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ABSTRACT Models of resource selection are being used increasingly to predict or model the effects of
management actions rather than simply quantifying habitat selection. Multilevel, or hierarchical, models are
an increasingly popular method to analyze animal resource selection because they impose a relatively weak
stochastic constraint to model heterogeneity in habitat use and also account for unequal sample sizes among
individuals. However, few studies have used multilevel models to model coefficients as a function of
predictors that may influence habitat use at different scales or quantify differences in resource selection
among groups. We used an example with white-tailed deer (Odocoileus virginianus) to illustrate how to model
resource use as a function of distance to road that varies among deer by road density at the home range scale.
We found that deer avoidance of roads decreased as road density increased. Also, we used multilevel models
with sika deer (Cervus nippon) and white-tailed deer to examine whether resource selection differed between
species. We failed to detect differences in resource use between these two species and showed how
information-theoretic and graphical measures can be used to assess how resource use may have differed.
Multilevel models can improve our understanding of how resource selection varies among individuals and
provides an objective, quantifiable approach to assess differences or changes in resource selection. © 2011

The Wildlife Society.
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resource selection function.

Most often, when a sample of individual animals is moni-
tored and their habitat use measured, these data are used to
make inferences about population-level habitat selection
(Manly et al. 2002). For each individual, a resource selection
function (RSF) can be modeled even though the objective is
to make inferences about population-level habitat selection.
One solution to obtaining a population-level model of habi-
tat use is to average coefficients of the RSF across individual
animals (e.g., Sawyer et al. 2006). Although this 2-stage
approach has some advantages, including intuitive appeal
(see Fieberg et al. 2010 for details); this approach does

not account for sample size differences among individuals,
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animals with insufficient data for fitting models must be
excluded, and heterogeneity in habitat use (i.e., variation
of estimated coefficients) is not easily modeled (Fieberg
et al. 2010). Furthermore, individuals may not share com-
mon parameters among their respective RSFs. An alternative
approach that circumvents the aforementioned limitations of
averaging coefficients across individuals, while allowing for
the quantification and modeling of heterogeneity in habitat
use, is multilevel modeling.

Multilevel models, also known as hierarchical models, are
being used more as an analytical framework for studying
resource selection by animals (Gillies et al. 2006,
Hebblewhite and Merrill 2008, Belant et al. 2010,
Duchesne et al. 2010, Singleton et al. 2010). These models
are considered multilevel because they explicitly model the
multilevel structure of the data (e.g., multiple measurements
[level 1] nested within individuals [level 2]) by considering
both within- and among-individual variation. Thus, multi-
level models provide the ability to include covariates mea-
sured at multiple spatial and temporal scales. The increased
use of multilevel models, as opposed to fitting fixed effects
models, is due in large part to their ability to 1) accommodate
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repeated observations made on individual animals while
retaining the animal as the experimental unit (i.e., avoid
pseudoreplication) and an unbalanced number of observa-
tions (e.g., locations) made across individuals through the
inclusion of a random intercept and 2) allow for heteroge-
neity in the responses of individuals to resource availability
through the inclusion of random slopes (Hebblewhite and
Merrill 2008, Duchesne et al. 2010). Quantifying the het-
erogeneity in responses of individuals provides information
about how individuals differ with respect to preference for
specific habitat characteristics. In addition, multilevel models
simultaneously allow for inferences about population re-
source selection (i.e., marginal inferences), which is described
by the population-average RSF, and for inferences about
individual animal resource selection (i.e., conditional
inferences).

Details of the properties of multilevel resource selection
models have been presented elsewhere (e.g., Gillies et al.
2006), but one feature of multilevel resource selection models
is currently underutilized: the ability to model among-indi-
vidual heterogeneity in resource selection coefficients (i.e.,
individual animal slopes and intercepts). Because multilevel
models can have slopes and intercepts that are themselves
given a model (i.e., covariates can be included at multiple
levels of the model; Gelman and Hill 2007), they easily can
be extended to model (explain) variability in functional
responses in resource selection. This is important because
we expect, in many cases, that individual animals or groups of
animals differ in their selection for specific habitats. This
heterogeneity could be driven by characteristics of an indi-
vidual animal such as age, sex, or species or by characteristics
of an individual’s home range. In fact, the presence of cross-
scale interactions, where the probability of resource use is
affected by both predictors at the scale of individual resource
units and at larger spatial scales, is likely a common occur-
rence. Understanding what drives variability in resource
selection and at what spatial scale it occurs can provide
valuable information to both managers and ecologists.
Furthermore, the ability to detect differences or changes
in resource selection from both an ecological (e.g.,
Indermaur et al. 2009) or a conservation perspective (e.g.,
Sawyer et al. 2009) is important to understanding both the
ecological drivers of resource selection and the impact of
human activities on wildlife behavior. Without a multilevel
modeling approach, the ability to make inferences about
biological and statistical differences or changes is not possible
without the use of ad hoc decision rules.

To the best of our knowledge, very few resource selection
studies have taken advantage of this ability to model coet-
ficients, with Hebblewhite and Merrill (2008) and
Indermaur et al. (2009) being notable exceptions. For exam-
ple, Hebblewhite and Merrill (2008) modeled parameter
variation in wolf pack use of locations near areas of human
activity as a function of each pack’s home range-scale prox-
imity to human use. Indermaur et al. (2009) modeled coef-
ficients in a multilevel logistic model to investigate
differences in resource selection between 2 sympatric toad
populations.

Our goal was to demonstrate the use of multilevel resource
selection models to explain heterogeneity in resource selec-
tion. We used 2 examples to investigate 1) whether home
range characteristics of individual white-tailed deer
(Odocoileus virginianus) can explain heterogeneity in habitat
use in response to the distance to roads (a cross-scale inter-
action) and 2) whether resource selection differs between sika
(Cervus nippon) and white-tailed deer. Both of these exam-
ples use multilevel logistic models; however, the approach
can easily be extended to RSF models that assume other
distributions, including the negative binomial distribution

(e.g., Belant et al. 2010).

METHODS

We conducted 2 case studies to illustrate modeling individual
heterogeneity in resource selection. The first example is a
simple illustration of how multilevel models can incorporate
information at multiple scales to model resource selection.
We examined resource selection as a function of distance to
road in which this relationship was dependent on local road
density. The second example is more realistic in that we
model resource selection of 2 sympatric species and use
multilevel models to evaluate whether resource selection
differed between species. Both examples used study designs
in which we identified individual deer and measured the use
of resources for each, but we measured availability at the
population level (Manly et al. 2002). For both analyses, we
used Akaike’s Information Criterion (AIC) to compare
models with differing fixed effects. Although the application
of AIC for multilevel models is not straightforward, largely
because of difficulty determining the effective number of
parameters, we used AIC corrected for sample size
(AICc) because we were interested in making inferences
about population-level parameters as opposed to inferences
about particular groups in our dataset (i.e., we were interested
in marginal as opposed to conditional inferences; Vaida and
Blanchard 2005). Accordingly, for a marginal focus, the
number of parameters is the number of fixed effect param-
eters (population average effects) plus the variance estimates
for the random effects (Vaida and Blanchard 2005). We
performed all analyses using the R (R Version 2.10.1,
http://www.r-project.org, accessed 27 June 2011) function
Imer (Ime4 Package Version 0.999375-17, http://Ime4.
r-forge.r-project.org/, accessed 27 Sep 2010; see Supporting

Material, available online at www.onlinelibrary.wiley.com).

Example 1: Effects of Roads and Road Density on
White-Tailed Deer Resource Selection

We predicted that female white-tailed deer would avoid
roads; specifically, that resource selection increases with
increasing distances to roads. Also, we expected this rela-
tionship would vary among individual deer and that some of
this variability would be a function of local road density (i.c.,
road density in an individual deer’s home range). For exam-
ple, if a deer has few roads in its home range we would expect
the effect of distance to roads to be large and positive
compared to a deer with a home range with high road
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density. In the latter case, we would expect the effect of
distance to roads to be either small and positive or negative
because of the inability to avoid roads in a high road density
area.

We captured 148 female white-tailed deer on a study area
(1,304 km?) in wildlife management unit 2G in
Pennsylvania, 2005-2007, and we fitted each deer with
very high frequency (VHF) or Global Positioning System
(GPS) radiocollars (Norton 2010). Capture and handling
protocols were approved by The Pennsylvania State
University, Institutional Animal Care and Use Committee
(IACUC No. 26886). The study area included forest lands
managed by the Pennsylvania Game Commission and
Pennsylvania Department of Conservation and Natural
Resources, and privately-owned land to the south and
west; 29% of the study area was privately owned and most
of the landscape was forested. We divided the study area into
30-m X 30-m resource units in a Geographic Information
System (ArcGIS 9.3, Environmental Research Systems
Institute, Redlands, CA) and for each unit we calculated
the distance to the nearest public road open to vehicular
travel. We systematically selected every 400th resource unit
with a random starting location to create a dataset of avail-
able habitat (n = 1,480). As a measure of road density in a
deer’s home range, for each deer, we summed the meters of
road within 1,004 m of the median x—y location for each
deer. We based the 1,004-m radius on the size of a circle
equivalent to the average home range of 38 deer with fitted
with GPS collars. We use the term “home range” in this
example to represent habitat characteristics measured at a
spatial scale that is representative of what deer experience in
their area of use. Too few x—y locations for many deer
precluded the estimation of the actual home range for indi-
vidual deer.

We used software LOAS (Location of a Signal; Ecological
Software Solutions, Hegymagas, Hungary) to triangulate
estimated deer locations with >2 bearings using Andrew’s
estimator (White and Garrott 1990). For each deer, we
defined a resource unit as used if >1 estimated location
fell within the boundaries of the resource unit. For this
example, we did not account for telemetry error but could
assign a weight to used resource units according to the
probability of the deer being located in the given resource
unit (Samuel and Kenow 1992). A given resource unit should
be classified as either used or available, but because we
classified few resource units (<1%) as both used and avail-
able, we did not prevent the same resource unit from being
included in both the used and available datasets (Manly et al.
2002).

We used multilevel logistic regression models to evaluate
resource selection. A standard approach to modeling habitat
use within a multilevel model framework is to include a
random intercept to accommodate the lack of independence
associated with multiple observations made on the same
individual over time (i.e., a varying intercept model). For
this example, we can view a varying intercept model that
predicts use (y; = 1 if resource unit 7 was a used, 0 otherwise)
as a function of the distance to the nearest road (DIST) as a

2-level model as follows (the notation 7[7] in equation 1
indexes deer j for observation 7):

Level-1: Pr@; = 1) = logit™! (ot/-[,-] + ﬂlDIST,-), fori=1,...n,
Level-2: O{]'NN(/La,Ui), j=1...]

1)
where o is the intercept for the jth deer, B is the coefficient
for effect of DIST, p, is the population-average intercept,
and o2 is the estimated variance of deer-specific intercepts.
We natural log transformed DIST and centered it to aid
model convergence (log[DIST;]—log[DIST;]). Although
this model accommodates the lack of independence among
observations taken on the same deer, we can expand it to
allow the effect of DIST to vary among deer (i.e., varying
slopes). For example, we hypothesized the effect of DIST on
resource use would vary among deer based on deer-specific
attributes, such as local landscape characteristics.

We then modified the model to allow for the effect of
DIST on resource use to vary among individuals (i.e., a
varying-intercept, varying-slope model). The multilevel
model we used was:

Level-1: Pr(y,- = 1) :logit_1 (aj[i] + ﬂj[i]DISTi), fori=1,...n,
Level-2: aij(ua,oi), 7=1,...7,
ﬂjNN(uﬂ,a§)7 i=1,...J
)
where a;is the intercept for the jth deer, B;is the slope for the
Jth deer, pi, is the population-average intercept, jig is the
population-average effect of distance to the nearest road, and
(ri and 0123 are variance estimates of among deer-specific
intercepts and among deer-specific slopes, respectively. A
parameter that describes the between-group correlation in
random effects (p) also is estimated.

The level-2 model in equation 2 is unconditional, which is a
common practice because emphasis traditionally has been
placed on estimating population average effects of covariates
on resource use. However, the deer-level slopes and inter-
cepts can themselves be modeled to provide further insight
into resource use heterogeneity and to examine cross-scale
interactions. We modeled slopes and intercepts as a function
of the road density (RD) in each deer’s home range as:

aj:yg+y‘fRDj+5;?‘, 7=1,....] (3a)

B =V +VIRD;+&l, j=1,....] (3b)

where y§, yg , v$, and y’f are the coefficients for the intercept,
the effect of DIST, and the effect of RD, on intercepts and
slopes, respectively. Errors, ¥ and eh , have mean zero and
variances 02 and 0. Also, p, as described in the model based
on equation 2 is estimated (Gelman and Hill 2007). We

report all means £1 SE unless otherwise noted.

Example 2: Modeling Differences in Resource Selection
Between Species

Assateague Island is a 59.2-km long barrier island located on
the Atlantic coast of Maryland and Virginia that not only
hosted native white-tailed deer but also exotic sika deer and
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feral horses (Equus caballus). To document the effect of
ungulate herbivory on Assateague Island, Sturm (2008) con-
ducted an exclosure study to document the effect of no
ungulate herbivory, deer-only, and horse and deer herbivory
on plant communities. Sturm (2008) found that herbivory on
some plant species could be directly attributable to either
horse or deer; however, the separate effects of sika and white-
tailed deer herbivory could not be identified via exclosures
because of the inability to passively exclude one deer species
but not the other. Thus, we modeled habitat use of sika and
white-tailed deer to examine whether differences in habitat
use existed and possibly attribute herbivory on specific plant
species to either deer species.

We conducted this study on the Maryland portion of the
island under the administration of the National Park Service,
designated as Assateague Island National Seashore (3,234 ha),
and the Maryland Park Service, Assateague State Park
(368 ha). This portion of the island was approximately
35.5 km long from the north inlet to the Maryland—
Virginia border. No agricultural activity occurred on the island
and vegetation was typical of undeveloped barrier islands of the
eastern coast of North America. The ocean side beach was the
easternmost habitat, and to the west one encountered a primary
dune system, an interdune meadow, and then a secondary set of
dunes. The western side of the island typically contained shrubs
and forested areas adjacent to salt marsh.

We defined the study area as the perimeter of the island
itself (including salt marsh). We divided the study area into
360,181 10-m x 10-m resource units. We assigned each
resource unit 1 of 6 land cover categories (sand and herba-
ceous areas, low shrub, tall shrub, forest, developed land, and
salt marsh) based on the land cover type that covered the
greatest area within each 10-m x 10-m resource unit. We
calculated a distance (m) to nearest cover and defined cover as
areas classified as tall shrub or forest because cover has been
found to be a predictor of cervid habitat use (Mysterud and
Ostbye 1999). Of the available resource units, we systemati-
cally selected every 400th resource unit with a random start-
ing location to create a dataset of available habitat (= = 901).

We captured and radiocollared 11 white-tailed deer and 24
sika deer. Capture and handling protocols were approved by
The Pennsylvania State University, Institutional Animal
Care and Use Committee (JACUC No. 21758). In
August—September 2007 we systematically located each
deer up to 4 times/week, using ground based VHEF teleme-
try, in the morning (0400-1000 hours), mid-day (1000-
1700 hours), and evening (1700-2300 hours). We used
LOAS to triangulate estimated deer locations with a 95%
error ellipse of <1.0 ha using Andrew’s estimator (White
and Garrott 1990). We used the intersection of >3 telemetry
bearings collected within 20 min to minimize location error
caused by animal movement. For each deer, we defined a
resource unit as used if >1 estimated location fell within the
boundaries of the resource unit. For this example, we did not
account for telemetry error but could assign a weight to used
resource units according to the probability of the deer being
located in the given resource unit (Samuel and Kenow 1992).
A given resource unit should be classified as either used or

available, but because we classified few resource units (<1%)
as both used and available we did not prevent the same
resource unit from being included in both the used and
available datasets (Manly et al. 2002).

We used the general model structure described in
equations 1-3 to evaluate whether differences in resource
selection differed between white-tailed and sika deer. Two
notable differences between the models fitted in Example 1
were that instead of using a continuous covariate to model
slopes and intercepts (e.g., home range road density), we used
a categorical predictor (species: 1, white-tailed deer; 0, sika
deer). In addition, instead of a single varying slope parameter
as in Example 1 there were 6 (one for distance to nearest
cover and 5 for the habitat indicator variables). We defined
sand and herbaceous habitat as the reference category. The
multilevel model we used was:

6
Level-1: Pr(y,- = 1) = logif1 <aj[i] + Zﬁkj[i}Xéi>7 @
=1

fori=1,...,n

where y; is as defined in Example 1, o; is the intercept for the
Jth deer and B,; are the slopes for the jth deer for covariate
X, The X, represents the log-transformed and centered
distance to nearest cover (log[X;] —log[X}]) and each of the 5
habitat index variables.

Level-2:a; = y§ + y§Species; + &%, j=1,....] (52)
By = Vot + v Species, + ¢, j=1 J (5b)
5 = Yo TV Speaes; T &, 7 =4

where y§, ygk, ¥{, and yf’* are the coefficients for the inter-
cept, the effect of covariateXy;, and the effect of species on
intercepts and slopes, respectively. Errors, & and Ef" , had
mean zero and variances 02 and 0,23&.

RESULTS

Example 1: Effects of Roads and Road Density on
White-Tailed Deer Resource Selection

For the 148 deer we used in the analysis, the number of times
an individual was located ranged from 1 to 127 (x = 61,
SD = 37). For both used and available habitats, the distance
to the nearest road ranged from 0.05 m to 3,189 m (x = 522,
SD = 490), whereas road density ranged from 0 m to
14,580 m (x = 3,636, SD = 2,632). The first model was
a varying intercept, varying slope model to estimate the
population-average effect of distance to the nearest road
and to examine variability in the effect of the distance to
the nearest road among individual deer. We found a positive
effect of distance to the nearest road on resource selection
(ftg = 0.14 £ 0.06; Table 1). However, there was substantial
variability in the effect of distance to the nearest road on
resource selection among individual deer (,Bj ranged from
—0.62 £ 0.09 to 3.49 + 0.29), and the slopes exhibited a
skewed distribution (Fig. 1). One advantage of multilevel
modeling is that we can attempt to explain variability in
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Table 1. Fixed effect parameter estimates and 85% CI, and random effect parameter estimates from a varying intercept, varying slope model and a model with a
deer-specific covariate to model heterogeneity in resource selection for white-tailed deer, Pennsylvania, 2005-2007.

Varying intercept, varying slope

Variation among slopes and intercepts

Parameter Estimate SE 85% CI

Parameter Estimate SE 85% CI

—3.74 0.86
0.14 0.06

—4.98 to —2.50
0.05-0.23

Intercept (ft,)
Distance to road (j14)

&2 1.04
&2 0.61

—5.22
2.22

—5.55 to —4.89
2.09-2.35
0.16-0.24

—0.30 to —0.28

0.23
0.09
0.03
0.01

Intercept (73)

Distance to road (f/g)
Road density (77) 0.20
Road density (79) -0.29
&7 0.68

o

! 0.05

Effect of distance to road ()

Figure 1. Deer-specific slopes (circles and triangles = mean, thickline = 41 SE, thinline = +2 SE), from a varying intercept, varying slope multilevel model
(see equations 1 and 2), for the effect of distance to the nearest road on habitat use for 148 white-tailed deer, Pennsylvania, 2005-2007. Dashed vertical line is
population-average effect. Open triangles indicate deer with zero road density in home range.

resource selection among individual deer. We predicted that
this variability might be explained by the road density in an
individual’s home range and, in fact, the skewed distribution
(Fig. 1) is caused by a few deer with home ranges that contain
no roads (i.e., as predicted, deer with no roads in their home
range have a large positive effect of distance to the nearest road).

In the second model, the addition of the deer-specific
covariate to the varying intercept, varying slope model de-
creased AICc by 284 units (varying intercept, varying slope
number of parameters K =5, maximized log like-
lihood = —34,824, AICc = 69,658; model with deer-spe-
cific covariate K = 7, maximized log likelihood = —34,680,
AlICc = 69,374), indicating a substantial improvement in
model fit (Table 1). The effect of road density on deer-
specific slopes was negative ()7’19 = —0.29 £ 0.01), suggesting
that the effect of the distance to the nearest road decreases in
magnitude as the density of roads in a home range increases
(Fig. 2). However, if deer with no roads in their home range
were excluded from the analysis the strong negative relation-
ship between slopes and road density remained (Fig. 2 inset).

Example 2: Modeling Differences in Resource Selection
Between Species

For the 35 deer we used in the analysis, the number of times
an individual was located ranged from 1 to 34 (x =28,

SD = 7). For used and available habitats, the distance to
cover ranged from O m to 1,032 m (x = 70, SD = 127).
Resource use for sika and white-tailed deer varied as a
function of habitat type and distance to cover (Table 2).
Relative to sand and herbaceous habitat, low shrub, salt

t '
MHE Wﬂm”
' i

Log{hame range road densty)

Effect of distance to road (B;)

2 6
Log(home range road density + 1)

Figure 2. Deer-specific slopes for the effect of distance to the nearest road as
a function of log home range road density for white-tailed deer,
Pennsylvania, USA, 2005-2007. Circles are means and vertical lines are
+1 SE. The line is the estimated multilevel regression line. Inset shows
the analysis when we excluded deer with no roads in their home range from
the analysis.
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Table 2. Fixed and random effect parameter estimates from a multilevel resource selection function for white-tailed deer and sika deer, Assateague Island,
Maryland, 2007. The reference level for species is sika deer and for land cover type is sand and herbaceous habitat.

Fixed effects Random effects (6;)

Parameter Estimate SE 85% CI

Intercept (75) —4.63 0.34 —5.12to —4.14 0.89
Species (75) 0.20 0.62 —0.69-1.10

Low shrub (75" 1.23 0.39 0.67-1.80 1.08
Salt marsh (75%) 0.39 0.32 —0.07-0.86 0.58
Tall shrub (5°) —0.81 0.54 —1.59 to —0.02 1.37
Forest (75 —0.83 0.60 —1.69-0.04 1.81
Developed (7°) 1.09 0.55 0.30-1.89 1.97
Distance to cover (7°) —0.89 0.14 —1.09 to —0.69 0.48
Species:low shrub (1) 0.28 0.70 —0.73-1.30

Species:marsh ()7{32) —0.12 0.60 —0.98-0.75

Species:tall shrub () —0.18 0.97 —1.58-1.23

Species:forest (74 0.24 1.07 —1.30-1.80

Species:developed (7) 0.07 0.99 —1.36-1.51

Species:distance to cover () —0.08 0.24 —0.43-0.27

marsh, and developed were used more and tall shrub and
forest were used less. Also, relative use decreased as distance
to cover increased (population-average  estimate
()756) = —0.89 £ 0.14). However, the magnitude of the ef-
fect of the covariates also varied among deer (Table 2). The
primary goal of this analysis was to evaluate whether species
could explain some of the observed variability. In this case,
there was little evidence to suggest that habitat use differed
between species (Fig. 3). All species effects in the model had
large standard errors (Table 2) and the model that included
species effects had an AICc that was 7 units greater than the
varying intercept, varying slope model without species
effects.

DISCUSSION

Our goal was to illustrate the extension of multilevel resource
selection models, beyond the simple random intercept mod-
el, to quantify and explain heterogeneity in resource selec-
tion. Quantifying and explaining heterogeneity in resource
selection is important because heterogeneity is likely com-
mon within and among species (Duchesne et al. 2010), and
understanding this heterogeneity potentially can lead to
better conservation and management decisions. In
Example 1, we illustrated how the effect of distance to
the nearest road varied among white-tailed deer and that
the magnitude of the effect for individuals was largely driven
by local-scale landscape characteristics. Consequently, deer
behavior changes with road density and management deci-
sions based on the assumption that deer avoid roads may not
be warranted, even though the population level response
indicates deer avoid roads. This example emphasizes the
importance of examining cross-scale interactions and con-
sidering habitat at multiple spatial scales when fitting RSFs
because local habitat conditions often are constrained by

larger-scale landscape characteristics (Boyce 2006, Mayor
et al. 2009).

If we ignored the constraint home range road density
imposes on the effect of distance to road on white-tailed
deer resource selection (Fig. 4A), we would have concluded
that resource selection in areas of high road density is lower
than in areas with low road density. However, by incorpo-
rating information about road density at the home range
scale (3.2 km?) we see that only in areas with low road
density do deer avoid roads and that road use is even slightly
greater in areas with greater road density (Fig. 4B). If we had
not used a multilevel model to incorporate road density at the
home range scale to modify the function of distance to road
in the RSF, we would have failed to identify what seems to be
plasticity in deer behavior with respect to road density and
incorrectly concluded that deer avoid roads.

Example 2 illustrates a quantitative approach to identify
differences in resource selection between groups. The use of
multilevel models to examine differences in resource selec-
tion among groups allows for the use of information theo-
retic approaches for assessing competing hypotheses about
resource selection and provides uncertainty estimates for an
estimated difference. Other approaches require ad hoc meth-
ods to assess whether resource selection differences exist
between species. Our results of the sika—white-tailed deer
analysis agree with the conclusion reached by Christensen
(2010) where she created a map of sika resource selection and
white-tailed resource selection and used the difference in
RSF values to evaluate whether resource selection differed
between species. However, Christensen (2010) could not
assess whether these differences were statistically significant,
assess the strength of competing hypotheses, or quantify
uncertainty in estimated RSF differences. Regardless of
whether an ad hoc method or multilevel modeling is used,
the biological significance of any difference in resource
selection must still be evaluated. We argue, however, that
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Figure 3. Species-specific predicted effects of beach and dune habitat for
deer at a distance to cover equal to the mean distance to cover (A; approx.
40 m; deer-specific intercepts), low shrub (B), marsh (C), tall shrub (D),
forest (E), developed land (F), and distance to cover (G) on resource use for
white-tailed and sika deer, Assateague Island, Maryland, USA, 2007. Circles
are means, thick lines are 25th and 75th percentiles, and thin lines are 5th and
95th percentiles.

the multilevel modeling approach provides a much more
flexible and objective method for assessing differences in
resource selection.

Multilevel modeling also permits graphical representations
of modeled relationships to interpret results, such as the
effect of distance to road as related to road density in a deer’s
home range (Fig. 2). Similarly, differences in resource selec-
tion between sika deer and white-tailed deer were assessed
graphically (Fig. 3).

The details of estimation and the properties of multilevel
models are described elsewhere (e.g., Gelman and Hill
2007), however, one property of multilevel models in par-

ticular is worthy of discussion within the context of RSF
modeling. As described by Gelman and Hill (2007), multi-
level models share information across individual deer to
improve precision of the population level model of resource
selection. There are 2 alternatives to this approach in which
1) complete pooling of data across deer provides a single RSF
(e.g., Neu et al. 1974) or 2) an RSF is modeled separately for
each deer (e.g., Sawyer et al. 2006). When data are pooled to
estimate a single RSF, the assumption is that every deer has
the same resource selection or else unequal sample sizes
among deer will introduce bias. Also, the experimental
unit becomes the animal location rather than individual
deer. When a separate RSF is modeled for each deer, unequal
sample sizes are less of a problem even though the experi-
mental unit (e.g., individual deer) is appropriate. However,
sparse data may preclude estimation of an RSF for some
individuals.

Sharing of information across experimental units in multi-
level estimation is possible with the assumption that indi-
vidual-specific parameters belong to a probability
distribution, e.g., aij(,ua,ai),j =1,...,J]. As a result,
deer-specific parameter estimates based on few data will be
estimated closer to the mean. The advantage is that the
relative contribution of data from each individual (i.e., sam-
ple size) is incorporated into the population-level parameter
estimates. This is not possible when data across deer are
pooled and or when individual RSFs are modeled (or at least
methods that address unequal samples sizes are less efficient).
In addition, this property of multilevel modeling allows for
the estimation of individual-specific models even with small
sample sizes for some animals. For example, in both of our
examples there were a few deer with only a single location
and several deer with <10 observations. Outside of a multi-
level modeling framework (e.g., estimating separate RSF
models for each deer), animals with as few as 10 locations
would have to be excluded from the analysis, which is an
inefficient use of data and could result in the exclusion of a
large number of individuals.

The effect of unequal sample sizes among animals is ap-
parent in the influence on individual-specific parameter esti-
mates. Animals with larger sample sizes will be less affected
by the population mean, whereas animals with sparse data,
and thus greater uncertainty in resource selection, will have
individual-specific parameters estimated closer to the mean.
This characteristic of multilevel models is termed a shrinkage
effect because the variation among individual-specific pa-
rameter estimates is closer to the mean than if they were
estimated independently of other animals. For example, in
Example 1, the population average intercept and slope for the
effect of distance to nearest road was —3.74 and 0.14,
respectively. A deer with 117 observations had an estimated
intercept and slope of —2.54 and 0.002 independent of other
deer (i.e., parameter estimates derived from a model fitted to
only that deer’s data), which is similar to the slope and
intercept of —2.55 and 0.004 in the multilevel model (i.c.,
parameters estimated from a model using data from all deer).
In contrast, the intercept and slope estimates for a deer with 3
observations were —6.20 and —0.045 independent of other
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Figure 4. Chorograph of relative habitat use (darker shading indicates greater use) as (A) a function of distance from road and (B) distance from road and road
density within the surrounding 1,004 m for female white-tailed deer in northcentral Pennsylvania, 2005-2007. Note that because the measure of resource
selection is relative, it is inappropriate to compare intensity of use between (A) and (B).

deer but were much closer to the population average in the
multilevel model (—5.59 and 0.21).

Although we have presented methods for estimating
parameters using frequentist methods, Bayesian methods
can also be used to estimate RSF parameters. For example,
Thomas et al. (2006) fitted a Bayesian random effects dis-
crete-choice model for caribou (Rangifer tarandus) on an
Arctic coastal plain. Although the model allowed for random
slopes, they did not explicitly model variation among slopes
using individual-level covariates as presented here. Based on
our experience, although fitting multilevel logistic regression
models in a Bayesian framework is relatively straightforward
in theory, in practice it may not be practical or possible with
large data sets, which are common in resource selection
studies. For example, we attempted to fit the model pre-
sented in equation 1 using WinBUGS (MRC Biostatistics
Unit, Cambridge, United Kingdom) on a notebook comput-
er with an Intel™ Core i5 central processing unit with a clock
rate of 2.67 gigahertz (Intel Corp., Santa Clara, CA) and
4 gigabytes of random access memory. The model ran for
just over 11 hr and did not converge (we used 500 iterations
as a burn-in period and 16,000 iterations total as a test run
simply to assess the amount of time required to fit the
model). Although fitting multilevel resource selection mod-
els may not always be practical using Bayesian methods, in
many cases (i.e., with a large numbers of animals and a
relatively large among-animal variance) parameter estimates
should be similar to those obtained using the R function Imer.

MANAGEMENT IMPLICATIONS

Models of resource selection are being used increasingly to
predict or model the effects of management actions (e.g.,
Sawyer et al. 2006) rather than simply quantifying habitat
selection (e.g., Verner et al. 1986). Multilevel models can
improve our understanding of how resource selection varies
among individuals and provide objective, quantifiable

approaches to assess differences or changes in resource
selection.
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