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a b s t r a c t

Non-native honeybees historically have been managed for crop pollination, however, recent population
declines draw attention to pollination services provided by native bees. We applied the InVEST Crop
Pollination model, developed to predict native bee abundance from habitat resources, in Maine's wild
blueberry crop landscape. We evaluated model performance with parameters informed by four ap-
proaches: 1) expert opinion; 2) sensitivity analysis; 3) sensitivity analysis informed model optimization;
and, 4) simulated annealing (uninformed) model optimization. Uninformed optimization improved
model performance by 29% compared to expert opinion-informed model, while sensitivity-analysis
informed optimization improved model performance by 54%. This suggests that expert opinion may
not result in the best parameter values for the InVEST model. The proportion of deciduous/mixed forest
within 2000 m of a blueberry field also reliably predicted native bee abundance in blueberry fields,
however, the InVEST model provides an efficient tool to estimate bee abundance beyond the field
perimeter.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Maine is the world's largest producer of wild blueberries (Vac-
cinium angustifolium Aiton), with over 91.1 million pounds har-
vested in 2012 primarily from Hancock, Washington, Knox, and
Waldo counties (Yarborough, 2009).Wild blueberries require insect
pollination (Drummond, 2002; Jones et al., 2014), and Maine is the
country's second largest importer of non-native honeybees (Apis
mellifera) for wild blueberry pollination, with>75,000 hives rented
annually (A. Jadczak, Maine Department of Agriculture, pers.
comm.). Declining populations of managed honeybee colonies
(~59% during 1947e2005; Potts et al., 2010), which pollinate crops
worth $5e14 billion annually in the United States (Kremen et al.,
Law Center, 601 West Rose-

f), cynthia.loftin@maine.edu
rummond), sara.bushmann@
. McGill).
2002), has led to increased cost of hive rentals for wild blueberry
pollination (Pettis and Delaplane, 2010), enhancing interest in the
freely available ecosystem service of native pollinators, which are
adapted to forage in reduced light and cooler temperatures com-
mon where wild blueberries grow (Cane and Payne, 1988; Hanes
et al., 2013).

Native bees are mobile and dependent on discrete resources
that may vary spatially and temporally across a landscape (Kremen
et al., 2007), and access to those resources depends on the bee's
foraging and dispersal ability (Patricio-Roberto and Campos, 2014).
Understanding factors affecting pollination services on a farm re-
quires understanding the relationships between bee diversity or
abundance in the crop and the spatial and temporal distribution of
pollinator-supporting habitat surrounding a farm (Kremen et al.,
2007). The proportion of pollinator habitat surrounding and
within a crop field is a determinant of the bee community diversity
and abundance and hence pollination by native pollinators. In this
case, habitat is any landscape feature that offers shelter, nesting
grounds, or food resources (Ricketts et al., 2008). Native bee
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visitation to crop bloom decreases with isolation from bee habitat
areas, and may lead to a decrease in crop pollination despite added
honeybee visits (Garibaldi et al., 2011). Native bee abundance
within a field can be predicted by composition of habitat adjacent
to the field (Steffan-Dewenter et al., 2002; Taki et al., 2007;Watson
et al., 2011). Pollinator abundance may be affected not only by land
cover type, but also by the pattern and arrangement of land cover in
the landscape surrounding the focal crop (Brosi et al., 2008;
Ricketts et al., 2008; Lonsdorf et al., 2009, 2011), as well as the
scale and extent at which the landscape is evaluated (Lonsdorf
et al., 2009, 2011).

The Natural Capital Project's InVEST Crop Pollination Model
(Lonsdorf et al., 2009, 2011) is a spatially explicit, geographic
landscape computer algorithm that produces geo-referenced pre-
dictions of bee abundance in grid cells across a landscape, based on
nesting resources within the focal cell and floral resources sur-
rounding the cell, within the confines of themodeled bee's foraging
range. InVEST is adaptable to any crop for which it can be validated,
potentially providing a tool to help growers enhance use of polli-
nation services. The model requires a spatial land cover dataset and
parameters relating land cover suitability for providing habitat
resources given the modeled bee's life history strategy (Lonsdorf
et al., 2009, 2011). In the absence of empirical data, parameters
can be assigned based on published values or expert opinion.
Expert opinion often is used to inform spatial models (Compton
et al., 2007; Lonsdorf et al., 2009; Spear et al., 2010; Kennedy
et al., 2013), although predictive accuracy of the model is not
necessarily improved with this knowledge (Charney, 2012).

We evaluated the InVEST Crop Pollination Model (Sharp et al.,
2015) in Maine's wild blueberry crop system. Our analyses
addressed the following questions: 1) Is the InVEST model pre-
dictive ability affected by the focal landscape? 2) Does expert
opinion ranking of bee habitats (the most common parameteriza-
tion technique used for InVEST) provide predictive capability for
estimating bee abundance? 3) Do informed or uniformed param-
eterization techniques improve predictive capability of the InVEST
model over expert opinion parameterization? and, 4) Does a pro-
portional land cover model provide comparable predictive capa-
bility to that provided by the InVEST model?

Our analysis investigated relationships between landscape
composition and native bee abundance predicted with the InVEST
model in two phases. First, we examined the InVEST model per-
formance across three spatial extents in the wild blueberry pro-
duction landscape, reflecting differences in land cover data source,
type, patch size, and validation datasets. Second, we evaluated
change in the model's predictive ability with four parameterization
approaches: expert opinion, sensitivity analysis, model optimiza-
tion with sensitivity analysis based (informed) calibration, and
model optimization with simulated annealing (uniformed) cali-
bration. Finally, we compared the results of the InVEST model
prediction of bee abundance to the results of bee abundance pre-
dicted from near-field habitat composition.

2. Study area and methods

2.1. Study area

We evaluated the predictive ability of the InVEST model based
on land cover type-associated nesting and forage suitability across
three areas in Downeast Maine (Fig. 1). The Eastern extent covers
3000 km2 and includes eight focal blueberry fields (<1e11 ha). The
Blue Hill area covers 705 km2 of southwestern Hancock County
including 26 focal blueberry fields (<1e17 ha). The Downeast extent
spans 4802 km2, overlapping the Blue Hill extent and approxi-
mately half of the Eastern extent, and includes 40 focal blueberry
fields (<1e17 ha). These extents were bounded based on the spatial
distribution of the field sites and collected field data, as well as the
availability of the spatial data (e.g., the Eastern extent was bounded
by the footprint of the SPOT imagery we obtained). Habitat that
provides nesting and foraging resources to bees in Maine is rep-
resented on land covermaps as deciduous/mixed forest, deciduous/
mixed forest edge, and old fields and grasslands in these extents.

2.2. Methods

2.2.1. Spatial land cover
We developed and evaluated land cover datasets from a variety

of source data to identify the extent and cell resolution with the
greatest model prediction accuracy. The Downeast and Blue Hill
extents (Fig. 1) were represented by a land cover map that merged
several source datasets.

The Maine Landcover Dataset 2004 (MELCD 2004; http://www.
maine.gov/megis/catalog/) combines the National Landcover
Dataset 2001 (NLCD 2001; http://www.mrlc.gov/nlcd01_data.php),
based on 1999e2001 Landsat Thematic Mapper 5 and 7 imagery
(30 m pixel resolution), with classification of 2004 SPOT 5 imagery
(5m pixel resolution), to create a 5-m resolution raster dataset with
23 land cover classes. The blueberry field category represents
commercial wild blueberry operations with an accuracy of 89.7% in
Maine. We updated the 2004 MELCD with ancillary datasets (Arc-
GIS® version 10.0; Esri, Redlands, CA, United States), including
railroads (RAILROUTESYS) and roads (MEDOTPUBRDS, NG911;
http://www.maine.gov/megis/catalog/) and the MELCD wetlands
classes (wetland forest, wetlands, scrub-shrub) with the National
Wetland Inventory (NWI; http://www.fws.gov/wetlands/NWI/
Index.html) to capture wetland diversity potentially important to
foraging bees. We created a deciduous/mixed forest edge class by
applying a 10 m buffer around deciduous forest and mixed forest
pixels. We resampled the 30 m USDA Croplands Dataset (CDL 2012;
http://nassgeodata.gmu.edu/CropScape/) to 5 m pixels using the
nearest neighbor technique, andwe updated theMELCD “blueberry
field” class with wild blueberry fields >4 ha in the CDL, capturing
fields omitted from the original MELCD dataset while excluding
wild blueberries growing outside managed fields. All spatial data
were obtained between January 2012 and May 2012. We digitized
the perimeter of wild blueberry fields where bee samples were
collected but that were missing from the compiled land cover
dataset. The final land cover 5m pixel dataset (non-enhanced) used
to evaluate model predictions in the Downeast and Blue Hill extents
was reclassified from 42 classes into eight land cover types: de-
ciduous/mixed forest edge, developed/other, coniferous forest, decid-
uous/mixed forest, emergent/shrubeshrub wetlands, other wetlands/
water, agriculture/field and blueberries.

The Eastern extent (Fig. 1) was represented by a land cover map
that combined additional datasets. We updated the blueberry class
in the MELCD land cover layer with a single 10 m hyper-spectral
SPOT image of a 3600 km2 area of Washington County collected
May 2011 (Airbus Defense and Space 2014; http://www.geo-
airbusds.com/). We improved the classification among land cover
types by using the MELCD as a guide to extract all pixels from the
image that were not classified as water and wetlands and then
conducted an isocluster unsupervised classification on the extrac-
ted pixels in ArcGIS 10.0. We developed training sets for land cover
classes grouped with blueberries in the unsupervised classification,
using the MELCD dataset and aerial imagery as guides for devel-
oping training sets distinguishing among roads and gravel pits,
conifers, and wild blueberry fields (Bing Maps 2010; https://www.
bing.com/maps/). This maximum likelihood supervised classifica-
tion created additional blueberries pixels to add to the MELCD
blueberries class. The final land cover dataset included 42 classes
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Fig. 1. Modeled extents and wild lowbush blueberry field sites used for validation of the InVEST model, Maine, USA.
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reclassified into 8 land cover types: deciduous/mixed forest edge,
developed/other, coniferous forest, deciduous/mixed forest, emergent/
shrubeshrub wetlands, other wetlands/water, agriculture/field and
blueberries.We resampled the 5 m resolution dataset to 10 m to
decrease InVEST model run time. This land cover dataset (SPOT-
enhanced) was used to evaluate the model predicted bee abun-
dance in the Eastern extent (Fig. 1).

We characterized landscape pattern in the three modeled ex-
tents (Fig. 1) with metrics calculated with Fragstats 4.2 (McGarigal
et al., 2012). For each land cover class we calculated the proportion
of the extent in that class, patch density (number per 100 ha (ha)),
mean patch area (ha), and a measure of spatial configuration (i.e.,
interspersion/juxtaposition index, IJI). We also calculated a land-
scape scale mean patch area (ha) and IJI for each modeled extent.
2.2.2. Model parameterization

2.2.2.1. Bee species life history and foraging distance. We modeled
Table 1
Life history traits of modeled common native bee species found in wild blueberry. Typica
et al. (2007) and data from Bushmann and Drummond (2015).

Species Family Nest subst

Andrena carlini Andrenidae ground
Andrena carolina Andrenidae ground
Andrena vicina Andrenidae ground
Augochlorella aurata Halictidae ground
Colletes inaequalis Colletidae ground
Halictus ligatus Halictidae ground
Lasioglossum acuminatum Halictidae ground
Lasioglossum cressonii Halictidae cavity
Lasioglossum heterognathum Halictidae ground
Lasioglossum leucocomum Halictidae ground
Lasioglossum pectorale Halictidae ground
Lasioglossum versatum Halictidae ground
Osmia atriventris Megachilidae cavity
Osmia inspergens Megachilidae cavity
14 of the most common native bee species (Table 1) in four families
in the wild blueberry solitary bee community (Bushmann and
Drummond, 2015). We assigned life history parameters (i.e., nest-
ing preferences, flight seasonality) based on expert opinion and
literature references (Michener, 1966; Osgood, 1972; Cane, 1992;
Michener, 2000; Asher and Pickering, 2013, Table 1).

We estimated foraging distances of locally captured bees
(Bushmann and Drummond, 2015) from inter-tegular (IT) width
(i.e., distance between the wing bases in mm) measured with a
Dino-Lite® mobile digital microscope and analyzed images in Dino-
Capture 2.0 (AnMo Electronics Corporation, Hsinchu, Taiwan). We
recorded five measurements per specimen and measured 10
specimens per species, except for Osmia atriventris, with only eight
specimens available. We averaged the measured IT widths by
species (n ¼ 50; n ¼ 40 for O. atriventris) and estimated maximum
and typical foraging ranges (m) from the measured IT width with
regression (Greenleaf et al., 2007) (Table 1, Supplemental Material).
l foraging distances calculated with the statistical relationship defined by Greenleaf

rate Typical foraging distance (m) Flight season

598 MareAug
246 ApreJul
569 MareAug
60 ApreOct

1091 MareSept
148 MareNov
186 ApreOct
63 MareOct
16 ApreSept
31 MareOct
81 MareNov
79 MareOct

186 ApreJul
495 MayeJune
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We parameterized the InVEST model with mean typical foraging
range per species (Table 1).

2.2.2.2. Land cover parameterization by expert opinion and model
calibration. We evaluated the predictive ability of the model in the
Downeast, Eastern, and Blue Hill extents, representing land cover
with the two datasets developed from modified MELCD data and
informing the model parameters with expert opinion. We then
calibrated the InVEST model in a subset of the focal area by
assigning suitability values with four model parameterization
methods: 1) assigned through expert opinion, 2) developed
through sensitivity analyses, 3) developed through informed opti-
mization; and, 4) developed through uninformed, simulated
annealing optimization. We applied the InVEST model to the 14
native solitary bee species in all assessments, and we validated all
models with bee data collected from 40 blueberry fields during
2010e2012 (Bushmann and Drummond, 2015).

We surveyed 16 entomologists, ecologists, and botanists
familiar with Maine's landscapes for their evaluation of land cover
type suitability for bee floral (foraging) and nesting habitat. Twelve
experts provided responses that ranked (0 ¼ unsuitable to
10 ¼ most suitable) land cover class suitability for ground and
cavity nesting bees, and spring, early summer and late summer
forage (Supplemental Material). Althoughwe included Bombus spp.
in the survey, we omitted Bombus spp. from our model evaluation.
We summarized and rescaled (1e10) survey responses by land
cover type range, mode and average, omitting the coniferous forest-
clearcut land cover type given its omission from the MELCD land
cover dataset. We used the average scaled response (rescaled to
0.1e1.0 to match InVEST model parameter requirements) as the
suitability ranking for the land cover or nesting substrate (Table 2).
We evaluated the relationship between output from the expert-
informed InVEST model and the field-collected bee abundance
data with simple linear regression and percent change in the
Pearson product moment correlation coefficients (r) compared to
the model parameterized by expert opinion.

We evaluated the effect of uncertainty in parameter choice on
model prediction calibration with a sensitivity analysis. We varied
each of the 40 nesting and floral resource suitability parameters
(0e1) individually by ± 0.1 in 74 model iterations. Parameters
assigned a value of 1 through the expert opinion survey were not
evaluated by þ0.1 owing to model restrictions (Table 2).

We also conducted a validation analysis by evaluating the rela-
tionship between the InVEST model output and the field-collected
bee abundance data with simple linear regression and percent
change in the Pearson product moment correlation coefficients (r)
compared to the model parameterized by expert opinion.

We calibrated the InVEST model informed by the sensitivity
analysis by varying the number of parameters altered and the
amount of change in suitability values in nine model iterations. For
example, one iteration decreased suitability of blueberries for
nesting and forage by 0.2, whereas, another run altered all pa-
rameters by ±0.2, with direction determined by the sensitivity
Table 2
Average (±standard deviation) scaled land cover suitability values assigned by expert op

Land cover Ground nesting Cavity nesting

Deciduous/mixed forest, edge 0.9 (0.17) 1.0 (0.19)
Developed/other 0.9 (0.25) 0.6 (0.30)
Coniferous forest 0.5 (0.23) 0.6 (0.28)
Deciduous forest/mixed forest 0.6 (0.21) 0.9 (0.22)
Emergent wetlands/scrub-shrub 0.2 (0.14) 0.4 (0.24)
Wetlands/water 0.1 (0) 0.1 (0.05)
Agriculture/field 0.7 (0.29) 0.2 (0.18)
Blueberries 1.0 (0.25) 0.4 (0.26)
analysis. We evaluated the relationship between the informed
InVEST model output and the field-collected bee abundance data
with linear regression and the Pearson product moment correlation
coefficient (r).

We used simulated annealing calibration to parameterize the
model with uninformed suitability values optimized to the vali-
dation dataset (Kirkpatrick et al., 1983). Simulated annealing is an
optimization process that enables a function to escape local mini-
mums and local maximums, with the goal to instead find a global
optimum. The function is able to move both uphill and downhill,
first with large jumps, and then with subsequent smaller jumps as
the function approaches the optimum (Goffe et al., 1994). We per-
formed this technique by embedding the InVEST model into a
function and running it through the Python programming language
scip.optimize.anneal function (Oliphant, 2007). We set initial
parameter values to those assigned through the expert opinion
survey, and all parameters varied simultaneously for each run.
Scip.optimize.anneal is a minimizing function (i.e., seeks the mini-
mum optimal value), therefore, we set the function to attempt to
maximize the correlation coefficient by multiplying it by �1 to
convert the value to positive. We evaluated the relationship be-
tween the InVESTmodel outputs for each optimized run against the
field-collected bee abundance data with simple linear regression
and calculated the Pearson product moment correlation co-
efficients (r) (R, http://www.R-project.org/).

We calculated the average proportion of land cover types in 500,
1000, 1500 and 2000 m buffers surrounding the 40 fields where
bees were collected (Table 3) using Geospatial Modeling Environ-
ment (Beyer, 2012), to compare with sampled bee abundance in
these fields. We compared the land cover proportion in each buffer
for each of the 14 species’ abundances included in the InVEST
model evaluation, as well as for total bee abundance based on all
species collected at each field site (6e45 species), with simple
linear regression and the Pearson productemoment correlation
coefficient (r).

3. Results

3.1. Landscape pattern assessment and comparison of model
predictions among extents

Regardless of focal extent, coniferous forest, deciduous/mixed
forest, and wetlands/water comprised more than half the land area.
While mean patch area generally was similar among Eastern, Blue
Hill, and Downeast extents, mean patch sizes of both the deciduous/
mixed forest and blueberries classes were larger than the mean
patch area in each extent (Table 4). The landscape IJI values were
similar among extents and indicate land cover patches are broadly
distributed across the focal landscapes.

InVEST model predictions of native bee abundance differed
among modeled extents and bee species. The SPOT-enhanced land
cover map on the Eastern extent did not improve accuracy of pre-
dicted total abundance for the 14 native bee species, however, bee
inion in Maine, USA.

Spring forage Early summer forage Late summer forage

0.9 (0.24) 0.9 (0.24) 1.0 (0.22)
1.0 (0.27) 0.9 (0.26) 1.0 (0.22)
0.1 (0.24) 0.1 (0.21) 0.1 (0.29)
0.7 (0.21) 0.5 (0.29) 0.4 (0.18)
0.7 (0.22) 0.6 (0.25) 0.6 (0.20)
0.3 (0.20) 0.2 (0.16) 0.5 (0.18)
0.9 (0.31) 0.7 (0.27) 0.9 (0.33)
0.4 (0.29) 1.0 (0.28) 0.5 (0.26)

http://www.R-project.org/


Table 3
Average (±standard deviation) proportions of land cover classes within a 500, 1000, 1500 and 2000 m buffer surrounding field sites (n ¼ 40) in Maine, USA.

Land Cover 500 m 1000 m 1500 m 2000 m

Deciduous/mixed forest, edge 0.06 (0.02) 0.06 (0.01) 0.05 (0.02) 0.05 (0.01)
Developed/other 0.04 (0.03) 0.04 (0.02) 0.04 (0.02) 0.04 (0.02)
Coniferous forest 0.29 (0.18) 0.34 (0.15) 0.35 (0.14) 0.36 (0.14)
Deciduous forest/mixed forest 0.30 (0.18) 0.28 (0.16) 0.27 (0.14) 0.26 (0.12)
Emergent wetlands/scrub-shrub 0.08 (0.07) 0.09 (0.07) 0.09 (0.05) 0.10 (0.04)
Wetlands/water 0.04 (0.08) 0.06 (0.09) 0.08 (0.10) 0.10 (0.10)
Agriculture/field 0.05 (0.04) 0.04 (0.03) 0.04 (0.03) 0.04 (0.02)
Blueberries 0.14 (0.13) 0.10 (0.09) 0.08 (0.07 0.06 (0.06)

Table 4
Pattern metrics for each land cover type and region in Maine, USA.

Land cover/metric Eastern Blue hill Downeast

% Land Mean patch area (ha) % Land Mean patch area (ha) % Land Mean patch area (ha)

Deciduous/Mixed Forest edge 4.0 1.5 4.3 1.2 4.3 1.3
Developed/Other 1.5 1.1 4.4 2.2 2.7 1.8
Coniferous Forest 24.5 6.6 34.4 10.0 28.7 8.8
Deciduous/Mixed Forest 24.1 11.6 21.3 6.0 26.3 10.3
Emergent/Scrub-Shrub Wetland 11.9 4.4 8.6 3.1 10.6 3.7
Wetlands/Water 27.5 5.9 20.0 5.9 21.0 5.3
Agriculture/Fields 1.3 1.0 3.3 1.6 1.9 1.3
Blueberries 5.3 11.0 3.7 5.6 4.4 10.1
mean patch area (ha) 5.3 4.6 5.2
IJI 73.7 74.1 73.6
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abundance prediction accuracy improved when bee species were
partitioned into those with estimated foraging distances <200 m (9
bee species, Pearson's r ¼ þ0.77; P ¼ 0.02) and <100 m (6 bee
species, Pearson's r ¼ þ0.86; P < 0.01) (Table 5).

In the Downeast extent accuracy of predicted total abundance of
the combined 14 bee species (Pearson's r ¼ þ 0.32; P ¼ 0.04) and
species that forage < 200 m (9 bee species, Pearson's r ¼ þ0.36;
P ¼ 0.02) was similar, however, there was a non-significant corre-
lation of sampled bee abundances and predicted abundance of bee
species that forage < 100 m (6 bee species, Pearson's r ¼ þ0.26;
P ¼ 0.08). InVEST predicted and sampled bee abundances were not
significantly correlated in the Blue Hill extent, regardless of the
number of bee species or foraging distance.
3.2. Model parameterization

Twelve of 16 experts completed the survey, with greatest
agreement in the value of wetlands/water, and least agreement in
the value of agriculture/field. Bee abundance predictions in the
Downeast extent based on expert-informed parameters were
significantly correlated with field-collected total bee abundances of
the 14modeled species (Pearson's r¼þ 0.315; P¼ 0.047), as well as
with the total bee abundance of each species (6e45 species)
Table 5
Pearson's r correlation and P values between InVEST model-predicted and observed
bee abundance for the three focal spatial extents in Maine.

Extent Land cover Species Modeled r P

Eastern SPOT-enhanced 14 species 0.52 0.19
14 species 0.52 0.19

SPOT-enhanced 9 species (foraging < 200 m) 0.77 0.02
9 species (foraging < 200 m) 0.77 0.02
6 species (foraging < 100 m) 0.86 0.01

Blue Hill 14 species 0.32 0.12
9 species (foraging < 200 m) 0.33 0.11

Downeast 14 species 0.32 0.04
9 species (foraging < 200 m) 0.36 0.02
6 species (foraging < 100 m) 0.26 0.08
captured at each site (Pearson's r ¼ þ0.343; P ¼ 0.030), however,
predicted abundances were not correlated with the total bee spe-
cies richness at each site (Pearson's r ¼ þ0.277; P ¼ 0.083). The
average (±SD) abundance prediction across all 14 sites was 0.45
(±0.059).

Assessment of model sensitivity to change in parameter values
by ±0.1 resulted in a change in correlation coefficient values
of �7.09 to þ9.09% (Table 6). Decreasing the value of all suitability
parameters (i.e., forage and nesting by seasons) for the blueberry
class increased correlations of predicted and sampled bee abun-
dance, whereas, increasing the value of the ground nesting
parameter and early summer and summer floral suitability for de-
ciduous/mixed forest increased correlations with bee abundance
(Table 6).

Model parameterizationwith informed optimization altered the
expert-informed parameter values by ±0.2, with direction indi-
cated in the sensitivity analysis (Table 7). Model predictive ability
(r¼þ0.486; P¼ 0.002) for the 14 native bee species was 54% better
than the expert opinion parameterization model, and model pre-
dictions were significantly correlated with both total bee abun-
dance (Pearson's r ¼ þ0.561; P ¼ 0.0001) and total bee richness
(Pearson's r ¼ þ0.530; P ¼ 0.0004). The average (±SD) abundance
prediction across all 14 sites was 0.301 (±0.059).

The model calibrated with uniformed or simulated annealing
optimization of parameter values resulted in correlation co-
efficients ranging r¼�0.460 toþ0.404. The optimization truncated
after 87 iterations owing to computer resource limitations, at
which point the best performing model (r ¼ þ0.404; P ¼ 0.010)
performed 29% better than the expert-informed model. The
average (±SD) abundance prediction across all 14 sites was 0.207
(±0.032).

Proportions of land cover classes in 500,1000,1500, and 2000m
buffers around focal fields generally were positively correlatedwith
bee abundance of the 14 species in the focal field, with the
exception of deciduous/mixed forest in the 1000 m buffers and
developed/other land cover class in the 500 and 1000 m buffers
(Table 8). The proportion of deciduous/mixed forest was positively
correlated with total abundance of all bees, whereas, the



Table 6
Sensitivity analysis parameterization, with cell values indicating percent change in Pearson correlation coefficient (r) for ± 0.1 change in parameter value compared to the
baseline (expert opinion parameterized) model.

Deciduous/mixed
forest, edge

Developed/other Coniferous forest Deciduous/
mixed forest

Emergent wetlands/scrub
shrub

Wetlands/water Agriculture/field Blueberries

cavity (�) �0.46a �0.92a 0.50a �1.98a 0.02a �0.38a 0.11a 3.34a

cavity (þ) e 0.90a �0.51a 1.91a �0.04a �0.12a �0.12a �3.21
ground (�) �1.87a �3.42 1.47* �7.09 �0.12a �1.40a 0.60a 9.09a

ground (þ) 1.80a 3.32a �1.64a 6.30a �0.04a 1.36a �0.74a e

spring (�) �0.67a �1.15a 1.24a �2.98a 0.03a �1.01a 0.38a 4.83a

spring (þ) 0.66a e �1.34a 2.83a �0.04a 1.00a �0.40a �4.69
early sum. (�) �0.93a �1.52a 1.52a �5.03 �0.06a �0.59a 0.62a 6.72a

early sum. (þ) 0.90a 1.50a �1.72a 4.62a 0.02a 0.58a �0.66a e

summer (�) �1.08a �1.81a 1.74a �4.09 0.05a �0.70a 0.42a 6.71a

summer (þ) e e �1.91a 3.83a �0.09a 0.69a �0.47a �6.52

a Model run significant at <0.05.

Table 7
Parameters used in the best performing model through informed optimization. Expert assigned parameters are in parentheses.

Land cover Ground nesting Cavity nesting Spring forage Early summer forage Late summer forage

Deciduous/mixed forest, edge 1.0 (0.9) 1.0 (1.0) 1.0 (0.9) 1.0 (0.9) 1.0 (1.0)
Developed/other 1.0 (0.9) 0.8 (0.6) 1.0 (1.0) 1.0 (0.9) 1.0 (1.0)
Coniferous forest 0.3 (0.5) 0.4 (0.6) 0.0 (0.1) 0.0 (0.1) 0.0 (0.1)
Deciduous forest/mixed forest 0.8 (0.6) 1.0 (0.9) 0.9 (0.7) 0.7 (0.5) 0.6 (0.4)
Emergent wetlands/scrub-shrub 0.2 (0.2) 0.2 (0.4) 0.5 (0.7) 0.8 (0.6) 0.4 (0.6)
Wetlands/water 0.3 (0.1) 0.3 (0.1) 0.5 (0.3) 0.4 (0.2) 0.7 (0.5)
Agriculture/field 0.5 (0.7) 0.0 (0.2) 0.7 (0.9) 0.5 (0.7) 0.7 (0.9)
Blueberries 0.8 (1.0) 0.2 (0.4) 0.2 (0.4) 0.8 (1.0) 0.3 (0.5)

Table 8
Land cover and observed bee abundance Pearson productemoment correlation coefficients (r) for 14 selected species (first cell value) and total observed bee abundance (sum
of all taxa abundance; second cell value) at 500, 1000, 1500 and 2000 m (m) from the focal field.

Land cover 500 m 1000 m 1500 m 2000 m

Deciduous/mixed forest, edge 0.20; 0.25 0.27; 0.26 0.32; 0.33a 0.34b; 0.41b

Developed/other 0.09; 0.09 0.15; 0.09 0.40b; 0.35a 0.46b; 0.40b

Coniferous forest �0.23; - 0.32a �0.24; �0.36a �0.30a; �0.42b �0.34a; �0.47b

Deciduous/mixed forest 0.31a; 0.40b 0.27; 0.36a 0.32a; 0.42b 0.34a; 0.45b

Emergent wetlands/scrub-shrub �0.01; 0.00 0.06; 0.07 �0.12; �0.12 �0.18; �0.19
Wetlands/water 0.19; 0.28 0.15; 0.27 0.18; �0.28 0.19; 0.29
Agriculture/field �0.29; �0.32a �0.30a; �0.36a �0.31a; �0.37b �0.27; �0.31
Blueberries �0.18; �0.26 �0.22; �0.28 �0.27; �0.32a �0.22; �0.26

a Significant at <0.05 and > 0.01.
b Significant at �0.01.
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proportion of coniferous forest was negatively correlated with total
bee abundance (Table 8). Both relationships were strongest at the
2000 m scale.
4. Discussion

4.1. Model prediction sensitivity to landscape composition and
pattern and bee diversity

The InVEST model has been applied in many landscapes to es-
timate native bee abundances (Lonsdorf et al., 2009, 2011; Kennedy
et al., 2013; Polce et al., 2013; Zulian et al., 2013) by combining
information about landscape composition in a land cover map
interpreted from remotely sensed data, a list of native bee species
likely found in the landscape, bee movement distance estimated
from bee size, and expert-derived values of land cover for providing
bee forage and nesting habitats (Sharp et al., 2015). Additionally,
there is inherent uncertainty in sampling and observation data,
which often are used for validation of the model. Uncertainty in any
of these components potentially affects both reliability and accu-
racy of InVEST model bee abundance predictions across the
landscape.
We expected improved model performance with increased

source data resolution (e.g., 5 m SPOT imagery in the Eastern
extent) and spectral discrimination of the focal crop (blueberry),
however, the model's explanatory power did not improve with
these enhancements. We removed isolated pixels and changed the
land cover map accuracy by resampling to 10 m pixels. This change
in resolution may have compromised model prediction accuracy.
Land cover represented in 10 m cells may be too coarse to accu-
rately capture foraging behavior of bee species that meet their
foraging and nesting requirements within the area represented by
3e4, 10 m pixels. Mean patch area in our study extents was 5.6 ha
(Blue Hill), 10.1 ha (Downeast), and 11.0 ha (Eastern), however, even
the smallest patch size may exceed the area to which bees in this
system respond (e.g., those foraging within 3e4, 10 m pixels). Land
cover resolution was implicated in poor model prediction accuracy
of InVEST in New Jersey, where the 30m pixel resolution land cover
layer did not adequately capture the landscape heterogeneity
where the bees foraged and nested (Lonsdorf et al., 2009, 2011). Our
focal landscapes also differed in composition, with more extensive
conifers in the Downeast. Conifers do not provide good bee nesting
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and foraging habitat (Droege, 2012; Bushmann and Drummond,
2015), and the reduced bee abundance and diversity in this
extent may reflect the poor habitat quality of this cover type.

The InVEST model prediction accuracy was sensitive to changes
in the suitability ranking of deciduous/mixed forest and blueberries
land cover classes. Deciduous/mixed forest is a dominant land cover
type surrounding blueberry fields, and proportions of the land-
scape in conifer and deciduous/mixed forest classes in buffers around
the focal fields were more variable than other land cover classes.
Model sensitivity to this class reflects the abundance of the land
cover type. Sensitivity to the blueberries parameter can be attrib-
uted to the patchiness and local dominance (around focal fields) of
this land cover class. The model also was sensitive to altering pa-
rameters for ground nesting bees, which accounted for themajority
(11 of 14) of the modeled native bee species. This sensitivity em-
phasizes the need for bee species and land cover-specific nesting
(and foraging) habitat information for increasing model prediction
accuracy, especially for larger bees that encounter a variety of land
cover as they venture farther into the landscape surrounding focal
fields. Wild blueberry is managed in a biennial production cycle, in
which the fruiting year provides more floral resources than are
available in the non-fruiting, vegetative growth year (Yarborough,
2009). We did not vary our land cover map to capture this pro-
duction cycle nor did we update the land cover data for each of the
three years during which the bee abundance data were collected,
although the annual variation in land cover during this period and
over the modeled extent was minimal. Additional evaluation of
effects of landscape composition, extent, data resolution, and year-
to-year variation in land cover composition on InVEST model
behavior would enhance our understanding about importance of
these factors when applying the model in the Mainewild blueberry
crop landscape.

Model prediction strength and reliability were affected by
native bee foraging distance. Model prediction reliability was
greatest for short-distance (<100 m) foragers. Smaller bees (i.e.,
those that forage < 100 m from the nesting location) are more
strongly influenced by local, field-scale resources (Benjamin et al.,
2014). The predominant land cover class within 100 m of our
focal fields was blueberries, and we expected good model perfor-
mance in this class owing to proximity to the field sites as well as
because it was our focal crop. We also would expect increased di-
versity of bee species in the focal field as more fields are sampled,
capturing larger bees that forage over longer distances where they
encounter a greater variety of habitats among fields. Fields sur-
rounded by greater diversity of land cover classes also would host a
greater diversity of bees within the focal field, potentially
increasing model prediction error. Bee abundance predictions
across the entire Downeast extent varied little with increase in
number of species modeled, reflecting the large number of fields
across the region for which samples were composited.

4.2. Model sensitivity to parameterization approach

Expert opinion surveys often are used to parameterize models
developed to facilitate conservation efforts (Compton et al., 2007;
Lonsdorf et al., 2009; Spear et al., 2010; Kennedy et al., 2013) in
two approaches: responses first are recorded independently and
then combined, or the survey participants work together to arrive
at a consensus (Martin et al., 2012). Our expert opinion survey did
not allow for experts to reach consensus in land cover suitability
assessments for nesting and foraging habitat, which may have
increased variation in the parameter valuations. As an alternative to
expert consensus, we parameterized the InVEST model with re-
scaled average response values (Martin et al., 2012) that relativ-
ized and generalized the values and thus may have increased
parameter error. Between-expert uncertainty rarely is explored
(Johnson and Gillingham, 2004), however, it may increase model
prediction error. Independent expert parameter valuation provides
an opportunity to examine effects of parameter uncertainty that
can reduce bias in decision-making (Czembor et al., 2011). We
selected experts familiar with Maine's landscape and native bees,
however, they may not have accurately extrapolated their location-
specific knowledge, resulting in poorly constructed predictive
models (Murray et al., 2009). In addition to diversity in expert
experience, variation in the responses could reflect true variation in
the landscape, as many of the modeled land cover types provide
naturally patchy floral and nesting resources (Cane, 2001).
Improvement of the InVEST model performance in Maine may be
gained with robust parameterization based on empirical data for
bee abundance and diversity collected in a variety of land cover
types in place of expert evaluation, as well as integrating an op-
portunity for expert consensus building for valuation of land cover
for forage and nesting (Kennedy et al., 2013).

Expert-informed parameterization is typical for models used in
conservation planning, and we used this approach as the baseline
for comparison of the InVEST model pollinator abundance predic-
tion in wild blueberries. The informed and uninformed optimized
models performed better than the expert-informed model, how-
ever, this does not invalidate the expert informed model. The
informed, optimized model used expert-derived parameter values
optimized based on sensitivity analysis results; this model per-
formed better than both the expert-opinion and the uninformed,
optimized models. Parameter values assigned in the uninformed
optimized model were very different from and less variable than
those values assigned through expert opinion. Although methods
used to obtain expert opinion and synthesis of the results can affect
the soundness of models parameterized with those results
(Charney, 2012), optimizedmodels potentially over-fit the data. The
same dataset is used to calibrate and validate the model, and both
the signal and the noise are fitted within the model. A more
rigorous approach would include validation with an additional
dataset as well as out-of-area model evaluation.

There are few examples of comparisons between expert versus
data driven model parameterization. Expert assignment of model
parameter values has been found unreliable for complex models
requiring valuation of numerous parameters (Charney, 2012). Our
application of the InVEST model required suitability rankings for
eight land cover classes, across three different seasons, and for two
nesting guilds of bees. Application of the InVEST model in the Costa
Rica coffee agroecosystem used expert-assigned suitably rankings
for six land cover classes and one floral season and resulted in an
r2 ¼ 0.62 (Lonsdorf et al., 2009). Simplification of the model was
appropriate for coffee, however, wild blueberries are a complex
crop system inadequately represented by a simplified model.
Improved performance of the InVEST blueberry model instead may
be gained by greater resolution land cover data and land cover
class-specific forage and nesting habitat quality data for native
bees.

4.3. Bee abundance predicted from landscape composition vs. the
InVEST model

Proportions of both deciduous/mixed forest and coniferous forest
in the 2000 m surrounding blueberry fields were significantly and
orthogonally correlated with the number of bees found within
Maine's wild blueberry fields. This simple model out-performed
the InVEST model in the field perimeter. The proportion of decid-
uous and coniferous forest (combined) surrounding Wisconsin
apple orchards was similarly correlated with bee abundance, while
the proportion of developed land surrounding a field was
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negatively correlated with bee abundance (Watson et al., 2011).
Although the proportional model is useful for evaluating near-farm
pollinator habitat and bee abundance, the InVEST model provides a
tool for conservation planning and bee abundance assessment
beyond the field margin into the surrounding landscape. Reliability
of InVEST model predictions will be increased with information
about forage and nesting habitat quality data collected in the
landscape outside the crop field and greater resolution land cover
data, as well as validation of model predictions with independent
datasets.
5. Conclusions

Spatial models can predict species distributions and abundances
based on habitat conditions available across landscapes (Austin,
2002; Guisan and Thuiller, 2005; Elith and Leathwick, 2009;
Lonsdorf et al., 2011). Relationships between native bees and land
cover have been documented worldwide, and landscape-scale
predictive modeling, such as the InVEST Crop Pollination model,
uses these relationships to predict bee abundance across the
landscape (e.g., Kremen et al., 2004; Ricketts et al., 2008; Garibaldi
et al., 2011). There are limitations to applying any tool, however,
including those that inform conservation efforts, and understand-
ing the limitations is critical to ensuring appropriate use of the tool
(Johnson and Gillingham, 2004). The InVEST model prediction of
native bees in Maine's wild blueberry crop landscape is sensitive to
parameterization techniques and relationships among bee abun-
dances, species assemblages, land cover type, and landscape
pattern. Are the expert opinion derived parameters in error, or do
parameters derived from fitting the model reflect the true nature of
the relationship between the habitat and bee diversity and abun-
dance? Our study does not evaluate these questions, however,
additional information about how native bees use nesting and
foraging resources in this landscape will enhance conservation of
their populations and the pollination services they provide in this
crop system.
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