
South Franklin 19 19 19 30 55.7
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We estimated the number of males (M̂ v) and variation
vâr M̂ v

� �� �
for each period separately because of variation in

crowing frequency based on calendar day. By including tv,
the number of visits in survey period v, in the density
estimation, we accounted for an unequal number of surveys
per survey point.

M̂ v ¼ mv

p̂Av � tv
vâr M̂ v

� � ¼ M̂
2

v � ðcv mvð ÞÞ2 þ ðcv p̂Av
� �Þ2;

ð1Þ

where mv is the number of male birds heard in period v, tv is
the number of surveys across all points in a study area during
period v, and p̂Av is the estimated probability a male pheasant
crows in period v.
We averaged the 3 male estimates by period (M̂ v) to

obtain an average male count (M )̂ and summed the
variances vâr M̂ v

� �� �
. We incorporated EFFAREA to

estimate overall male density:

D̂males ¼ M̂

EFFAREA
and 

vâr D̂males

� � ¼ D̂
2

males � cv M̂
� �� �2 þ cv EFFAREAð Þð Þ2

n o
:

We conducted flushing surveys in winter months (Jan and
Feb) from 2013 to 2016 on all of theWPRAs to estimate sex
ratio. Observers completed flushing surveys prior to the
release of translocated wild pheasants in a given year. We
used radio-telemetry, roadside inspections, and input from
landowners to identify areas known to have wild pheasants in
which we could conduct flushing surveys. Teams of 5–10
people and 4–8 dogs flushed pheasants and surveyed all cover
within their defined search area and recorded the sex of
pheasants as they were flushed. Observers noted where
flushed birds landed to ensure they did not double count

Figure 1. The locations of wild pheasant recovery areas (WPRAs) and county outlines in Pennsylvania, USA, 2013–2016.
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birds. We assumed that male and female pheasants had an
equal probability of being flushed.
We used generalized linear regression with a binomial

link function to estimate the probability of flushing a
female pheasant (Bates et al. 2015). To investigate if the
probability of flushing a female was influenced by year
and to account for heterogeneity among WPRAs, we
considered 3 candidate models including an intercept
model with year as a random effect, an intercept model
including WPRA as a random effect, and an intercept
model with year and WPRA as random effects. We
estimated the female:male ratio as the logit of the
estimated probability of flushing a female obtained from
the best model.
To estimate female density, we multiplied the estimated

male density by the sex ratio (the odds ratio of the probability
of flushing a female pheasant):

D̂f emales ¼ D̂males � P̂ðf emaleÞ
1� P̂ ðf emaleÞ :

We used the delta method to estimate standard error for
female pheasant density (Williams et al. 2002). We fit
models using maximum likelihood when estimating the
probability of a pheasant being available to be detected and
used restricted maximum likelihood when fitting models for
estimating the probability of flushing a female pheasant. We
analyzed all data in Program R using package lme4 (Bates
et al. 2015, R Core Team 2015) and selected the best model
according to Akaike’s Information Criterion adjusted for
sample size with the lowest score (AICc; Burnham and
Anderson 2002) using restricted maximum likelihood
estimation (Zuur et al. 2009).

RESULTS

We released 2,328 pheasants and 1,902 of those pheasants
were female (Table 2). The density of released females

ranged from 0.85 pheasants/km2 to 15.12 female pheasants/
km2 at the study areas. We monitored crowing rates of 21
male pheasants with radio-transmitters (14 pheasants from
the Central Susquehanna WPRA and 7 pheasants from
FranklinWPRA) to estimate pA . The best model included an
intercept (b̂¼ 0.29� 0.137 [SE]) and the calendar day
covariate (b̂¼�0.23� 0.072) and indicated that crowing
frequency declined linearly over time (21 Apr–23 May;
Table 3; Fig. 2). Consequently, we stratified our crowing
surveys into 3 periods and estimated the probability a
pheasant crowed (p̂A) for the median date of surveys for each
period (calendar day 115, 127, and 139). The estimated
probability a pheasant crowed during a 3-minute survey
period was 0.64� 0.037 for period 1, 0.56� 0.034 for period
2, and 0.49� 0.043 for period 3.
We pooled observer detection data across WPRAs and

years (2010–2013). We estimated the effective area to be
0.60� 0.026m2 and the effective detection radius to be
0.44 km. At the effective detection radius, we estimated
the probability an observer detected a pheasant given that it
was available to be detected (p̂DjA ¼ 0.41� 0.005). The
probability of detecting a crowing pheasant decreased as
an observer increased distance from the bird. Between
2013–2016, we conducted 155 flushing surveys (89 surveys at
Hegins-Gratz WPRA, 49 surveys at Central Susquehanna
WPRA, 12 surveys at Franklin WPRA, and 5 surveys at
Somerset WPRA) and 1,160 sex identification events
occurred. The best model for female:male ratio included
the intercept and year as a random effect (Table 4). We
estimated the probability of a flushed bird being female to be
0.505� 0.024 and a sex ratio of 1.02� 0.098 female
pheasants for every male pheasant.
The female pheasant density increased on the North

Gratz study area (Fig. 3; Table S1, available in Supporting
Information online) from 2013 (D̂¼ 0.19) to 2016
(D̂¼ 0.93) but failed to achieve the density goal. The
North Somerset study area had a higher density estimate in

Table 2. Year of initial reintroduction, cumulative number of translocated female ring-necked pheasants, and resulting densities (female pheasants/km2) of
released pheasants on wild pheasant recovery areas (WPRAs) and study areas within each WPRA, Pennsylvania, USA, 2007–2014. We did not release
pheasants at theWashingtonville South or North Franklin study areas. Densities represent the number of released female pheasants over a study area and are not
adjusted for detection probabilities.

2010 2014

WPRA study area
Year of first

release
Number released in the

first year Density
Cumulative number

released Density
Cumulative number

released Density

Central Susquehanna 2007
Greenwood Valley 2007 52 0.79 115 1.74 115 1.74
Pennsylvania Power
and Light

2007 57 0.70 303 3.75 303 3.75

Turbotville North 2007 68 0.86 144 1.83 144 1.83
Washingtonville West 2007 72 0.90 171 2.13 171 2.13

Hegins-Gratz 2011
Hegins 2011 152 2.44 152 2.44
North Gratz 2011 60 1.48 60 1.48
South Gratz 2011 64 1.52 64 1.52

Somerset 2009
North Somerset 2009 216 4.21 499 9.72 776 15.12
South Somerset 2009 59 0.85 59 0.85 59 0.85

Franklin 2014
South Franklin 2014 58 1.04 58 1.04
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2013 (D̂¼ 1.03) than in 2016 (D̂¼ 0.31). South Somerset
also had higher density estimates in 2013 (D̂¼ 1.06) than
2016 (D̂¼ 0.35). The North Franklin study area, where no
pheasants were introduced, never had pheasants detected
during crowing surveys (Table S2, available in Supporting
Information online). The South Franklin study area did not
have density estimates for 2013 but did have an increasing
density from 2014 (D̂¼ 0.16) to 2016 (D̂¼ 0.64). Only 1
study area, Washingtonville West, achieved and exceeded
the female density goal of 3.86 pheasants/km2 where the
highest female density occurred in 2015 (D̂¼ 4.16) but had
a lower density (D̂¼ 2.85) in 2016.

DISCUSSION

Point counts may be a cost-effective and simple index to
assess bird population trends but are insufficient to
assess success of population restoration efforts where a
population density estimate is required. Our method
of density estimation incorporated 2 separate detection
probabilities that influenced the number of birds
detected during point counts. Moreover, we used a
simplified crowing count protocol and only required
observers to count the number of individuals heard
crowing without estimating distance.

Gates (1966) reported crowing frequency to plateau from
25 April to 15 May and we expected to capture the peak of
crowing by conducting our crowing counts during this time.
We anticipated a quadratic relationship to explain crowing
frequency, but our results indicated that we initiated
crowing count surveys at or after peak crowing activity by
pheasants in our study areas because crowing frequency
decreased linearly over time. Without accounting for
pA < 1.0 and the decline in crowing frequency over time,
density estimates would have been confounded by the date
the survey was conducted and the estimator would have
been negatively biased. Farnsworth et al. (2005) presented a
model that accounted for the probability of a bird being
available for detection during a survey, but an assumption of
the model was that the probability of a bird vocalizing was
constant throughout the survey period. However, our study
did not find a constant crowing frequency and our model
allowed for a changing probability that a bird is available to
be detected. Alternatively, crowing count surveys used as an
index of abundance to monitor population trends could be
designed to revisit sampling points during the same 1-week
or 2-week period each year to ensure relatively constant p̂A
over time.
Many methods of conducting point counts for density

estimation that incorporate detection probability (pDjA)
require 2 observers at all point counts (Nichols et al.
2000, Koneff et al. 2008), observers to measure the
distance from the bird when detected (Buckland et al.
2001, Rosenstock et al. 2002), or observers to record the
time interval they first detected a bird (Farnsworth et al.
2002). As expected, the farther an observer was from a
crowing pheasant, the lower the probability of detecting
the pheasant. At the farthest distance we were able to
detect a crowing pheasant (0.80 km) our estimated
detection function indicated that detection probability
was small but >0, indicating that we could not assume
that we only heard birds within 0.80 km or a distance at
which we could no longer detect crowing pheasants.
Rather than directly incorporating the probability an
observer detected a male pheasant given that it was
available to be detected (p̂DjA) at an arbitrarily selected
distance in our estimator, we used the estimated effective
area of detection. Using the effective area of detection
makes the density estimator robust to the choice of point-
transect half-width distances when modeling detection
probability (Thomas et al. 2002) and eliminated the need
to estimate distance when counting crowing pheasants.
Because of the difficulty of estimating distance to a
crowing pheasant, protocols that relied upon observers to
accurately estimate the distance to each crowing bird
would violate a key assumption of distance sampling
(Buckland et al. 2001).
Although we were able to estimate detection probability

based on distance from the bird, we were unable to account
for detection differences among individual observers.
Detection differences among observers may result from
hearing abilities, sensitivity to specific species’ songs, or
species favoritism (Farnsworth et al. 2002) and can reduce

Table 3. Model selection for linear mixed effects models (each individual
bird was treated as a random effect) estimating the probability that a male
ring-necked pheasant will crow �1 time during a 3-minute period (p̂A),
Pennsylvania, USA, 2014–2015.

Model Ka DAICc
b �2� log-likelihood wi

c

Calendar day 3 0.0 1,239.6 0.57
Calendar dayþ (calendar

day)2
4 0.6 1,238.2 0.43

Intercept only 2 8.5 1,250.2 0.01

a Number of parameters.
b Difference in corrected Akaike’s Information Criterion (AICc) value
from the model with the lowest AICc value.

c AICc weight.

Figure 2. Probability that a ring-necked pheasant equipped with a radio-
transmitter (n¼ 21) crowed during a 3-minute survey period based on
calendar day plotted with the line of best fit (solid) and 95% confidence
intervals (dashed), Pennsylvania, USA, 2014–2015.
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the precision of the density estimates (Diefenbach et al.
2003). Koneff et al. (2008) reported that detection models
including observer effects were favored but encountered
issues obtaining estimates of observer detection rates because
of small sample sizes. Our estimation of pDjA involved many
observers over multiple years, but not all of the observers who
conducted crowing counts were involved with estimating
pDjA . Therefore, we were not able to incorporate observer-
specific detection probabilities into the estimator, although it
is likely that there are detection differences for individual

crowing count observers. Observer-specific estimates of pDjA ,
however, could be readily incorporated into the estimator.
Gates and Hale (1974) reported that the sex ratio during

the breeding season could be accurately estimated from a
winter (Dec–Mar) field count, as we did with our flushing
surveys. We found the sex ratio to be nearly 1:1 despite the
sex ratio of released translocated birds being 4.46:1 female to
male pheasants. The change in sex ratio likely is the result of
differential survival between sexes throughout the year and
the fact that our wild pheasant populations were not hunted.
Gates and Hale (1974) reported female survival to be
correlated with winter weather conditions, whereas winter
weather did not greatly influence male survival. Other
populations without hunting pressure reported similar sex
ratios to our results (Allen 1938, Shick 1947). Therefore,
despite a greater proportion of females released on the study
areas, differential survival and no hunting pressure could
explain the sex ratio becoming equal over a short period of
time.
We estimated pA and pDjA using the wild, translocated birds

that were part of the released population. Because pA can vary
by timing of crowing counts and pDjA could vary among
observers, detection probabilities will likely differ for other
monitoring programs, study areas, or populations and should
be estimated for each study. Prior to use in other studies,

Table 4. Model selection for the logistic regression models estimating
probability that a flushed ring-necked pheasant was male. Variables in
parentheses were included as random effects, Pennsylvania, USA,
2013–2016.

Model variables Ka DAICc
b �2� log-likelihood wi

c

Interceptþ (year) 2 0.0 119.8 0.56
Interceptþ (WPRAd)

þ (year)
3 1.5 118.6 0.26

Interceptþ (WPRAd) 2 2.3 122.2 0.18

a Number of parameters.
b Difference in corrected Akaike’s Information Criterion (AICc) value
from the model with the lowest AICc value.

c AICc weight.
d Wild Pheasant Recovery Area.

Figure 3. Density estimates (female pheasants/km2) and 95% confidence intervals for female ring-necked pheasants on the wild pheasant recovery areas
(WPRA), Pennsylvania, USA, 2013–2016. The Somerset WPRA (A) contains the North Somerset (NS) and South Somerset (SS) study areas. We did not
survey the FranklinWPRA (B) in 2013; it contains theNorth Franklin (NF) and South Franklin (SF) study areas.We did not detect birds at the South Franklin
study area. The Hegins-GratzWPRA (C) contains the Hegins (H), North Gratz (NG), and South Gratz (SG) study areas. The Central SusquehannaWPRA
(D) has a different y-axis because of higher estimated densities and it contains the Greenwood Valley (GV), Pennsylvania Power and Light (PPL), Turbotville
North (TVN), Washingtonville South (WS), and Washingtonville West (WW) study areas.
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further evaluation of pA and pDjA are necessary. Adjusting
point counts by detection probabilities will not provide
perfect estimates, but incorporating detection probabilities
can reduce variability (Johnson 2008).
Only 1 of our study areas reached the female pheasant

density goal of 3.86 females/km2 and appeared to achieve a
self-sustaining pheasant population. All other study areas
failed to reach female densities >2 females/km2. The
WPRAs represented some of the best available pheasant
habitat in Pennsylvania, but most study areas (11 of 12)
seemed to have inadequate recruitment despite no hunting.
It does seem possible to attain self-sustaining pheasant
populations in parts of Pennsylvania, but these areas may be
limited in size and occurrence.

MANAGEMENT IMPLICATIONS

The estimator we developed could be used in instances
where an index of abundance is inadequate for assessing a
population, such as reintroduction and restoration efforts.
By separately estimating the detection probabilities
using birds located with radio-transmitters, we
simplified data collection methods for a species in which
distance to a crowing pheasant cannot be estimated
reliably. Our density estimator did not include variation in
detection probabilities among observers, but simple
modifications of this estimator could account for this
detection probability.
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