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Water clarity is a reliable indicator of lake productivity and an ideal metric of regional water quality. Clarity is
an indicator of other water quality variables including chlorophyll-a, total phosphorus and trophic status;
however, unlike these metrics, clarity can be accurately and efficiently estimated remotely on a regional
scale. Remote sensing is useful in regions containing a large number of lakes that are cost prohibitive to
monitor regularly using traditional field methods. Field-assessed lakes generally are easily accessible and
may represent a spatially irregular, non-random sample of a region. We developed a remote monitoring
program for Maine lakes >8 ha (1511 lakes) to supplement existing fieldmonitoring programs.We combined
Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) brightness values
for TM bands 1 (blue) and 3 (red) to estimate water clarity (secchi disk depth) during 1990–2010. Although
similar procedures have been applied to Minnesota and Wisconsin lakes, neither state incorporates physical
lake variables or watershed characteristics that potentially affect clarity into their models. Average lake
depth consistently improved model fitness, and the proportion of wetland area in lake watersheds also
explained variability in clarity in some cases. Nine regression models predicted water clarity (R2=0.69–
0.90) during 1990–2010, with separate models for eastern (TM path 11; four models) and western Maine
(TM path 12; five models that captured differences in topography and landscape disturbance. Average
absolute difference between model-estimated and observed secchi depth ranged 0.65–1.03 m. Eutrophic
and mesotrophic lakes consistently were estimated more accurately than oligotrophic lakes. Our results
show that TM bands 1 and 3 can be used to estimate regional lake water clarity outside the Great Lakes Region
and that the accuracy of estimates is improved with additional model variables that reflect physical lake
characteristics and watershed conditions.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Water clarity (or transparency) is a common metric of lake water
quality often measured as secchi disk depth (SDD). Lake clarity is
closely linked to other water quality variables such as trophic status,
chlorophyll-a and total phosphorus and is a generally strong indicator
of lake health (Carlson, 1977). Assessments are relatively cheap,
simple and efficient and can be performed by lakeshore residents
who may own and operate boats on the lakes they monitor and are
direct stakeholders in lake water quality. Increased lake clarity
increases lakefront property value in Maine (Boyle et al., 1999;
Michael et al., 1996) and New Hampshire (Gibbs et al., 2002) and
also enhances user-perception of Minnesota lake water quality
(Heiskary & Walker, 1988). Because clarity assessments are widely

used and have strong ecological and economic implications, clarity is
an ideal metric of regional lake water quality. Regional water quality
assessments, however, are logistically challenging owing to costs,
lake accessibility and the number of waterbodies requiring repeated
sampling. These restrictions lead to field assessments concentrated
in developed, easily accessible areas, which create spatially irregular,
non-random samples. Many lakes are rarely or never monitored, so
an accurate assessment of their status and change over time cannot
be made.

Remote data collection in regional water quality monitoring
reduces costs associated with inaccessibility of remote lakes and
enables monitoring to occur simultaneously across an extensive area.
Remote sensing, however, has a number of limitations. Clouds constrain
usable imagery and affect reliability of monitoring on targeted dates.
Haze in the atmosphere (Rayleigh scatter) interferes with spectral-
radiometric responses and may cause inaccurate assessments. Cost
potentially is a limiting factor; although some platforms are free (e.g.,
Landsat Thematic Mapper — TM), others are more costly in routine
assessments, particularly high-resolution sensors such as those carried
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on WorldView and GeoEye satellites. Calibration of remotely collected
data requires site-based sampling that is nearly concurrentwith remote
data capture, illustrating that remote sensing is not entirely indepen-
dent of field-based monitoring.

Regional remote monitoring procedures have been developed for
lakes in Wisconsin (Chipman et al., 2004) and Minnesota (Kloiber et
al., 2002b; Olmanson et al., 2001, 2008) using Landsat TM imagery
and volunteer-collected SDD data. These programs considerably
increased knowledge of regional water quality, however, their proce-
dures rely solely on spectral data and do not consider additional
factors that potentially affect water clarity. In this study, we developed
models to estimate water clarity of lakes in Maine, USA from Landsat
data, and we improved model performance by including physical
lake characteristics and landscape features to explain variability in
lake clarity consistently across years.

2. Methods

2.1. Description of study area

Located in the northeastern United States, Maine contains over
5500 lakes and ponds >1 ha in surface area across a total area of
approximately 90,000 km2 (Fig. 1). Maine ranks first among states
east of the Great Lakes in total area of inland surface waters (Davis
et al., 1978). Maine is a cold-temperate climatewith long, coldwinters
and short, warm summers. Western Maine is rural and mountainous,
whereas southern coastal areas are more developed. Lakes are well-
distributed throughout the state and average depth ranges 1–32 m.
Lakes range in size from small ponds b1 ha to Moosehead Lake
(30,542 ha), the largest lake in Maine. The state's lake water clarity
monitoring program began in 1970 and SDD has ranged 0.1–21.3 m
since 1970. The average annual SDD consistently has remained
4–6 m, with a historical average of 5.27 m during 1970–2009, and
was 5.14 m in 2009 (n=457) (Maine Department of Environmental
Protection, MDEP; Bacon, 2010; Maine Volunteer Lake Monitoring

Program, 2010). The number of lakes sampled changes annually and
generally has increased from 18 lakes sampled in 1970 to consistently
>400 lakes since 1999.

2.2. Landsat data selection

Most of Maine is covered by Landsat paths 11–12, rows 27–30
(Fig. 1). Paths of images captured during mid-late summer were
selected every 3–7 years from 1990 to 2010 based on image quality
and temporal adjacency of images from both paths. Mid-late summer
(July 15–September 15) is the best time to estimate lake clarity
remotely, because lake clarity is relatively stable during this time
(Stadelmann et al., 2001). This also is the period with the greatest
abundance of volunteer-collected calibration data. Owing to cloud
cover, suitable images were available only during August 9–September
14 over the 20-year period, with most images from early September
(Table 1). A 20-year window was chosen to assess model applicability
over time. All images except 1 date were Landsat 5, owing to better
image quality on targeted dates and the 2003 scan line corrector (SLC)
failure in Landsat 7. SLC-off images can be used to estimate SDD
(Olmanson et al., 2008), however, this requires careful pixel extraction
and more processing time. No suitable images were available for path
11 to correspond with path 12 images from 1990.

2.3. Supplementary lake data

Although satellite imagery previously has been used to monitor
lake water clarity (Chipman et al., 2004; Kloiber et al., 2002a;
Olmanson et al., 2008), ancillary lake variables were not considered
in these applications. We combined satellite imagery data with
variables describing physical lake characteristics and watershed
disturbance in our models. We obtained previously collected average
and maximum depth data to characterize lake bathymetry (MDEP;
Bacon, 2011). We used a watershed perimeter layer (MDEP; Suitor,
2011) combined with an enhanced National Wetlands Inventory
(NWI) layer (Houston, 2008) to calculate the proportion of wetland
area in lake watersheds (ArcGIS ® version 10.0; Environmental
Systems Research Inc., Redlands, CA, United States). We used wetland
area as a proxy for watershed disturbance because wetlands help
regulate lake clarity and inversely indicate land potentially available
for development. The proportion of wetland area in lake watersheds
is positively correlated with lake color, which is significantly associated
with water clarity of Minnesota lakes (Detenbeck et al., 1993). Water
color is regulated by dissolved organic carbon (DOC), which negatively
affects water clarity (Gunn et al., 2001). DOC has a particularly strong
influence on water clarity in oligotrophic lakes (Gunn et al., 2001), of
which there are many in Maine. Lake area, perimeter and surface
area/perimeter ratio were calculated from a lakes layer downloaded
from the Maine Office of GIS (MEGIS, 2010).

Fig. 1. Landsat TM paths 11 and 12 over Maine, USA.

Table 1
Landsat imagery used for remote estimation of lake clarity.

Patha Rows Acquisition date % Clouds Satellite/sensor

12 27–30 8/30/2010 0 Landsat 5 TM
12 27–30 9/14/2004 0 Landsat 5 TM
12 27–30 9/1/1999 0 Landsat 5 TM
12 27–30 9/6/1995 0 Landsat 5 TM
12 27–30 9/8/1990 0 Landsat 5 TM
11 28–29 9/5/2009 6 Landsat 5 TM
11 27–29 8/9/2005 8 Landsat 5 TM
11 27–29 8/9/2002 0 Landsat 7 ETM+
11 27–29 8/14/1995 2 Landsat 5 TM

a Path 11, row 27 scene omitted due to cloud cover.
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2.4. Image processing

We mosaicked paths of consecutive images from a single date in
ERDAS Imagine® (version 10.0; ERDAS Inc., Norcross, GA, United
States). Unsupervised classification (ISODATA clustering) and the
visible/thermal infrared band combination (RGB 1, 6, 6) were used
to interpret extent of clouds and cloud shadows. Cloud pixels were
reclassified as null values and removed in ArcGIS. Cloud shadows
could not be removed by unsupervised classification without simulta-
neously removing unaffected lake pixels, so images were visually
inspected to remove lakes affected by shadows. We reduced the
negative effects of Rayleigh scattering by normalizing all images
from each path to the clearest swath of images of the respective
path with orthogonal regression. Orthogonal regression differs from
ordinary least squares by assuming error in both horizontal and
vertical directions and calculating the perpendicular distance from
the regression line (Rencher, 1995). We selected bright (e.g., large
buildings, airport tarmacs) and dark (e.g., deep lake centers) ground
targets distributed across the state that appeared spectrally invariant
over the study period. We identified only 6 ground targets in path 12,
owing to few developed features. We increased the number of ground
targets for path 11 because clouds often obscured targets in this path.
For path 12, the targets were digitized as points and buffered 10 m.
An average of the encompassed pixel values (up to 4 adjacent pixels)
was regressed against the average value of pixels of the same area in
the reference image for path 12 collected 1 September 1999. For path
11, we minimized inter-annual cloud interference by normalizing to a
single pixel in the target center instead of using pixels in a buffered
target. The reference image used for path 11 was captured on 14
August 1995.We used principal components analysis (PCA) to complete
our orthogonal regressions. PCA uses an orthogonal transformation and
because our analyses each contained two components (reference and
non-reference image paths), the second eigenvector of each PCA
allowed easy calculation of the gain and offset to apply to each non-
reference image path.

2.5. Data extraction and model development

2.5.1. Secchi sampling site representation
We uniquely identified each secchi disk sampling station in a

geographic information system (GIS) points layer. We estimated sam-
pling site locations in thedeepest region of lakes based on georeferenced
bathymetric maps (Maine PEARL, 2011). Bathymetric data were not
available for 163 lakes; we placed those stations at lake centers to
avoid spectral interference from the shoreline, lake bottoms or aquatic
plants. We created circular buffers with 50, 75 and 100 m radii around
each sampling station to define the area for satellite data extraction.
We calculated the average pixel value for each zonewith zonal statistics.
A 75 m zone captured approximately 20 pixels and yielded the greatest
R2 values for SDD estimates from satellite data.We excluded lakes b8 ha
(Olmanson et al., 2001) as well as larger lakes that are narrow and could
not contain a 75 m area in the imagery without overlapping shoreline.

Water clarity of a total of 1,511 Maine lakes can be estimated remotely
from Landsat paths 11 and 12.

2.5.2. Model development
Kloiber et al. (2002b) and (Olmanson et al., 2008) determined

secchi data collected ±7 days of the Landsat overpass are acceptable
for use in lake clarity estimation regressions. Secchi data collected
±10 days may be usable owing to late summer stability (Olmanson
et al., 2008). Although a longer time window increases the sample
size and geographic extent of the calibration dataset, less estimation
error is introduced if calibration data are collected close to the time
of the satellite overpass. We used windows of 1, 3 and 7 days deter-
mined by the amount of calibration data available, which generally
was greater for later years in the study. Longer time windows help
ensure a wide distribution of SDD values is captured in the calibration,
which is critical for model accuracy (Nelson et al., 2003). We used
historic SDD field data collected by MDEP and the Maine Volunteer
Lake Monitoring Program in our regressions.

We estimated natural log-transformed SDD from the 75 m zonal
means of spectral band data with linear ordinary least squares regres-
sion (R version 2.12.0; R Foundation for Statistical Computing, Vienna,
Austria).We identifiedmodels that performed consistently over several
images with forward stepwise regression. We included spectral and
supplementary lake variables in the models. Spectral variables were
zone means calculated from Landsat TM bands 1–4. Bands 1–3 are
correlated with lake water clarity (Kloiber et al., 2002b). The wave-
length of band 4may be too long to penetrate beyond thewater surface,
however, we included these data because they are correlated with
chlorophyll and suspended solids in eutrophic waters (Lathrop, 1992).
The TM1/TM3 band ratio has been used to estimate water clarity
(Chipman et al., 2004; Kloiber et al., 2002a, 2002b; Nelson et al., 2003;
Olmanson et al., 2008) and we included this ratio in regressions when
TM1 and TM3 were significant in accordance with model hierarchy.
We validated regression assumptions with standard tests and regres-
sion coefficients with subsampled datasets and jackknifing following
Sahinler and Topuz (2007). We used jackknifing when nb50 lake
stations to minimize the influence of individual data points with small
sample size. We compared predicted residual sum of squares (PRESS)
statistics to SSE of regressions using subsampled datasets when n≥50
lake stations to compare the fitness of full and subsampled models.

3. Results

Landsat TM bands 1 and 3 were consistent predictors of ln(SDD)
for calibration datasets ranging 31–119 lake stations and ±1–7 day
field data capture windows (Table 2). The TM1/TM3 ratio was incon-
sistently significant and created redundancies in models. Average
depth was positively correlated with ln(SDD) and wetland area was
negatively correlated with ln(SDD) only in path 11 models. Lake
area, perimeter and area/perimeter ratio were not strong predictors
of lake water clarity. Path 11model R2 values were consistent, ranging
0.79–0.90 (RMSE=1.18–1.23 m); however, path 12 models were

Table 2
Summary of primary regression modelsa for remote clarity estimation.

Date Path Rows Band Combination R2 Days n

8/30/2010 12 27–30 (−0.244) TM3+(8.389×10−3) AvgDepth+5.220 0.7305 1 65
9/14/2004 12 27–30 (0.134) TM1− (0.392) TM3+2.484 0.8342 1 44
9/1/1999 12 27–30 (−0.427) TM3+(4.480×10−3) AvgDepth+6.202 0.8939 1 31
9/6/1995 12 27–30 (6.280×10−2) TM1−(0.361) TM3+(1.029×10−2) AvgDepth+7.960 0.8439 3 73
9/8/1990 12 27–30 (0.145) TM1−(0.436) TM3+(6.403×10−3) AvgDepth+2.930 0.6916 7 117
9/5/2009 11 28–29 (3.715×10−2) TM1−(0.320) TM3+(7.766×10−3) AvgDepth−(3.609×10−4) Wetland+5.513 0.8631 3 65
8/9/2005 11 27–29 (0.113) TM1−(0.315) TM3+(7.888×10−3) AvgDepth−(3.697×10−4) Wetland−0.8681 0.8244 3 55
8/9/2002 11 27–29 (−3.217×10−2) TM3+(1.291×10−2) AvgDepth−(7.511×10−4) Wetland+4.252 0.9010 1 35
8/14/1995 11 27–29 (9.347×10−3) TM1−(5.869×10−2) TM3+(9.825×10−3) AvgDepth−(3.059×10−4) Wetland+3.906 0.7919 7 119

a TM1 = Landsat band 1, TM3 = Landsat band 3, AvgDepth = average lake depth, Wetland = proportion of watershed covered by wetland.
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more variable with R2 values ranging 0.69–0.89 (RMSE=1.15–
1.30 m). Relationships between observed and estimated ln(SDD)
consistently were strong throughout 1990–2010 (Figs. 2–3). Estimated
SDD ranged b0.10–18.10 m. Average absolute difference between
observed and satellite-estimated SDD ranged 0.65–1.03 m (Table 4).
Estimates consistently were more accurate for eutrophic (SDD≤4 m)
and mesotrophic (SDD=4–7 m) than oligotrophic lakes (SDD≥7 m)
(Table 4), based on established relationships between trophic status
and SDD (Maine PEARL, 2011). Estimates for eutrophic and mesotro-
phic lakes consistently were on average within 1 m of observed condi-
tions, however, estimates for oligotrophic lakes on average deviated
>1 m from observed conditions in all but one model (Table 4).

We used the samemethods to fit alternatemodels for 163 lakes for
which bathymetric data were not available. Thesemodels consistently
produced smaller R2 values and larger average absolute differences
between estimated and observed SDD (Tables 3, 5). Primary model
R2 averaged 0.85 for path 11 (Std. dev; SD=0.04) and 0.80 for path
12 (SD=0.08) and alternate model R2 averaged 0.78 (SD=0.06;
RMSE=1.24–1.26 m) for path 11 and 0.76 (SD=0.08; RMSE=1.20–
1.32 m) for path 12. Average absolute difference between estimated

and observed SDD was 0.75 m for paths 11 (SD=0.12) and 0.88 for
path 12 (SD=0.12) over all primary models and 0.89 m for path 11
(SD=0.13) and 1.01 m (SD=0.08) for path 12 in all alternate models.

4. Discussion

4.1. Trophic state affects model accuracy

Although the primary model R2 values indicate good agreement
between TM3, TM1 and ln(SDD), model-estimated SDDs consistently
were more accurate for eutrophic and mesotrophic lakes. TM3 is
correlated with chlorophyll reflectance and is an effective indicator of
clarity of turbid waters. Chlorophyll and suspended solids, associated
with increased turbidity and phytoplankton abundance, increase the
amount of energy received by the satellite (Lathrop, 1992), rendering
TM3 a less accurate predictor of SDD in clear water. In shallower oligo-
trophic lakes, the longerwavelength of TM3may bottom out before the
deepest potential SDD is reached, which could potentially produce
misleading results. SDD may be more of a function of lake depth in
clear water where fewer particles reflecting transmitted light are

Fig. 2. Scatter plots of Landsat-estimated and observed secchi disk depth (m) for primary path 12 models with 1:1 fit line. Observed values are based on field data gathered by the
Maine Volunteer Lake Monitoring Program (VLMP)±1–7 days of the Landsat satellite overpass. RMSE = root mean squared error.
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present. From a management perspective, eutrophic and mesotro-
phic lakes are of greater interest owing to their susceptibility to
development-related eutrophication. Although our model predictions
applied to oligotrophic lakes are less accurate, themodelsmay be useful
indicators of deteriorating water clarity as predicted SDD decreases.
Consideration of factors such as depth and lake water quality history
may improve interpretation of lake clarity estimates for oligotrophic
lakes.

4.2. Applying ancillary data in models for water clarity monitoring

TM1 and TM3 are strong predictors of Maine lake clarity, providing
a tool to track potential changes from the current overall high clarity of
Maine lakes. Olmanson et al. (2008) reported an average Minnesota
statewide lake clarity of 2.25 m from 1985–2005, considerably more
eutrophic than the average annual clarity of Maine lakes (4–6 m)
since 1970. Lathrop's (1992) finding that TM3 is strongly correlated
with turbid waters such as those found in lakes in the Upper Midwest
supports the results of Olmanson et al. (2008) for an overall eutrophic
dataset. Models predictingMinnesota lake clarity explained 71–96% of
the variation in lake clarity with only spectral data (Olmanson et al.,

2008), similar to our alternate models (R2=0.63–0.86). Considering
the trophic conditions in Maine, our reduced model fitness is not
surprising, however, the inclusion of physical lake variables in our
primary models helps explain additional variability in lake clarity in
a relatively clearer set of lakes despite small differences in RMSE.
Satellite data alone may be sufficient for monitoring of eutrophic
inland waters, however, physical lake characteristics and landscape
features improve models applied to remote monitoring of clearer
waters, especially when eutrophic lakes are uncommon.

The family of models that best estimates lake water clarity across a
range of biophysical regions emphasizes the relationship between
lake water clarity and watershed characteristics. Maine is a relatively
small and undeveloped state spanning several biophysical regions
(e.g., western mountains to eastern lowlands and foothills; Krohn et
al., 1999). Eastern Maine falls largely in the eastern lowlands and
foothills biophysical region and contains more wetland area, likely
explaining the lack of significance of wetland area in path 12 models.
Differing trends in lake clarity across U.S. Environmental Protection
Agency Ecoregions have been found in Wisconsin (Peckham &
Lillesand, 2006) and Minnesota (Olmanson et al., 2008), suggesting
there is a recognition of regional lake clarity variation. It may not be

Fig. 3. Scatter plots of Landsat-estimated and observed secchi disk depth (m) for primary path 11 models with 1:1 fit line. Observed values are based on field data gathered by the
Maine Volunteer Lake Monitoring Program (VLMP)±1–7 days of the Landsat satellite overpass. RMSE = root mean squared error.

Table 3
Summary of alternate regression modelsa for remote clarity estimation without knowledge of depth.

Date Path Rows Band Combination R2 Days n

8/30/2010 12 27–30 (−0.257) TM3+5.567 0.7018 1 65
9/14/2004 12 27–30 (0.134) TM1−(0.392) TM3+2.484 0.8342 1 44
9/1/1999 12 27–30 (−0.479) TM3+6.901 0.8248 1 31
9/6/1995 12 27–30 (6.368×10−2) TM1−(0.366) TM3+8.252 0.8168 3 73
9/8/1990 12 27–30 (0.157) TM1−(0.467) TM3+3.101 0.6313 7 117
9/5/2009 11 28–29 (4.299×10−2) TM1−(0.334) TM3−(4.290×10−4) Wetland+5.561 0.8273 3 65
8/9/2005 11 27–29 (0.135) TM1−(0.364) TM3−(4.072×10−4) Wetland−1.396 0.7019 3 55
8/9/2002 11 27–29 (−3.104×10−2) TM3−(8.897×10−4) Wetland+4.537 0.8642 1 35
8/14/1995 11 27–29 (1.304×10−2) TM1−(6.753×10−2) TM3−(3.456×10−4) Wetland+3.948 0.7412 7 119

a TM1 = Landsat band 1, TM3 = Landsat band 3, Wetland = proportion of watershed covered by wetland.
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practical to model lake clarity according to ecoregion owing to
calibration data availability, however, ecoregions capture general
landscape characteristics and are useful aids in interpreting and
detecting potential patterns in lake clarity estimates.

4.3. Limitations

There are limitations to monitoring water clarity with Landsat
imagery. Landsat returns every 16 days, limiting the number of avail-
able mid-late summer images each year. Cloud cover affects image
availability, especially for coastal areas such as path 11 in Maine.
Over our 20 year study period, clear imagery was available for path
12 (western Maine) in late August-early September every 4–5 years,
however, clear imagery for coastal path 11 was less consistently avail-
able. The compromised utility of Landsat 7 and potential expiration of
Landsat 5 are additional complications that may be alleviated by the
expected 2013 deployment of the Landsat Data Continuity Mission.
Other satellite remote sensors such as MODIS with greater temporal
resolution (2 images per day) may be a useful alternative for large
lakes (McCullough et al., submitted for publication). Minnesota,
Michigan and Wisconsin contain 388, 108 and 90 lakes respectively
that can be routinely sampled remotely for SDD using MODIS 500 m
imagery (Chipman et al., 2009).

The need for alternate models demonstrates the problem with
including ancillary variables such as depth and wetland area.
Although these variables are acceptably consistent year-to-year at
the landscape scale, depth requires field-collected data and wetland
area requires spatial data in addition to the satellite data, which
may not be practical for some areas. An intention of this study is to
estimate water clarity without visiting lakes and ideally, added vari-
ables would be restricted to those that could be easily remotely
sensed. In our study, remotely sensed variables such as lake size,
perimeter and surface area/perimeter ratio were inconsistent predic-
tors of lake water clarity, however, these variables may still be useful
in other landscapes. Lake depth, however, should be considered
regardless of its predictive capacity. It can be argued that lake clarity

estimates without knowledge of depth are less useful because it is
helpful to know the proportion of the water column exposed to
visible light. For example, a 10 m deep lake with SDD=2 m should
be viewed differently from a 3 m deep lake with SDD=2 m. It is
our opinion that when additional information is known about certain
lakes, this information should be used when it considerably improves
estimates. As this study demonstrates, alternate, less accurate models
can be used when ancillary data are lacking.

We would ideally develop an operational model that would not
have to be calibrated specifically for each future image. Under this
scenario, we could apply this model to future Landsat images with
minimal or no field calibration data. Unfortunately, developing an
accurate operational model is unrealistic with Landsat imagery. At
the landscape scale, there is already a fairly large amount of error
included in SDD estimates whenmodels are calibrated with concurrent
satellite and field data; attempting to use models calibrated with
non-concurrent field data introduces additional error associated with
changing lake or atmospheric conditions and pushes the limit of error
acceptability. Known field SDD values cannot be accurately predicted
with a model calibrated for a different date. We recommend calibrating
future models with concurrent satellite and field data. It would be a
useful and efficient strategy to direct management and volunteer
agencies to collect field data near satellite overpass dates to maximize
calibration data availability.

5. Conclusion

Accurate long-termwater qualitymonitoring programs are essential
for effective lake management. Simultaneous monitoring of a large
number of lakes is facilitated by data that can be gathered remotely.
Landsat TM bands 1 and 3 are consistent predictors of water clarity of
Maine lakes and those predictions are more accurate when average
depth and watershed wetland area are included in models. Bands 1
and 3 previously were found to be strong indicators of water clarity in
lakes considerably less clear than those in Maine, demonstrating the
wide applicability of Landsat data formonitoring lake trophic condition.
Estimates are more accurate for eutrophic and mesotrophic than oligo-
trophic lakes, owing to the lack of suspended particles in oligotrophic
lakes that are detectable by satellite sensors and the longer TM3 wave-
length that may bottom out before the deepest potential SDD is
reached. Although the spatial and temporal resolution of Landsat TM
are limited, Landsat is useful for monitoring lake clarity over long time
periods because satellite-based monitoring alleviates the non-random
lake sampling employed by agencies and volunteers and greatly
increases knowledge of regional water quality. We are currently con-
ducting a separate study examining spatial and temporal patterns of
Maine lake clarity using the methods described in this manuscript.
The continuation of field-based lake water clarity monitoring is essen-
tial for calibration and spot validation of future remote clarity estima-
tion models and remote monitoring should not replace field-based
programs. The long-term clarity estimates produced by this study are
available electronically at the USGSMaine Cooperative Fish andWildlife
Research Unit website (http://www.coopunits.org/Maine/).
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Table 4
Average absolute difference (m) between observed and remotely estimated SDD
among lake typesa in primary models.

Date Path Eutrophic Mesotrophic Oligotrophic Overall

8/30/2010 12 0.90 0.97 1.33 1.03
9/14/2004 12 0.73 0.65 1.49 0.87
9/1/1999 12 0.60 0.54 0.81 0.66
9/6/1995 12 0.75 0.82 1.22 0.93
9/8/1990 12 0.91 0.89 1.47 0.91
9/5/2009 11 0.58 0.62 1.20 0.73
8/9/2005 11 0.33 0.67 1.08 0.68
8/9/2002 11 0.41 0.71 1.05 0.65
8/14/1995 11 0.78 0.85 1.31 0.95

a Eutrophic SDDb4 m, Mesotrophic SDD=4–7 m, Oligotrophic SDD≥7 m.

Table 5
Average absolute difference (m) between observed and remotely estimated SDD
among lake typesa in alternate models.

Date Path Eutrophic Mesotrophic Oligotrophic Overall

8/30/2010 12 0.87 0.95 1.61 1.08
9/14/2004 12 0.73 0.65 1.49 0.87
9/1/1999 12 0.75 0.85 1.27 1.03
9/6/1995 12 0.79 0.78 1.38 0.97
9/8/1990 12 1.00 0.89 1.89 1.09
9/5/2009 11 0.65 0.68 1.79 0.89
8/9/2005 11 0.45 0.73 1.85 0.88
8/9/2002 11 0.52 0.66 1.45 0.72
8/14/1995 11 0.84 0.82 1.81 1.08

a Eutrophic SDDb4 m, Mesotrophic SDD=4–7 m, Oligotrophic SDD≥7 m.
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important support in image processing. Dr. Manuel Gimond, GIS &
Quantitative Analysis Specialist at Colby College, also provided advice
for the GIS methods used in this study. Comments provided by Dr.
Aram Calhoun, Dr. William Halteman and three anonymous reviewers
improved the manuscript. Mention of trade names or commercial
products does not constitute endorsement or recommendation for
use by the U.S. Government.
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