Power Calculations for Multiple Linear Regression
Clint Moore, USDI National Biological Survey

Many problems in biological studies rely on the estimation of parameters of a
multiple regression model. In a typical example, one might estimate the increase or
decline in abundance of a species by regressing an index of abundance on time. In
most cases, repeated measurements of the index at a fixed time point are not
expected to yield identical values because exogenous factors, either measured,
unmeasured, or unmeasurable, all influence the outcome. Those measured factors
that are believed to be linearly related to the response may serve as model covariates.
For example, many abundance indices depend on the level of effort of the observer.
Therefore, effort may enter the model as a nuisance covariate to provide greater
accuracy and precision for the estimation of the covariate of primary interest, time.
Covariates may take on continuous values, as in ordinary regression analysis, or they
may appear as groups of one or more 0/1 dummy values, as in ANOVA.

Statistical power, the likelihood of rejecting a false null hypothesis, is an issue
traditionally overlooked by researchers in reporting data analyses. The statement of
"no statistical significance” for a hypothesis test is rather hollow without an
accompanying statement of estimated power of the test. For example, failing to find
a decrease in abundance of a species has more relevance for a study design having
a 90% chance of detecting an annual decline of =3% than for a design having only
a 10% chance of accomplishing the same objective. For the first design, failing to
detect a significant decline means that we have high confidence that abundance is
stable, as long as we are willing to define "stability” as any annual decline less than
3%. On the other hand, failing to detect a decline under the second design is
inconclusive with regard to population stability: the design’s lower power implies that
annual declines of 3% or greater are likely to go undetected.

We will need to introduce notation to further discuss multiple regression and
power analysis. Suppose the following multiple regression model describes a set of
data:

for/ = 1,...,Nobservations and p = 1,...,Pindependent variables. We would like to
find (A) the precision of the partial regression coefficient ("slope") b, for a test with
a stated power, or, (B) the power of the test required to detect a slope of a specific
magnitude. We denote power, the probability of rejecting the null hypothesis b, =0
when the hypothesis is false, as 1 - . We will need to make 3 assumptions about
the €, the model prediction errors, before starting. These assumptions apply to any
regression analysis problem:
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1. the ¢ are independent of one another,

2. the ¢ vary homogeneously (often, distribution of the ¢, varies across values of X,
invalidating the assumption), and

3. the ¢, come from a normal distribution.

It is possible to express all the necessary calculations for power analysis in
algebraic form and perform the computations on a pocket calculator, but it becomes
impractical when P = 2. Therefore, we will resort to matrix algebra to carry out the
calculations. A personal computer spreadsheet package with matrix transpose,
multiplication, and inverse operators should be able to provide the calculations.
Automating the calculations through the use of macros makes it possible to quickly
experiment with variations of the design and reduces the likelihood of math errors.
Rawlings (1988) provides a good introduction to matrix algebra calculations for
multiple regression.

A word of caution: matrix inversion operators in many computer packages are
notoriously prone to producing garbage when x variables are nearly collinear (that is,
when one variable is almost redundant with another variable or with a linear
combination of several variables) or when values for an x variable are excessively
great (> 107 or small (<107 in magnitude. Unfortunately, there is little that can be
done in the first case short of dropping offending x variables, but scaling data is a safe
remedy in the second case. For example, if x, is measured in grams and takes on
values >10° g, one may want to convert the values to kilograms, then center the
values by subtracting the mean from each value.

Multiple regression is accomplished in a series of operations on the matrix X,
created by placing the columns x,, x,, ..., x, side by side after a leading column of
ones, and the column vector y. An important quantity is the symmetric matrix
C = (X’X)". We are particularly interested in c,,» the p + 1-th diagonal element of C
(the first diagonal element, which corresponds to the leading column of ones in X, is
indexed 0,0; the last one, the P+ 1-th, is indexed P,P), because it is used in
calculating the estimated variance of b,: &, = c,, &,x°, where &,,,% is the estimated
residual variance of y given X (i.e., MSE). Better sofware packages may be able to
supply C and c”ryp(2 explicitly, as a part of a linear regression routine.

In non-regression situations, e.g., the one-sample location problem or the
problem of comparing 2 means, sample size N represents the sole design component
of the power relationship. Therefore, it is simple to calculate a sample size for a given
value of power for these designs. In contrast, components of the multiple linear
regression design include P, distribution of any single x,, the joint distribution of any
pair of (x;, x,), as well as V. In this situation, it generally becomes impossible to
associate a single value of sample size, or any other design component, with a single
value of power. For example, 2 designs yielding the same power may differ
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appreciably in sample size; the design with the smaller sample size may have its
observations distributed over a wider span of the independent variable, as just one
possibility. What one typically does is invoke a trial-and-error process of achieving a
desired power or level of precision under likely variations of the design.

Each design variation implies a unique matrix X. Element c,, derived from X is
inversely related to sample size and range of x, and is directly related to degree of
correlation between x, and any other x,.

The general procedure will be laid out below, and specific examples will follow.
The first step is to obtain an estimate of c‘f),*x"‘, either through an analysis of pilot data
or by guessing its extreme values. If you can only supply a guess, err on the side of
conservatism by choosing the largest value that seems reasonable to you. Otherwise,
if you have pilot data comprising NV, observations of y; on P, independent variables in
the pilot design X, calculate

Co = (Xo'X,)"

dfy = N, - (Py + 1)
Z = Xo'Yo

B, = CyZ

&y[XZ = {Yo'Yo - By'2) / df,

where vy, is the column of y; values. For purposes of planning a study, you may wish
to consider a range of values around &y[xz.

The next step is the most difficult, and it requires specifying one or more X
matrices corresponding to alternative study designs. The difficulty depends on how
well the values of each x, can be predicted in a study yet to be conducted. For some
x,, values either change fairly systematically or can be controlled by the experimenter.
For example, values representing successive periods of time are an example of how
values of x, change in a predictable way. Values of x, representing settings of a
machine are an example of experimental control. In either case, design values of X,
are not difficult to propose. Specification of X is most difficult if one or more of the
x, vary randomly or in a way not controlled or anticipated by the experimenter. If air
temperature, for example, influences y,, it is important to include the variable in the
design, but it is impossible to predict what future values the variable may take.
However, it should be possible to predict the range of values for the variable, and to
specify various degrees of correlation with other variables. Specific combinations of
these predictions produce different X matrices and different estimates of power.

The third step is to calculate components of the power analysis. For each
design, construct matrix X and determine N and P. Calculate residual degrees of
freedom for X as df = N- (P + 1). Calculate C and extract C,- Calculate
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&; = (c,, 0,x))""*. Decide the highest acceptable rate of falsely rejecting the null
hypothesm (type | error rate a), and decide if the rejection region for the alternative
hypothesis should be one or two-sided. Locate the Student’s t-value for df degrees
of freedom that corresponds to the lower tail probability 1 - a for one-sided
alternatives or 1 - a/2 for two-sided alternatives. We will call this value t*.

The last step is the calculation of power or precision. If finding precision with
stated power is the objective (objective A), then we must locate t, ,_, the t-value
that corresponds to the lower tail probability 1 - £ and df degrees of freedom.
Calculate b, = 6 (t* + 1, ,_,). Quantity b, (or -b, if the test is one-sided and the
rejection regton is negative) is the estimate of the smallest detectable slope given
power, type | error, design, and residual variance.

If finding power with stated precision is the objective (objective B), then we
must specify the smallest value of b, we wish to be able to detect. Calculate
Ty = (|b,] 1 64) - t*. Power given precision, type | error, design, and residual
variance is the lower tail probability 1 - 8 corresponding to t, for df degrees of
freedom. Power mcreases monotonically with 7, so larger values of |b,| and smaller
values of ¢, & 0,1 2 and t* increase power. In other words, more power is available
for testing the null hypothesis if a) the minimum detectable size of the slope is large,
b) a large sample is collected, c) data are collected over a wide range of the covariate,
d) the covariate is independent of other covariates, e) residual variability is small, f)
the alternative hypothesis is one-sided, and g) type | error is large.

These concepts and calculations are applicable to any b, of interest and will be
illustrated through several examples. All quantities except P-values were calculated
in Quattro Pro 4.0 for DOS. However, Cox (1991) provided algorithms that permit
spreadsheet calculation of P-values.

Example 1. Simple linear regression on equally-spaced covariate.

A single covariate with equally-spaced values is one of the simplest cases of
linear regression. Suppose the following pilot data were collected on x, and y:

10.25 | 10.40 | 10.55 | 10.70 | 10.85 | 11.00 | 11.15 | 11.30

X, ]
245 | 240 | 239 | 241 | 232 | 226 | 229 | 235

y

Note that each value of x, is separated by 0.15. If we subtract 10.10 from each
value and divide the result by 0.15, then x,,, Xq,, ..., X5 take on the integer values
1, 2, ..., 8. Calculations for the pilot data yield

C, =0.60714 -0.10714 Z = 1887 B, = 245.143
-0.10714 0.02381, 8405, -2.06952,
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df, = 6, and &y[x‘* = 19.7877. Note thatc,, = 12/(N*® - N) which is always the case
for simple linear regression when x is scaled into the integers 1, 2, ..., N. The
estimated regression slope is -2.06, and it applies to the scaled values of x,. Let us
investigate several questions about power and precision for a series of possible
designs.

Question 1A. What is the minimum detectable slope size for this design, given
a = 0.05, H,: slope # 0, and power = 0.90?

From a t-table, values t* = t4(1 - 0.05/2) = 2.447 and t,(0.90) = 1.440. For
the pilot design, 6; = (0.02381 - 19.7877)"? = 0.68640. From the formula above,
b, = 0.68640 (2.447 + 1.440) = 2.67. Ifdata with similar variability were obtained
from a future study replicated at the same 8 design points, chances are 90% of
detecting a true slope =2.67 or =-2.67 with no greater than a 5% chance of a type
| error.

Question 1B. s detection ability improved if H,: slope < 0?

Now t* = t4(1 - 0.05) = 1.943, therefore, b, = -2.32 (negative, because the
one-sided rejection region is negative). Because the range over which the null
hypothesis may be rejected has been made less restrictive (=-2.32 rather than
=-2.67), detection ability for negative slopes has been improved.

Question 1C. What is the power for detecting a slope < -1.5?

If the design and a remain the same, and the test remains one-sided, we
calculate 7 = (|-1.5| / 0.68640) - 1.943 = 0.242. A statistical package that
provides P-values calculated 0.592 as the lower tail probability for this t-value (linear
interpolation of values from a t-table provided 0.591). Thus, under this design, type
I error rate, and level of variability, chances of detecting a slope of -1.5 or smaller are
no greater than 60%.

Question 1D. What is the best approach to doubling sample size to increase power:
selecting 8 additional design points, or doubling sampling effort at each existing
design point?

We will calculate power for 2 designs under the same variance and hypothesis
conditions for the preceding question. For each design, we will double the sample
size, sodf = 16 - 2 = 14 and t* = t,,(1 - 0.05) = 1.761. For the first design, we
will add the 8 integer-scaled design points 9, 10, ..., 16. Value c,, for this design
becomes c¢,, = 12/(16*- 16) = 2.9412-10%, and f,, = 4.457. Thus, power
increases to >0.999. For the second design, we will also collect 16 total samples,
but we will do this by collecting 2 samples at each original design point. In general,
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we would recalculate C, but in this special case, c,, is just the pilot design value of
cq, divided by 2. Thus, we have ¢,, = 0.02381/2 = 0.01190, and {,, = 1.3295.
Power is then 0.898. Though alternate design 2 has less power than alternate design
1, the second design is not necessarily inferior to the first. Through replication at
each design point, design 2 allows one to directly estimate crylxz regardless of how
well the linear model describes the pattern of the data; design 1 does not.

Example 2. Linear regression on 2 covariates.

Suppose now that y responds linearly to a pair of covariates, x, and x,, and that
we wish to investigate questions of power and precision for b,. We will assume that
x, takes on values not controlled or predicted by the observer, but that the mean and
range of x, values can be anticipated. We will also assume that x, takes on values
either controlled or predicted by the observer, and, to simplify matters, that the values
are successive integers. The only pilot data available are a series of observations on
y taken at a single combination of x, and x, settings. The estimate of variance yielded
by the pilot study was &,,,* = 1.30. Of course, we must assume that x> would be
expected at all other combinations of x, and x,. Our objective is to detect a slope
greater than 0.4 in magnitude and =0.05 probability of type | error. We will
determine power for several designs.

Question 2A. Outcomes for x, may be uniformly distributed between O and 1. What
is the power of a design with N = 10, x, = 1, 2, ..., 10?

Here is a possible outcome for x,:

x, | 1] 2 | 3] 4] s | e ] 7] 8] 9]0
| 0.73 | 0.24 | 0.58 | 0.89 | 0.95 | 0.84 | 0.27 | 0.99 | 0.60

For this design, c¢,; = 0.012248, &; = (0.012248 - 1.30)"2? = 0.126184, and
t* = tg(1 - 0.05/2) = 2.306. Thus, f; = (0.4/0.126184) - 2.306 = 0.864, and
estimated power is 0.794. Note that 12/(N° - N) = 0.012121, which is relatively
close but is not equal to c,,. When other covariates appear in the model,
¢y = 12/(N® - V) only when the correlation between x, and every other covariate is
zero. Also note that the design for the pilot study in no way has to resemble the
proposed regression design. The only requirement is that f‘fy,Xz measures average
response variability at fixed levels of X, regardless of whether one fixes X through
experimental control or through analysis.

Question 2B. Suppose new random values are supplied for x,; otherwise the design
remains the same. For the same objectives, does power change?

You bet. Here is a new set of values for x,:
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| 6 | 7 | 8 | 9 |10
0.14 | 0.70 | 0.45 [ 0.69 | 0.90 | 0.04 | 0.14 | 0.12

Now c;; = 0.017222, &, = 0.149628, and f; = 0.367. Estimated power then is
reduced to 0.638. What has happened is that the subtle change to x, essentially
varied the predictive strength of x, through a change in the correlation structure of the
design. Another set of values for x, could yield higher power for x,, up to a limit of
0.798 (when x, is uncorrelated with x,). Although the uncertainty of the actual
outcome of x, makes designing any study difficult, an idea of the likely range of
power could be accomplished through simulation of several sets of Xx,. If the
simulation could be automated to run hundreds of times, even more certainty about
power could be achieved.

Question 2C. Suppose values drawn for x, correlate strongly with x,, either by
chance or because x, and x, are causally related. What is the effect on power?

To consider this situation, we will order the values in the question above from
smallest to largest:
x, | 12| 3| a]5s5 | 6| 7| 8] 9|10
x, | 0.04]0.12 ] 0.14 [ 0.14 | 0.45 [ 0.67 | 0.69 | 0.70 | 0.90 | 0.95

The values we need are c,; = 0.204254, &; = 0.515296, and #; = -1.530.
Estimated power is now only 0.082. Through these scenarios, we see that power
drops consistently with increasing strength of correlation between x, and X!

Correlation r
0.0 (Q. 2B) 0.101 (Q. 2A) -0.544 (Q. 2B) 0.970 (Q. 2C)
power 0.7398 0.794 0.638 0.082

In planning any design in which strong correlation between the covariate of interest
and any other covariate is a possibility, it is important to distinguish whether the
phenomenon is due to chance or to a causative or associative relationship. If chance
is the principal reason, then the simulation exercise described above should provide
an indication of the likelihood of drawing an unlucky sample. Otherwise, one must
try to weigh the merit of keeping x, for total variance reduction against its cost in
power for x,.

Example 3. Regression on 2 linear covariates and a dummy covariate.
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This final example illustrates a more complex situation. Suppose the following
pilot data were collected:

y 51 | 59 | 58 | 60 | 64 | 55 | 61 | 73 | 68 | 81
X, 0 2 4 6 8 0 2 4 6 8
x, | 13|19 | 1009 08| 13]13]21] 14] 20
X A A A A A B B B B B

Variable x, is a dummy variable, and it represents a qualitative factor with discrete,
usually nominal, levels. In this example, x, could represent sex, study area, or any
other of a number of effects. Variable x; may be an experimentally-controlled
variable; x, appears to take on random values. If the linear model for the pilot study
is just the sum of the x effects, the X matrix would appear as follows:

1 0 1.3 1
1 2 1.9 1
1 4 1.0 1
1 6 0.9 1
1 8 0.8 1
1 0 1.3 -1
1 2 1.3 -1
1 4 2.1 -1
1 6 1.4 -1
1 8 2.0 -1

The fourth column is a typical way of expressing a dummy variable in a design matrix;
more detail may be found in Rawlings (1988). For the questions below, we will let
a = 0.05 and let alternative hypotheses be two-sided.

Question 3A. What is the power for |b,| = 0.5?

Forthisdesign, N, = 10, and df, = 6; therefore, t* = t;(1 - 0.05/2) = 2.447.
We calculate C, and all other statistics as before to obtain ¢,, = 0.012611 and
&sz = 1.913336. We calculate 6; = 0.155335 and 7, = 0.772. Thus, estimated
power = 0.765.

Question 3B. What is the smallest detectable effect difference for b, with
power = 0.90?

We need to determine z‘Q(O.SO) = 1.440 and
o; = (1.913336 - c;,)"? = 0.507262. Then b, = 1.97, the magnitude of the
smallest detectable effect size for the dummy effect b,.
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If you need more help

O’Brien and Muller (1992) present a more general framework for power
estimation in fixed-effects linear models, but they also point out that the methods are
still useful when effects yield normally distributed values. In the setting of trend
estimation, specifically for the case of heterogeneous response variance, refer to
papers by Gerrodette (1987) and Link and Hatfield (1990). For a general introduction
to linear models, see Rawlings (1988).

I thank W. L. Kendall for comments and corrections to this document.
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