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ABSTRACT Dispersal distances and their distribution pattern are important to understanding such phenomena as disease spread and gene

flow, but oftentimes dispersal characteristics are modeled as a fixed trait for a given species. We found that dispersal distributions differ for

spring and autumn dispersals of yearling male white-tailed deer (Odocoileus virginianus) but that combined data can be adequately modeled

based on a log-normal distribution. We modeled distribution of dispersal distances from 3 distinct populations in Pennsylvania and Maryland,

USA, based on the relationship between percent forest cover and mean dispersal distance and the relationship between mean and variance of

dispersal distances. Our results suggest distributions of distances for dispersing yearling male white-tailed deer can be modeled by simply

measuring a readily obtained landscape metric, percent forest cover, which could be used to create generalized spatially explicit disease or gene

flow models. ( JOURNAL OF WILDLIFE MANAGEMENT 72(6):1296–1303; 2008)
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Population dynamics and species evolution are influenced
greatly by dispersal mechanisms and movements, yet
dispersal is one of the least understood life-history traits
(Clobert et al. 2001, Williamson 2002). In applied ecology,
the study of dispersal is fundamental to understanding such
problems as the spread of diseases, invasions of exotic
species, and escape of genetically modified organisms
(Bullock et al. 2002a). Dispersal has been suggested as a
primary means of spreading disease among populations, and
dispersal distance is an important parameter in many
mammalian disease spread models (Hansson 1992). How-
ever, dispersal patterns of mammals are often modeled as
population- and landscape-specific and, thus, lack generality
(Barlow 1993, Byrom 2002, Leung and Grenfell 2003).

The basic quantitative aspect of dispersal is the distribu-
tion of dispersal movements, yet the shape of this
distribution depends upon causal mechanisms, which is
the least understood aspect of dispersal (Williamson 2002).
Williamson (2002) noted that from an empirical standpoint
it is most important to understand the shape of the dispersal
curve near the origin and at the tails, with the former being
less studied than the latter.

In white-tailed deer (Odocoileus virginianus), yearling
males are the primary sex and age class that disperses
(Nelson 1993, Purdue et al. 2000), although female dispersal
is known to occur (Nelson and Mech 1992). Dispersal of
yearling males occurs during 2 distinct periods: the birthing
period (Jun) and the rut (Oct–Nov). The mechanisms of
dispersal are unknown but suspected to be caused by
mother–fawn interactions in the spring (Holzenbein and

Marchinton 1992) and male–male interactions in the
autumn (Ozoga and Verme 1985, Rosenberry et al. 2001).

Juvenile dispersal is likely an important mechanism for
disease transmission among individuals and populations of
mammals (Barlow 1993, Gross and Miller 2001, Byrom
2002), especially in species such as white-tailed deer, where
long-distance movements of adults are rare, although some
northern populations do exhibit seasonal migratory move-
ments in response to harsh winter weather (Nelson 1998).
White-tailed deer are known to be reservoirs for a number
of ecologically and economically important diseases, such as
bovine tuberculosis, Lyme disease, and chronic wasting
disease (CWD), a transmissible spongiform encephalopathy
(Miller et al. 2000, Gross and Miller 2001, O’Brien et al.
2002, Piesman 2002). Further, dispersal likely plays an
important role in inter-population transmission of these
diseases (Gross and Miller 2001).

To date, CWD models have not included any explicit
spatial modeling of disease transmission, although dispersal
has been implicated as an important means of inter-
population disease transmission, and buffer zones to
accommodate dispersal have been proposed to reduce the
spread of CWD from infected to uninfected populations
(Gross and Miller 2001). Consequently, because spread of
CWD in some populations is thought to relate to dispersal,
modeling CWD dynamics in white-tailed deer may depend
on an understanding of dispersal mechanisms and character-
istics.

Long et al. (2005) conducted a meta-analysis of yearling
male white-tailed deer dispersal to investigate if percent
forest cover and population density were related to dispersal
rates and distances in nonmigratory populations. Long et al.
(2005) found a strong relationship between percent forest
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cover and average dispersal distance in juvenile male white-
tailed deer but no predictive relationships for dispersal rates
(i.e., proportion of the population that disperses). If a
probability density function (pdf) could be identified to
describe the distribution of dispersal distances, then a model
of dispersal applicable to a variety of landscapes potentially
could be developed. Moreover, the meta-analysis of Long et
al. (2005) could be used to estimate the parameters of the
pdf based on a readily measured landscape characteristic
(i.e., % forest cover) without the time and expense involved
in determining a population-specific dispersal distribution.

Our objective first was to identify a pdf that best described
the distribution of dispersal distances for yearling male
white-tailed deer from 3 populations in the eastern United
States. If successful, our second objective was to develop a
generalized model to predict the distribution of dispersal
distances from the relationship between dispersal distance
and percent forest cover presented by Long et al. (2005) and
the relationship between mean and variance of dispersal
distances.

METHODS

Collecting Dispersal Data
We used dispersal distances of yearling male white-tailed
deer from 2 study areas in Pennsylvania, USA, during 2002
and 2003 (Long et al. 2005) and one study area in Kent
County, Maryland, USA, during 1994–1996 (Rosenberry et
al. 1999). Deer were captured either as fawns at 1–2 weeks
of age or 4–10 months of age and monitored until after the
dispersal period (18 months of age; Rosenberry et al. 1999,
Vreeland et al. 2004, Long 2005). All deer were fitted with
radiotransmitters and monitored via 1–3 telemetry loca-
tions/week.

We defined dispersal on the Pennsylvania study areas as
permanent emigration from a natal to adult home range, in
which postdispersal locations did not overlap predispersal
locations (Long et al. 2005). On the Maryland study area we
defined dispersal as the permanent movement of �1 natal
range diameter away from the center of the natal range
(Rosenberry et al. 1999). We calculated dispersal distance as
the straight-line distance between the median x and y
locations of natal and adult home ranges.

Modeling Dispersal Distributions
Monotonically decreasing distributions have been used to
model plant and animal dispersal distributions (e.g., Leung
and Grenfell 2003), in which many individuals fail to
disperse and disperse short distances and fewer individuals
disperse at increasing distances. However, for male white-
tailed deer substantial variability has been observed in the
proportion of individuals that fail to disperse (0.20–0.54)
and no predictive variables have been identified that
correlate with this proportion (Long et al. 2005). Therefore,
we modeled only the distribution of deer that dispersed
according to our definitions as described previously.

Dispersal in white-tailed deer is hypothesized to be caused
by multiple ultimate and proximate influences related to
inbreeding and mate acquisition; hence, expected dispersal

distributions might be difficult to predict (Waser 1985).
Long et al. (in press) found that yearling male white-tailed
deer dispersed greater distances in spring than autumn.
Spring dispersal is thought to be motivated by inter-sexual
cues from the opposite-sex parent or close relatives to avoid
incestuous breeding (Holzenbein and Marchinton 1992),
whereas autumn dispersal is thought to be motivated to seek
reduced mate competition (Ozoga and Verme 1985, Ro-
senberry et al. 2001). The classic rule of competition dispersal
suggests that dispersers should stop at the first vacant
territory and travel minimum distances to obtain quality
breeding opportunities (Murray 1967, Baker and Rao 2004).
Thus, dispersal to avoid inbreeding is expected to yield
potentially longer dispersal distances (Ronce et al. 2001).

These dispersal distances should exhibit a skewed
distribution because mean values should be small and
variances large, and values cannot be negative. The log-
normal distribution has been found to represent such
biological data across a range of disciplines (Limpert et al.
2001). In addition, we investigated the gamma and Weibull
distributions because these are flexible distributions that
have properties similar to the log-normal (i.e., nonnegative
values and skewed). The negative exponential distribution is
a special case of either the gamma or Weibull distributions
but we included this distribution in our evaluation because
of its widespread use in the study of dispersal patterns.

Spring dispersal distances have been reported to be greater
than autumn dispersal distances (Long et al., in press) so we
investigated whether dispersal distributions should be
modeled as a mixture of 2 distributions. We obtained
maximum-likelihood estimates (MLE) of the parameters
for each of the log-normal, gamma, Weibull, and negative
exponential distributions for each deer population and
season. We used Akaike’s Information Criterion adjusted
for small sample size (AIC) and AIC relative weights
(wAIC) to identify the pdf that best modeled the distribution
of the data. We used a Cramér-von Mises goodness-of-fit
(GOF) test (PROC CAPABILITY; SAS Institute, Cary,
NC) to test whether each distribution fit the data (a¼0.10).
Also, we estimated parameters for each pdf (log-normal,
gamma, Weibull, and negative exponential) for each
population, pooling spring and autumn dispersal data. We
used a Cramér-von Mises GOF test to test model fit (a ¼
0.10) and AIC to compare the single pdf (pooling spring
and autumn data) to a mixture pdf that combined
distributions specific to each season.

Predicting Dispersal Distributions
We used the relationship between mean dispersal distance
and proportion of forest cover presented in Long et al.
(2005) to estimate the mean dispersal distance for each study
area. Long et al. (2005) reported that mean dispersal
distance, x̄, was linearly related to proportion of the
landscape in forest (pf ; R2 ¼ 0.94, n ¼ 10)

�x ¼ 35:07� 48:14pf ð1Þ

In addition, we used data compiled by Long et al. (2005) to
estimate the relationship between the mean and variance of
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dispersal distances. We modeled this relationship as a linear-
log function:

logeðs2Þ ¼ aþ b�x; ð2Þ

where x̄ is mean dispersal distance, a ¼ 3.51 (SE ¼ 0.597),
and b ¼ 0.077(SE ¼ 0.025). This model explained a
substantial amount of variation in the relationship between
the mean and variance (F1,4¼ 9.17, P¼ 0.039, R2¼ 0.69).

We used the proportion of the study area that was forested
and equation 1 to predict mean (x̃) dispersal distance, and
we used equation 2 (replacing x̄ with x̃) to predict the
variance (s̃2) of dispersal distance for 6 populations of deer: 2
from Pennsylvania (Long et al. 2005), 1 from Maryland
(Rosenberry et al. 1999), and 3 from Illinois, USA
(northern, east-central, and west-central; Nixon et al.
1994). For all datasets, we removed counts of deer that
failed to disperse such that we predicted the distribution of
distances for dispersing deer. We used the predicted mean
and variance (x̃, s̃2; eqs 1 and 2) for each population and the
first and second moments for the log-normal pdf to obtain
the parameter inputs for the pdf. We used the log-normal
pdf, not considering a mixture distribution for spring and
autumn dispersals, because it fit the Maryland and
Pennsylvania data (see Results).

For the log-normal distribution the pdf is

f ðxÞ ¼ 1

x
ffiffiffiffiffiffiffiffiffi

2pr
p e�ðlogex�lÞ2=2r2 � ‘ , l , ‘;r . 0; x . 0:

We obtained the parameter l from the first moment using
the predicted mean and variance, x̃, s̃2, and the equation

l ¼ loge

~x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~s2 þ ~x2
p

" #

: ð3Þ

We obtained the parameter r from the second moment
using the predicted mean and variance, x̃, s̃2, and the
equation

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

loge

~s2

~x2
þ 1

� �

s

: ð4Þ

We tested how well the log-normal distribution, based on
pdf parameters estimated from the predicted mean and
variance, matched the empirical distributions using a chi-

square GOF test for 1-km intervals for the Pennsylvania and
Maryland data and for 10-km intervals as published by
Nixon et al. (1994) for the Illinois data. The u groups (bins
of 1-km or 10-km intervals) contained sample sizes n1, n2,
. . . , nu, and the values c0, c1, . . . , cu defined the cut-points
between groups (c0 ¼ 0 and the interval defining nu has no
upper bound). The area under the estimated pdf f (x) with q

parameters (q ¼ 2 for the log-normal pdf) between cut-
points ci�1 and ci is

pi ¼
Z ci

ci�1

f ðxÞdx:

We estimated pi by integrating the pdf based on the MLEs.
Then the chi-square statistic

v2 ¼
X

u

i¼1

ðni � np̂iÞ2

np̂i

had u � q � 1 degrees of freedom if the estimated
distribution were the true distribution for the empirical data.

RESULTS

The log-normal distribution was the best model (DAIC ¼
0.0) and had the strongest support for autumn dispersals
(wAIC¼ 0.77–1.00; Table 1). However, for spring dispersals
the log-normal distribution had less support (wAIC¼ 0.18–
0.64) and a gamma distribution was best for Armstrong
County data. The log-normal distribution fit the data (P .

0.472) for all populations and seasons except in autumn for
Armstrong County (P ¼ 0.094; Table 2). The gamma,
Weibull, and negative exponential distributions were less
consistent in model fit (Table 2).

When we combined data from spring and autumn
dispersal distances, the log-normal distribution was the best
model (DAIC ¼ 0.0; Table 3, Fig. 1) and no other models
were competitive (gamma, Weibull, and negative exponen-
tial; wAIC ,0.01–0.06). The log-normal distribution fit the
data for all 3 populations (Cramér-von-Mises tests, P .

0.467). Separate estimation of log-normal distributions for
each season were better models than pooling data from
spring and autumn dispersals for Centre and Armstrong
counties but not for Kent County (Table 4). However,
because the means of the log-normal distribution were
similar for spring and autumn distributions, the mixture

Table 1. Difference in Akaike’s Information Criterion (DAIC) relative to the distribution with the lowest AIC value and AIC relative weights (wAIC) among
4 distributions fit to dispersal distances for yearling male white-tailed deer from 3 populations in Pennsylvania (2002–2003) and Maryland (1994–1996),
USA.

Distribution

Centre County, PA Armstrong County, PA Kent County, MD

Spring Autumn Spring Autumn Spring Autumn

DAIC wAIC DAIC wAIC DAIC wAIC DAIC wAIC DAIC wAIC DAIC wAIC

Log-normal 0.00 0.64 0.00 0.77 2.07 0.18 0.00 1.00 0.00 0.36 0.00 0.96
Gamma 2.21 0.21 2.79 0.19 0.00 0.51 16.27 0.00 0.37 0.30 7.80 0.02
Weibull 3.46 0.11 5.98 0.04 1.01 0.31 22.80 0.00 0.91 0.23 9.77 0.01
Negative exponential 5.43 0.04 14.01 0.00 32.87 0.00 24.69 0.00 2.11 0.12 8.10 0.02
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distribution for all 3 populations remained unimodal (Fig.
2), which is why the log-normal distribution was the best
model when we pooled data (Table 3, Fig. 1).

We used predicted means and variances from equations 1
and 2 to predict parameter estimates (eqs 3 and 4) for the
log-normal distribution (Table 3). Although the predicted
log-normal distribution was a reasonable approximation of
the empirical distribution for most populations (Figs. 3, 4),
GOF tests indicated the predicted distribution fit the
observed distribution only for northern Illinois (P ¼ 0.17,
Table 5). The predicted distributions that did the poorest
job of matching the empirical distribution were ones in
which the difference between the predicted and empirical
mean dispersal distance were greatest (Centre County and
west-central IL; Figs. 3, 4).

DISCUSSION

We found that a log-normal distribution was most
consistently selected as the best model that fit the dispersal
distances observed in 3 nonmigratory white-tailed deer
populations from Maryland and Pennsylvania, USA. Many
models of dispersal for both plants and animals have used
distributions in which the probability of dispersing decreases
monotonically with increasing distance (e.g., Leung and
Grenfell 2003), probably because of limited information
about dispersal rates and dispersal distances. However, much
less research has studied the fit of dispersal distributions
near the origin compared to the tail of the distribution and
whether a monotonic decline or some uni- or multimodal
distribution is more common is not well known, even
though this may be important ecologically (Bullock et al.
2002b, Williamson 2002). We found that the parameters of

dispersal distributions differed for spring and autumn
dispersal and that mixture models fit the data better (Table
4). However, because even the mixture distributions were
unimodal (Fig. 2) a log-normal distribution provided
excellent fit when spring and autumn dispersal distances
were modeled using a single log-normal pdf (Table 3, Fig.
1). We believe dispersing white-tailed deer are most likely to
exhibit a skewed unimodal distribution for dispersal
distances, as in Figures 1–4, because of the proposed causal
mechanisms for dispersal.

Current hypotheses propose social mechanisms by which
male yearlings are induced to disperse. In white-tailed deer,
male dispersal is likely caused by a combination of mother–
offspring and male–male interactions (Long et al., in press).
Holzenbein and Marchinton (1992) suggested that inter-
actions between the dam (or other closely related females)
and male offspring is a possible proximate cause of dispersal,
which could explain why orphaned males had lower
dispersal rates than nonorphaned males. Ozoga and Verme
(1985) proposed that autumn dispersal is the result of an
internal drive to associate with other males, and Rosenberry
et al. (2001) suggested that male–male agonistic interactions
might induce autumn dispersal.

Some minimum distance of dispersal may be necessary to
achieve adequate spacing because social mechanisms are
thought to elicit dispersal in white-tailed deer. However,
subsequent movement is likely mediated by landscape
characteristics and Long et al. (2005) found that average
dispersal distance increased with decreasing forest cover,
probably because white-tailed deer select home ranges that
contain forested habitat as hiding cover (Nixon et al. 1991).
We used the model developed by Long et al. (2005) to

Table 2. Cramér-von-Mises goodness-of-fit statistics (W 2; null hypothesis is that the model fits the data, a¼ 0.10) using gamma, negative exponential, log-
normal, and Weibull distributions of dispersal distances (km) of yearling male white-tailed deer from 3 populations in Pennsylvania (2002–2003) and
Maryland (1994–1996), USA.

Distribution

Armstrong County, PA Centre County, PA Kent County, MD

Spring Autumn Spring Autumn Springa Autumn

W 2 P W 2 P W 2 P W 2 P W 2 P W 2 P

Log-normal 0.07 0.324 0.11 0.094 0.02 .0.500 0.05 0.472 0.03 .0.500 0.05 .0.500
Gamma 0.05 .0.500 0.31 ,0.001 0.06 .0.250 0.09 0.159 0.11 0.098
Weibull 0.05 .0.250 0.39 ,0.010 0.07 0.240 0.14 0.023 0.05 .0.250 1.01 ,0.010
Negative exponential 1.07 ,0.001 0.61 ,0.001 0.14 0.180 0.45 0.002 0.17 0.103 0.16 0.120

a We could not compute the Cramér-von-Mises test for Kent County, MD spring dispersal data.

Table 3. Difference in Akaike’s Information Criterion (DAIC) relative to the distribution with the lowest AIC value, and AIC relative weights (wAIC),
among 4 distributions fit to dispersal distances for yearling male white-tailed deer from 3 populations in Pennsylvania (2002–2003) and Maryland (1994–
1996), USA.

Distribution

Armstrong County, PA Centre County, PA Kent County, MD

DAIC wAIC DAIC wAIC DAIC wAIC

Log-normal 0.0 0.99 0.0 0.92 0.0 0.96
Gamma 9.6 0.01 5.3 0.06 7.1 0.03
Weibull 19.0 ,0.01 8.4 0.01 10.3 ,0.01
Negative exponential 40.3 ,0.01 11.7 ,0.01 11.2 ,0.01
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Table 4. Difference in Akaike’s Information Criterion (DAIC) relative to
the distribution with the lowest AIC value, and AIC relative weights
(wAIC), between a mixture of log-normal models for spring and autumn
dispersal (seasonal model) and a single log-normal model of pooled data
(pooled model) to dispersal distances for yearling male white-tailed deer
from 3 populations in Pennsylvania (2002–2003) and Maryland (1994–
1996), USA.

Model

Armstrong
County, PA

Centre
County, PA

Kent
County, MD

DAIC wAIC DAIC wAIC DAIC wAIC

Pooled 18.06 0.00 3.91 0.12 0.00 0.76
Seasonal 0.00 1.00 0.00 0.88 2.31 0.24

Figure 2. Mixture of 2 log-normal distributions for spring and autumn
dispersal distances of yearling male white-tailed deer in Armstrong and
Centre counties, Pennsylvania, USA, 2002–2003, and Kent County,
Maryland, USA, 1994–1996.

Figure 3. Observed dispersal distances (open bars) of yearling male white-
tailed deer and predicted log-normal distribution (solid bars), in which the
distance in each category is the minimum distance of each group (e.g., .0¼
.0 to ,1 km). Distributions based on predicted mean and variance of
dispersal distances in Armstrong County (top) and Centre County
(middle), Pennsylvania, USA, 2002–2003, and Kent County, Maryland
(bottom), USA, 1994–1996.

Figure 1. Observed dispersal distances (open bars) of yearling male white-
tailed deer and predicted distances (solid bars) based on maximum-
likelihood parameter estimates of a log-normal distribution for populations
in Armstrong County (top) and Centre County (middle), Pennsylvania,
USA, 2002–2003, and Kent County, Maryland (bottom), USA, 1994–
1996. Distance in each category is the minimum distance of each group
(e.g., .0 ¼.0 to ,1 km).
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predict mean dispersal distance from forest cover, and the
relationship between mean and variance for dispersal, to
predict the distribution of dispersal distances. The difficulty
with this approach to model dispersal distributions is that
error in estimating the mean and variance of dispersal
distances reduces the accuracy of the resulting distribution.
Consequently, even though Long et al. (2005) reported a
strong relationship between forest cover and mean dispersal
distance, we reported a strong relationship between the
mean and variance, and the log-normal distribution best
described empirical distributions of dispersal distances from
Maryland and Pennsylvania, and predicted distributions did
not always match empirical distributions from a statistical
standpoint (Table 5). We found that error in predicting
mean dispersal distance (eq 1), rather than error in the
mean–variance relationship (eq 2), had the greatest influence
on the ability to predict the distribution pattern of dispersal.
For example, the poor fit of predicted distributions for
Centre County, Pennsylvania, and west-central Illinois had
the greatest residual error in predicted mean dispersal
distance of all populations (eq 1; Table 5).

Despite the potential errors in our approach to modeling
distribution patterns of dispersal distances, there are
important advantages to a probabilistic modeling approach.
First, we provide a generalized approach to model dispersal
distribution patterns that accounts for differences among
deer populations, which should permit development of
disease or gene flow models with greater generality. Second,
and perhaps more importantly, understanding the distribu-
tion pattern of dispersal can be more informative than
simply understanding relationships to means or maximum
dispersal distances, especially the latter (cf. Long et al.
2005). We have shown that white-tailed deer exhibit a
skewed distribution best modeled as log-normal. Conse-
quently, wildlife managers or modelers can obtain better
estimates of the probability of observing long dispersal
events. If biologists are trying to identify an area to try to
contain disease spread, understanding the distribution of
dispersal events will help them assess the trade-off between
reducing the risk of disease spread versus the cost of
delineating larger containment areas. We believe more
research to improve our understanding of how landscape
factors, such as rivers (Dusek et al. 1989), topography and
roads (Long 2005), and spatial distribution of forest cover

Figure 4. Observed dispersal distances (open bars) of yearling male white-
tailed deer and predicted log-normal distribution (solid bars), in which the
distance in each category is the minimum distance of each group (e.g., .0¼
.0 to ,10 km). Distributions based on predicted mean and variance of
dispersal distances in northern Illinois (top), east-central Illinois (middle),
and west-central Illinois (bottom), USA, 1980–1992.

Table 5. Mean and variance estimates of dispersal distances based on empirical data (x̄, s2) and predicted from percent forest cover (x̃, s̃2), and results of
goodness-of-fit tests of actual versus predicted log-normal distributions of dispersal distances of yearling male white-tailed deer from 6 populations in
Maryland (1994–1996), Pennsylvania (2002–2003), and Illinois (1980–1992), USA.

Population

Mean Variance

Binning interval (km) n x̄ x̃ s2 s̃2 v2 df P

Armstrong County, PA 1 101 8.0 10.5 37.6 75.28 32.97 18 0.017
Centre County, PA 1 36 7.0 3.3 37.4 43.19 63.99 8 ,0.001
Kent County, MD 1 37 9.6 11.0 96.8 78.12 27.50 18 0.070
Northern IL 10 15 36 34.1 229.3 462.26 7.76 5 0.170
East-central IL 10 48 38 33.6 890.6 445.46 9.54 5 0.089
West-central IL 10 26 19 25.4 433.2 237.33 33.73 5 ,0.001
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influences dispersal (Long et al. 2005) will help biologists
better describe distribution patterns in deer dispersal.

Unfortunately, no means currently exists to predict the
proportion of yearling males that disperse. Gross and Miller
(2001) modeled CWD disease dynamics with dispersal rates
of mule deer (Odocoileus hemionus) related to population
density and Walters (2001) modeled white-tailed deer
dispersal rate as a function of population size relative to
carrying capacity. Evidence for density-dependent dispersal
in cervids, however, is ambiguous. For instance, Clutton-
Brock et al. (1982) found that juvenile male dispersal within
an island population of red deer (Cervus elaphus) decreased
as population density increased, but later Clutton-Brock et
al. (2002) found the reverse effect within the same
population (i.e., M dispersal increased as population density
was reduced through culling). Long et al. (2005) found no
evidence to suggest dispersal rate of white-tailed deer is
related to population density, which is concordant with
results for several other mammalian species (Allen and
Sargeant 1993, Loison et al. 1999, Byrom 2002).

If predictors of dispersal rate and timing could be
identified, more complete models of dispersal may be
considered. Dispersal rates range from 46% to 80% in
nonmigratory white-tailed deer populations but cannot be
predicted (Long et al. 2005). For example, including
nondispersing deer in the distribution of dispersal distances
may be best described by zero-inflated models instead of the
negative exponential distribution. Furthermore, there is
evidence autumn dispersal distances are shorter and that
age–sex structure of the population influences the timing of
dispersal (Long et al., in press). In Pennsylvania, over 3 years
(2002–2004) spring dispersal of yearling males decreased
and autumn dispersal increased with an increase in
abundance of adult males and decrease in abundance of
adult females (Long et al., in press). Thus, mixture models
potentially could be useful; however, because spring and
autumn distributions are similar we believe unimodal
distributions are likely to be adequate when modeling the
distribution patterns of white-tailed deer dispersal.

MANAGEMENT IMPLICATIONS

Data presented by Long et al. (2005) and this paper will
facilitate the development of spatially explicit models of
disease spread or gene flow. Moreover, because percent
forest cover, a readily obtained landscape metric, is a
predictor of dispersal parameters, population-specific dis-
persal characteristics can be estimated for white-tailed deer.
Using predicted dispersal parameters from a log-normal pdf
we found that reasonable distributions of dispersal can be
constructed without conducting costly, labor-intensive, and
time-consuming tag return or radiotelemetry studies (Ken-
ward et al. 2002).
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