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EXECUTIVE SUMMARY 

We used counts from systematic reconnaissance flights (SRF) to quantify patterns in 

wading bird distribution and abundance in relation to hydrologic factors from 1985-2000 in the 

Everglades system.  We first reviewed published literature and reports describing historical 

changes in hydrology and wading bird distribution and abundance, and postulating factors that 

may have contributed to the decline. We identified four principal hypotheses: (1) distant 

magnets, (2) transitional habitats,(3) hydropattern alteration, and (4) estuarine degradation; in 

addition we describe a “food availability” hypothesis. Before developing models, we first 

describe the SRF data and important auxiliary data on hydrology and nesting birds, and identify 

strengths and weaknesses of the sampling approaches and other factors affecting data quality. 

We identified several important areas where survey protocols, data management, or uncontrolled 

factors such as heterogeneous detection may have adversely affected data quality.  We also 

comprehensively review previous models of wading birds and other fauna of the Everglades 

system.  Many previous models are highly complex, yet lacking in empirical support and 

predictive ability. We then proceeded to construct a series of models centered on the alternative 

biological hypotheses we identified in our literature review, and focusing on the two species for 

which the most data existed, White Ibis (WHIB) and Great Egret (GREG).  We used both mixed 

model analysis in SAS and zero-inflated, random effects modeling in PyMC, a program that 

implements Markov chain- Monte Carlo (MCMC).  Our analysis supported a global model, in 

which the factors postulated under all of the major hypotheses are assumed to operate. 

Predictions based on the global model suggested optimal water levels and drying rates for both 

species, with optima differing by species.  We also conducted a dual-observer trial to estimation 
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rates of detection and source of heterogeneity in detection rates.  We found that detection rates 

generally were below 70%, sometimes markedly so, and varied by species, observer, and 

position in the aircraft.  Simulation modeling indicated that these rates and types of heterogeneity 

could profoundly affect inference obtained from models based on these data, and we recommend 

that detection be taken into account both in survey design and in the interpretation of data.  

Finally, we consider the use of SRF data as performance measures, and recommend the use of 

predictions under alternative models, in conjunction with adaptive management, as the best 

approach for utilizing these data in decision making, and reducing uncertainty through time.  
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1.0 INTRODUCTION 

1.1 Resource problem 

 The Everglades basin is one of the world’s largest wetland systems (Figure 1); the Basin has 

undergone dramatic alterations under human impacts, starting in the early 1900s.  The decline of wading 

bird populations in the Everglades was one of the first and most visible signs that the Everglades 

ecosystem had been degraded. Currently, wading birds are used as an important component of the 

Everglades restoration effort.  The Comprehensive Everglades Restoration Plan (CERP) uses 

hypothesized relationships between wading birds and hydrology to shape hydrologic targets for the 

Everglades restoration.  In addition, several CERP performance measures based on wading birds will be 

used to gauge the progress and success of the Everglades restoration.  Candidate performance-measures 

include the following: the number of large flocks in the system, the number of nests in the system, the 

location of the nesting colonies, the occurrence of large flocks, the presence and distribution of foraging 

flocks, and the timing of nesting initiation.  The results from this project will be used to fine-tune these 

hydrologic targets and develop useful performance measures to support the Everglades restoration. 

  The number of wading bird nests in the Everglades has decreased by an estimated 70% since the 

1930s (Crozier and Gawlik 2003), but population trends appear to be species-specific.  The numbers of 

Wood Stork (Mycteria americana) and White Ibis (Eudocimus albus) nests in the Everglades have 

decreased by 78% and 87%, respectively, since the 1930s. However, the number of Great Egret (Ardea 

alba) and Great Blue Heron (Ardea herodias) nests appears to have increased over the past 50 years, 

although declines in count statistics from surveys may not be directly interpretable as indicating 

population declines (e.g., Kushlan and Frohring 1986).  The species-specific population changes 

emphasize the need to examine individual species and their hydrologic requirements.  Accompanying 
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these changes in population numbers has been a substantial shift in the location of wading bird colonies in 

the Everglades since the 1930s (Kushlan and White 1977; Ogden 1994).  The large “super colonies” that 

once lined the coastal mangrove fringe in the southern Everglades have been replaced by smaller colonies 

located in the northern freshwater portions of the Everglades. 

 These changes in the wading bird community have coincided with the construction of massive 

water control works for flood control and water supply in South Florida.  This infrastructure has altered 

the hydroperiod, sheet flow, recession rate, and water depth within different parts of the system. Under 

the “food availability” hypothesis, water-management activities have changed the hydrology and 

decreased the extent of the Everglades reducing the availability of prey for wading birds, reducing their 

feeding success and ultimately their reproductive output.  Prey availability may be reduced by a decrease 

in the density of prey and/or the vulnerability of prey in foraging areas.  Thus, a major focus of this study 

is to identify factors, particularly those related to water management, that influence the abundance and 

spatial distribution of foraging birds. 

1.2 Project scope 

 The main objectives of this study are to: (1) determine the relative contribution of short- and long-

term effects of hydrologic stressors and landscape variables on the variation and trends in wading bird 

feeding patterns and population sizes observed over the past 17 years; (2) develop wading bird 

performance measures for CERP based on relationships between wading bird spatial distributions and 

annual nesting effort;  (3) evaluate the SRF as a tool for wading bird monitoring; and (4) develop a system 

for displaying spatially-explicit information in a GIS framework.  The main challenge of this project is to 

capture the realism of how wading birds use a dynamic landscape with key variables that are changing at 

different time scales.  Landscape features, such as basin and elevation, are essentially static.  Dominant 



 

 

3

3

vegetation types change, but very slowly.  Overlain on top of those relatively static features is water, 

which pulses daily and seasonally.  Wading birds move across that matrix of static features and pulsing 

water to locate places where the combination of variables is suitable for their individual foraging 

apparatus (Maurer 1996).  Capturing the interactions among those variables, which reflect the choices 

faced by birds, is the basis for our approach.  

 This project extends over the entire Everglades basin, because this is the scale at which wading 

birds use the ecosystem (Figure 1).  The primary data set for the project consists of spatially-explicit 

aerial wading bird surveys (i.e., Systematic Reconnaissance Flight surveys; SRF).  Both the spatial 

distribution and movement of birds across the landscape are believed to be linked to successful nesting.  

Preliminary analyses of the SRF data have correlated the abundance of large foraging flocks in the 

breeding season, indicative of high-quality foraging areas, with high nesting effort.  Previous analyses of 

SRF data examined only the northern (Bancroft et al. 1994; 2002; Hoffman et al. 1994; Bancroft and 

Sawicki 1995) or the southern (Russell and Portier 1999) Everglades and found that vegetation and 

hydrology affected wading bird distribution and abundance patterns.  A weakness of these studies was 

that when bird abundance was low it was unclear whether birds were simply shifting to other portions of 

the system or whether they left the system entirely.  It is likely that the linkage between the northern and 

southern portions of the landscape may in fact be an important mechanism to sustain wading bird 

populations during short-term fluctuations in hydrologic conditions.  This important link between 

landscape level processes and wading bird population dynamics has yet to be quantified.  This project is 

needed to bridge this gap and provide resource managers with the tools and understanding to help restore 

the Everglades ecosystem. 
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 The models derived in this work will have immediate benefit to resource managers because they 

will contain quantitative information related to the sensitivity of the ecosystem to management activities.  

The results from this project will provide the predictive link needed to formulate CERP wading bird 

performance measures that will help guide the Everglades restoration. The results of this research will 

also guide development of more robust, mechanistic models of population response to environmental 

change (i.e., Across Trophic Level System Simulation [ATLSS]; Huston et al. 1996).   

 The project has three stages: collate existing primary and ancillary data sets into a single data base, 

perform an initial exploration of the assembled data sets, and develop detailed empirical models and 

performance measures aimed at quantifying the effects of multiple hydrologic and landscape factors on 

wading bird populations.  We describe approaches for each of these stages below after first reviewing the 

literature documenting the broad scale hydrological and vegetative changes that have occurred in this 

system, along with concomitant changes in the abundance and distribution of wading birds.  

2.0 LITERATURE REVIEW 

2.1 Everglades hydrology and vegetation changes 

Prior to the major hydrological changes induced by human engineering during mid-century, the 

Everglades system was characterized by several distinct features. Key aspects of the pre-disturbance 

system included the following (Russell and Portier 1999; Harwell 1997): first, dynamic storage and sheet 

flow of water with spatially variable hydroperiod, and nutrients derived principally from rainfall resulting 

in an oligotrophic system; second, a large spatial scale with water flowing virtually without interruption 

over a nearly flat landscape extending from Lake Okeechobee to Florida Bay; third, habitat heterogeneity, 

with heterogeneous vegetation distribution, microtopographic relief, local climatic variation, and episodic 

disturbances. Seasonal recession of water created a transitional ecotone, exposing aquatic prey. Episodic 
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events such as hard freezes, wildfires, and hurricanes further modified this landscape.  Fourth, the system 

was strongly influenced by natural disturbances, with fires, infrequent freeze events, prolonged droughts, 

and extreme winds. 

 By the mid 20th century, this system had been extensively altered by humans, as agriculture and 

urban development extended into the southern portion of the Peninsula. First, human population growth 

dramatically increased in South Florida, mostly concentrated along the Atlantic Coastal Ridge. An 

extensive system of canals, levees, and water control devices altered hydrology, and roadways, urban 

developments, and other human infrastructure dissected the landscape. The amplitude, spatial extent, and 

timing of water movements were all drastically altered, with a resulting major reduction in spatio-

temporal variability. Concomitantly there occurred major changes in the scale of agribusiness south of 

Lake Okeechobee, the region directly in the historical path of water flow through the Everglades. 

  As might be expected for systems so tied to hydrologic regime, dramatic changes occurred in the 

natural function of the Everglades, ultimately reflected in floral and faunal communities.  Increased 

drainage during the normally wet season, together with flooding during dry periods, influenced rates of 

oxidation and soil subsidence, and pumping of agricultural runoff through the system led to nutrient 

enrichment and eutrophication (Rudnick et al. 1999).  Vegetative communities responded accordingly.  

For instance, cattail (Typha domingensis) has expanded aggressively into areas of the Everglades 

previously dominated by sawgrass (Cladium jamaicense), although there are competing explanations that 

revolve around increased nutrification (Newman et al. 1996; 1998).  Dramatic changes occurred in 

vertebrate communities, much of it due to changed hydrology (Strong et al. 1997; Frederick and Collopy 

1989; Bancroft et al. 2002; Russell et al. 2002) but also to eutrophication (Crozier and Gawlik 2002). 
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2.2 Wading bird biology and population dynamics 

 Concomitant with the changes in hydrologic regime, nutrient loads, and vegetation, major changes 

occurred in the abundance and distribution of wading birds.  Before discussing alternative hypotheses that 

have been put forth to explain these changes, we first review relevant aspects of wading bird ecology. 

 The species of wading birds of interest in this system nest in large aggregations from a few dozens 

to tens of thousands of birds.  Presumably, the birds that are observed on the SRFs (considered in more 

detail below) are associated with specific colonies, although the degree of association clearly will vary 

depending on time of year of the SRF.  Important differences exist among species with respect to (1) the 

distribution of distances at which foraging occurs, (2) the role of social attraction in facilitating foraging 

(e.g., Erwin 1983), (3) fidelity to nesting site, and perhaps most relevant to the current study, (4) temporal 

and spatial scale of response to environmental conditions (e.g., water levels) and the prey densities 

(giving-up densities or GUD) below which foraging bouts are discontinued  (Frederick and Ogden 1997; 

Strong et al. 1997; Russell et al. 2002; Frederick and Ogden 2001; Kushlan 1986; Gawlik 2002).  For 

instance, Frederick et al. (1996a) suggested that White Ibises are nomadic breeders adapted to take 

advantage of food resources that are highly unpredictable at large spatial scales and at annual time scales.  

In contrast, wood storks appear to be more robust to hydrologic changes and will remain in an area longer 

following disruption of “natural” flows or other impacts. 

 Major declines in populations of wading birds and distributional shifts away from South Florida 

both occurred by the mid 20th century (Kushlan and Frohring 1986; Frohring et al. 1988). Although there 

clearly have been general declines in the population levels of most species, the extent to which local 

population declines were principally due to range-wide population declines related to vegetation changes, 

or the result of distributional shifts in response to changing water distribution, is largely unknown. In 
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particular, the expansion of impoundments in the Southeast, largely associated with aquaculture, may 

have had a profound influence on wading bird distribution (Fleury and Sherry 1995; Melvin et al. 1999). 

2.3 Hypotheses to explain population decline and distributional changes 

At least four hypotheses, involving factors operating at differing spatial scales, have been 

postulated as explaining the observed declines in wading bird abundance and distribution (Walters et al. 

1992). 

2.3.1 Distant magnets 

  Under this hypothesis, declines in local (i.e., Everglades system) populations of wading birds were 

caused not by concomitant declines in local habitat quality, but rather by attraction to superior habitats 

elsewhere. Support for this hypothesis is provided by increases in populations outside of Florida, for 

example of White Ibises in South Carolina that roughly matched concomitant decreases in Florida 

populations (Frederick and Collopy 1989). It appears certain that at least some species of wading birds 

have been able to exploit newly available shallow water habitats, for instance those centering about 

aquaculture (Fleury and Sherry 1995; Melvin et al. 1999).  Arguing against this hypothesis are the facts 

that habitats have not improved in most places outside Florida, and that large numbers of wading birds 

still migrate to South Florida but fail to successfully reproduce (Frederick and Ogden, personal 

communication).  As pointed out by Walters et al. (1992), even if it is demonstrated that large numbers of 

wading birds have been attracted to areas outside Florida, it remains to be explained why the populations 

that do nest in the Everglades have been unsuccessful in sustaining positive population growth. 

2.3.2 Transitional habitats 

Hydrological models suggest that under natural water flow (i.e., prior to 20th century impacts) 

there were fewer, but larger, transitional habitats that offered shallow water early in the dry season. These 
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areas are important for allowing birds to build metabolic reserves, in turn stimulating nesting  

Implications of this hypothesis include the recommendation that water flows be restored into key areas 

(WCA3B, NESS, Taylor Slough) with profound long-term impacts to the eastern part of the Everglades 

system.  

2.3.4 Hydropattern alteration 

  Kushlan (1987), among others, has suggested that a key requirement for successful wading bird 

nesting may be the occurrence of annual, relatively severe “progressive drawdowns”, with steady drops in 

water levels exposing fresh, transitional habitats throughout the season.  Walters et al. (1992) questioned 

this hypothesis based on empirical evidence and model predictions and argued “if the progressive 

drydown arguments were correct, the birds should be doing better now than they did historically.” 

However, the hypothesis has received a degree of at least indirect empirical and experimental support 

(e.g., Gawlik 2002; Russell et al. 2002) and is the subject of further discussion under the “food 

availability hypothesis,” considered in more detail below.   

2.3.5 Estuarine degradation 

Several lines of evidence suggest that Everglades wading bird declines were due to declines in 

estuarine productivity associated with the reduced freshwater flows (Costanza et al. 1990; Walters et al. 

1992; Sklar et al. 1990). This syndrome of decreased flows followed by estuarine degradation has also 

been blamed for general declines in waterfowl populations in coastal wetlands of the South.  There seems 

to be little doubt that declines in estuarine productivity have occurred contemporaneously with declining 

populations of Everglades wading birds.  It is not clear, however, that this factor alone is sufficient to 

explain the declines, and seems more likely to have acted in combination with hypdropattern alteration 

and other factors.  
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Walters et al. (1992) advocated treating each of the above as mutually exclusive hypotheses, rather 

than as factors that may be operating in concert, and at differing spatio-temporal scales.  They based this 

view on the fact that wading bird populations have persistently declined since the 1940's despite efforts to 

mitigate the decline through water management. Walters et al. (1992) also appeared to favor the 

“estuarine degradation” hypotheses among the four, and advocated experimental water management to 

discriminate among the alternative hypotheses. 

 We too advocate experimental and adaptive approaches but, for several reasons, are less inclined 

to treat these as mutually exclusive hypotheses or to dismiss individual factors.  First, on general 

principles, we would expect any system as complex and variable as the Everglades to be influenced by 

many processes and operating at multiple spatial scales (Levin 1992).  We think it unlikely that a single 

factor or explanation operating at a particular scale would overwhelm all others. We find this idea 

particularly unlikely when the system includes communities of nomadic birds that move over landscapes 

many times larger than the Everglades system and respond differentially to disturbance, food availability, 

and other factors.  Second, even if the “mutually exclusive” formulation turns out to be true, we see 

nothing being lost by describing and modeling the system via multiple, interacting factors, so long as data 

can be used to estimate the strength of factor and interactive effects.  If a single factor does dominate, then 

data will support the strength of that factor and the weakness of competitors, including interactive effects. 

As seen below, we advocate a hierarchical modeling approach to explore these relationships, in 

conjunction with information-theoretic and Bayesian measures of parameter and alternative model 

credibility.  
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2.3.6 The food availability hypothesis 

 Beyond these four general hypotheses, which operate at different spatio-temporal scales, Russell 

and Portier (1999) list several competing ideas that revolve around the specific issue of foraging dynamics 

and differ with respect to the specific mechanisms and timing of hydrologic impacts.  These may be 

viewed as sub hypotheses within a general “food availability hypothesis.”  As with the hypotheses 

described above, it is not obvious to us that these are, or should be considered, as mutually exclusive 

hypotheses, rather than as functional responses that may operate to varying degrees and at varying spatio-

temporal scales. In any case, Russell and Portier (1999) propose that wading bird declines are: 

! Directly related to loss of overall foraging habitat. 

! Directly related to the disproportionate loss of specific (seasonal) foraging habitat types. 

! Directly related to changes in the spatial configuration of foraging habitat types. 

! Indirectly related to fragmentation in the continuity of water flow among foraging habitat types. 

! Directly related to increased, seasonal, water level fluctuations within foraging habitat types. 

! Indirectly related to alteration in the hydrologic periodicity, (including drydown frequency, 

magnitude and duration) of foraging habitat. 

Russell and Portier (1999) also summarize what they term as a “consensus model”, and claim that the 

SRF data are consistent with this model.  The model posits a functional relationship between hydrologic 

periodicity, food availability and reproductive success.  Essential elements are: 

! Wading birds depend on the efficient acquisition of prey to sustain nest building and egg laying 

activities, and to feed their hatchlings.  

! This requires prey items to be “relatively concentrated” in “small areas” to avoid excessive search 

time. 
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! During the dry season of the Everglades, such high concentrations are provided by the shallow 

pools that develop along a variety of ‘drying fronts’ at the edges of the areas of deeper water.  

! Feeding pressure reduces prey density in these pools (Kushlan 1976), so a continual supply of new 

shallow water areas is required. Ideal conditions, under this model, would be continuous drying at 

a rate of 5mm d-1. 

 During the 1970s, correlations were established between the hydrologic function of the Everglades 

and wading bird feeding success (Kushlan 1976; Ogden et al. 1976; Kushlan 1977; Kushlan 1979).  An 

effort to link nesting directly to hydrologic properties showed that nesting was affected by drying rate, but 

the effects were inconsistent among years and species (Kushlan 1986; Frederick and Collopy 1989; 

Bancroft et al. 1990; Frederick 1994; Frederick and Spalding 1994).  A harmonic analysis of the annual 

hydrologic cycle showed that Wood Stork nesting effort and hydrology were related (Nuttle 1997).  The 

first experimental evidence clearly linking food availability with reproductive output was for Great White 

Herons (Ardea herodias occidentalis) in Florida Bay (Powell 1983). 

 Gawlik (2002) explored these hypotheses with a series of experiments in artificial wetlands in 

which prey density and water depths were manipulated, and evaluated the numeric response of eight 

species of free-ranging wading birds (White Ibis; Wood Stork; Snowy Egret, Egretta thula; Glossy Ibis, 

Plegadis falcinellus; Great Egret; Tricolored Heron, Egretta tricolor; Great Blue Heron; and Little Blue 

Heron, Egretta caerulea). The giving-up-density (GUD; density of prey where the predators quit 

foraging) increased with increasing water depth.  There was an apparent (but non-statistical) difference 

among species in this relationship, with the White Ibis, Wood Stork, and Snowy Egret having higher 

GUDs in the deepest treatment than did Glossy Ibis, Great Egret, Tricolored Heron, Great Blue Heron, 

and Little Blue Heron. The feeding strategy of the first three species groups appeared to be one of 
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searching for new high-quality food patches rather than staying and exploiting food patches that were 

declining in quality.  The author further inferred that birds were not responding to average prey 

availability at large spatial scales but rather at small-scale high-quality patches.  The quality of these 

patches is driven largely by physical features of the landscape, hydrology, and microtopography.  Finally, 

the author noted that those species employing a searching strategy also have shown the most severe 

population declines, suggesting that factors affecting bird density at feeding sites also may have affected 

population size. 

2.4 Everglades restoration 

 Recently, efforts have begun to develop management strategies for restoration of the Everglades 

system.  To date, most attention has focused on “replumbing” this system so as to restore (or at least 

mimic) hydrologic patterns thought to have prevailed before the onset of major agricultural and 

developmental pressures of the 20th century.  Models have been developed that seek to explore the 

impacts of alternative hydrologic scenarios on vegetation and animal communities of the Everglades 

(DeAngelis et al. 1998; Huston et al. 1996; Curnutt et al. 2000), and potentially can be combined with risk 

assessment (Englehardt 1998; Harwell 1998), decision theory (Lindley 1985), or other approaches to 

guide decision-making.  All such approaches of course are limited by the degree to which policy makers 

have (or allow themselves) choices, and by the fact that certain impacts to the Everglades are extremely 

unlikely to be reversed, at least in the short term (e.g., the isolation of Lake Okeechobee from the remnant 

Everglades; the conversion of Atlantic Coastal Ridge habitats to Miami).  Even given these constraints, 

decision-making must take into account the fact that biological response to any proposed alternative is 

subject to tremendous uncertainty.  To be useful to policy makers, predictive models must honestly 

capture critical aspects of this uncertainty. 
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3.0 REVIEW OF SURVEY DATA AND OTHER DATA SOURCES   

 A number of sources of historical data may contribute to the construction of decision models for 

the wading bird component of the Everglades system.  The sources most applicable to the focus of this 

work are data collected from the Systematic Reconnaissance Flights (SRF).  These surveys are conducted 

annually, are extensive both in time and space, and are carried out cooperatively by participants working 

in pre-assigned areas of operation.  In addition, we also consider how counts of birds at nesting colonies 

can be used as ancillary data in the construction of statistical models. Here we briefly describe principal 

characteristics of the two types of surveys; discuss their strengths, shortcomings, and potential for use in 

system modeling; and review some applications of their use to date.  With few exceptions, descriptions of 

the surveys are found in unpublished reports housed in participating agencies. 

3.1 The SRF Survey 

The SRF survey is intended to record the relative abundance, flock composition, and the spatial 

and temporal distribution of foraging wading birds across the entire Everglades system (11,640 km2).  The 

surveys are conducted monthly during the historically drier part of the year (December-June), which 

includes the nesting season, but at least one survey is usually conducted in August at the height of the wet 

season.  The survey is also used to assess general surface water conditions throughout the survey area, 

and, in some survey areas, to assess vegetation conditions. 

 Operational surveys were initiated in 1985, following a one-year pilot study (Portier and Smith 

1984).  The survey area comprised the water conservation areas (WCA) of the northern and central 

Everglades, Everglades National Park (ENP) and southern Big Cypress National Preserve (BCNP) in the 

south, and BCNP proper in the west.  Surveys in the northern and central Everglades (hereafter, the 

northern survey area) were initially conducted by the National Audubon Society (NAS) through a contract 
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with the South Florida Water Management District (SFWMD) (Hoffman et al. 1990; Bancroft and 

Sawicki 1995; Sawicki et al. 1995).  In 1995, the northern survey area was expanded to include the Holey 

Land and the Everglades Nutrient Removal Area (Sawicki et al. 1995).  Surveys in the BCNP (hereafter, 

the western survey area) were initially conducted by the Florida Fish and Wildlife Conservation 

Commission (FWCC) (J. Schortemeyer, Florida Fish and Wildlife Conservation Commission, personal 

communication).  However, the U.S. Army Corps of Engineers (USACE) now surveys both the northern 

and western survey areas (unpublished reports, U.S. Army Corps of Engineers, Vicksburg, Miss.), taking 

over survey responsibilities from the NAS in 1996 and from the FWCC in 1998.  The southern survey 

area has been continually surveyed by ENP personnel since 1985 (Russell and Portier 1999). 

 Transects oriented east-west are spaced 2 km apart throughout the surveyed region.  For purposes 

of data organization and reporting, transects are subdivided longitudinally into 2-km segments.  

Georeferencing equipment (LORAN C or GPS) is used to assure consistency in line and segment location 

among surveys.  However, some transects were evidently realigned at some point, at least in the northern 

survey area (compare 898 segments in Figure 2 of Hoffman et al. [1990] to 883 segments in Figure 2 of 

Bancroft and Sawicki [1995]).  A fixed-wing aircraft flying at 148 km/h ground speed follows the 

transects in alternating directions.  Aircraft altitude is variously identified as 45 m (D. M. Fleming et al., 

unpublished manuscript), 61 m (Hoffman et al. 1990; Bancroft and Sawicki 1995; Sawicki et al. 1995), 

and 90 m (Russell and Portier 1999).  A group of observers surveys birds and habitat conditions 

encountered in 150-m strips on either side of the aircraft.  Distance of the strips from the transect line is 

probably known and possibly varies by survey area, but this information was not reported in any of the 

survey descriptions. 
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Survey aircraft generally contained four occupants: the pilot, two observers of wading birds, and a 

front-seat observer whose responsibilities were to record water surface conditions and other ancillary data 

and to monitor the location of the aircraft relative to the transect.  However, only two observers were used 

after 1995 in the northern survey area (Nelson and Theriot 1997); responsibilities taken on by the third 

observer were thus shared by the remaining two.  Documentation for the northern survey area suggests 

that survey roles tended to be carried out by the same individuals, especially within a year.  We know of 

no existing information regarding the consistency of observer assignments in the southern survey area. 

 Observers recorded species, number, and longitude of all wading birds sighted within the transect 

strips.  In the northern survey area, behavior of each bird was also recorded.  Surveys in all areas recorded 

numbers of the following species: Great Egret, Great Blue Heron, White Ibis, Glossy Ibis, and Wood 

Stork.  In the southern survey area, counts of Great White Heron and Roseate Spoonbill (Ajaia ajaja) 

were also recorded.  Individuals of smaller-bodied, dark-plumaged species were counted collectively in a 

“Small Dark Herons” class which included (depending on survey area) Tricolored Heron, adult Little 

Blue Heron, Green Heron (Butorides virescens), Black-crowned Night-Heron (Nycticorax nycticorax), 

Yellow-crowned Night-Heron (Nyctanassa violacea), and the dark phase of Reddish Egret (Egretta 

rufescens).  Similarly, a class of “Small Light Herons” contained individuals of the following species 

(depending on survey area): Snowy Egret, Cattle Egret (Bubulcus Ibis), immature Little Blue Heron, and 

the light phase of Reddish Egret. 

 General surface water conditions were recorded for the segment at large.  Prior to 1989, a three-

category classification of “dry,” indicating absence of surface water, “wet,” indicating continuous surface 

water, and “transitional” was used.  Starting in 1989, surface water conditions were recorded in more than 

three categories, but approaches differed between the northern and southern survey areas.  In the north, 
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the “transitional” category was split into two categories: “dry transitional” (areas less than 50% flooded) 

and “wet transitional” (areas more than 50% flooded).  In the south, both “dry” and “transitional” 

categories were split:  “dry/dry” (absence of surface water and no groundwater visible in landscape 

depressions), “dry/wet” (absence of surface water, but groundwater visible in depressions), “dry 

transitional” (some surface water present, but area is mostly dry), and “wet transitional” (area mostly 

covered by water, but some dry patches remain). 

 In the northern survey areas, an observer actively monitored vegetation conditions during the 

years 1985-1988.  Each survey segment was assigned to one of eight vegetation classes (Hoffman et al. 

1990).  After 1995, vegetation conditions were passively monitored through videography of the survey 

flight. 

3.2 Uses of the SRF data 

Data from the SRF have been previously analyzed to model foraging distributions of wading birds 

in response to habitat or to hydrology.  The basic observational unit in all analyses was the 0.6-km2 grid 

cell formed by dividing the 300-m width transect strips into 2-km segments. 

 Hoffman et al. (1990; 1994) constructed hierarchical loglinear models (Agresti 1990:143-144) for 

the 3-way classification induced by combinations of bird density (represented in five categories of relative 

abundance), vegetation type, and surface water coverage in each cell in the WCAs.  Their analyses were 

conducted for each of four bird species in each of 16 months from surveys conducted 1986-1988.  They 

found that responses in bird abundance to vegetation and hydrological characteristics differed by species.  

Generally, however, they noted that current surface water conditions were better predictors of abundance 

than water conditions in the previous month when water levels were declining, but that the converse was 

true when water level was increasing. 
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 Bancroft and Sawicki (1995) used a clustering rule to assign survey months and survey years into 

relative hydrological categories based on measures of surface water coverage from the SRF and on 

measures of water depth recorded at isolated gauging stations throughout the WCAs.  For each 

hydrological category, they produced species-specific maps of bird occurrence and abundance.  In 

particular, their maps portrayed changes in the monthly distribution of each bird species in years 

considered “flooded,” “wet,” “intermediate,” or “dry.”  They also built a model of bird distribution based 

on associations between observed numbers of individuals and predictions of survey cell water depth 

provided by the SFWMD water depth model (Fennema et al. 1994).  They found reasonably close 

agreement between predicted and observed bird distributions for three of the four species they 

investigated. 

Bancroft et al. (1994) analyzed contingency tables to make assessments of preference for or 

avoidance of WCA subregions by foraging Great Egrets and White Ibises throughout each of four 

breeding seasons.  They further investigated these data in conjunction with locations of breeding colonies 

to test hypotheses about birds’ abilities to choose nesting locations proximate to areas of sustained 

foraging habitat.  They concluded that sites chosen for nesting generally were not good predictors of later 

foraging activity, primarily because the highly altered hydrological system no longer mitigates the 

deleterious effects of drought and spring rainfall. 

Bancroft et al. (2002) fit a series of polynomial regression models to counts of birds detected in 

survey cells of the northern Everglades.  They used output from a hydrological model and satellite 

imagery to assign water depth values and vegetation attributes, respectively, to survey cells.  They 

analyzed data from two years representing extremes in hydrological pattern and concluded that water 
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depth and vegetation composition influenced abundance and therefore spatial distribution of several 

species of wading birds. 

 Russell and Portier (1999) constructed generalized linear models in which bird counts from the 

southern survey area were related to patterns in static landscape and dynamic hydrological features.  Their 

models employed terms that helped to remove sources of variability due to seasonality, bird aggregation, 

and spatial autocorrelation among survey cells.  They found that a landscape measure that distinguished 

principal basins was the best predictor of bird numbers, after removal of temporal and spatial effects.  

However, despite their size and complexity, no model could explain more than 15% of the total count 

variability for any species, most likely due to aggregation behavior of foraging birds. 

 Russell et al. (2002) used a technique that provided an index to water depth based on surface water 

coverage recorded in the SRF surveys of ENP.  From each time series of water depth indices, they 

calculated a set of regression statistics that reflected water depth at the start of the dry season, the drying 

rate, and disruptions in the drying process for areas used by each bird species or species group.  They fit 

counts of birds in May (assumed to index population-wide reproductive success) to families of models 

built from these derived variables, and they found similar patterns among species in bird response to 

water level, drying rate, and hydrological disruptions.  Greater foraging numbers in May were best 

associated with patterns of moderate-depth water at the beginning of the dry season, continuous drying at 

~ 5mm d-1, and minimization of disruptions from this drying pattern. 

3.3 Limitations of the SRF data and implications for its use 

The SRF is a systematic transect survey uncorrected for bird detection rate.  The survey area is 

fixed and overlaps an unknown proportion of the total Everglades foraging population each period.  The 

monthly survey interval does not capture short duration, inter-survey bird movement or hydrological 
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events.  The survey does not cover the entire November-June dry season (Russell and Portier 1999).  The 

surveys cannot distinguish breeding from non-breeding adults, residents from temporary migrants, and 

species membership among smaller-bodied birds.  Aggregative foraging behavior and chance fly-overs of 

nesting colonies raise special concerns about the statistical treatment of the data.  Based on the 

documentation available at the time of this writing, several survey protocols appear to vary somewhat 

both between and within survey areas: survey altitude, location of transect lines, location of survey strips 

relative to transects, survey crew size and responsibilities, bird and habitat data recorded, and temporal 

extent of the survey season. 

 In our view, the greatest limitation of the survey is the fact that the proportion of birds detected is 

neither estimated, demonstrated to be constant across time, space, and species, nor analytically adjusted to 

remove confounding effects of varying survey conditions.  Most accounts of the survey suggest that the 

counts are considered direct indices of bird abundance, in which the count total divided by the 0.15 

sampling fraction is generally equated to abundance (cf. Hoffman et al. 1990; Bancroft and Sawicki 

1995).  The apparent belief is that the undercount is negligible, approximately 10-15% (Hoffman et al. 

1990).  Yet the only SRF study where estimation was attempted indicated detection rates of 0.54 for large 

dark birds and 0.26 for large white birds (Russell and Portier 1999).  Though the estimation approach 

(Caughley et al. 1976) is imperfect and was based on results from the 1984 pilot study (Portier and Smith 

1984), Russell and Portier (1999) and Russell et al. (2002) heed these estimates and caution against the 

use of the SRF as a measurement of abundance.  However, they claim that the counts nevertheless serve 

as valid population indices, yielding unbiased estimates of relative population size and distribution 

(Russell and Portier 1999; Russell et al. 2002).  To our knowledge, this claim is not supported by any 

empirical evidence, which would require confirmation that the index bears a constant, proportional 
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relationship abundance over time, space, or other relevant dimensions of comparison (Williams et al. 

2002). 

 Aerial counts of bird populations are typically regarded as incomplete in that not all individuals of 

a species can be identified and counted (Johnson et al. 1989; Bromley et al. 1995; Dodd and Murphy 

1995; Rodgers et al. 1995; Smith et al. 1995; Frederick et al. 1996b; Kingsford 1999). Although the 

sources of undercounting are varied, they can be roughly grouped into two categories: observer and visual 

biases.  Observer bias is defined here as the differences in counts from observer to observer due to 

differential abilities to detect and identify individuals and is often related to the experience of the observer 

(Kendall et al. 1996) or visual acuity (Sauer et al. 1994). Observer bias can be minimized through the use 

of well-trained and experienced observers.  We assume SRF observers were well trained and that many 

observers surveyed across multiple years.  However, the changes in survey responsibilities (to the 

USACE) and presumably, personnel in 1996 and 1999 could have biased count data, as was described for 

snail kites (Rostrhamus sociablis plumbeus) (Bennetts et al. 1999).  Further, the reduction in the number 

of observers in the northern survey area after 1995 may bias comparisons of counts among areas and 

through time. 

Visibility bias is defined here as the over- or under-counting of populations due to the ability to 

visually detect and identify individuals.  Survey-induced bias is one source of visibility bias due to 

sampling protocols, such as the height and speed of the airplane as well as transect width (Pollock and 

Kendall 1987).  Variability in visibility rates can be minimized through the use of standardized survey 

protocols.  However as indicated above, survey protocols are apparently not consistent across the entire 

survey area, complicating any comprehensive analysis at the scale of the Everglades ecosystem. 
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 Visibility can vary among bird species (Pollock and Kendall 1987).  Body size or coloration can 

influence the ability to detect birds.  For example, larger wading birds and those with bright coloration are 

generally more conspicuous and can be detected with greater frequency (Kingsford 1999).  Species-

specific behaviors, such as aggregative foraging behaviors, can also influence the ability to obtain 

accurate counts.  Birds typically found in large (>5000) or small (<10) aggregations are more difficult to 

count and detect, respectively, resulting in significant undercounting of these species (Kingsford 1999). 

The physical habitat characteristics of survey areas also can affect the ability to detect birds (Bibby and 

Buckland 1987; Smith et al. 1995).  Physical structures, such as tall grasses and tree canopies, can prevent 

aerial observers from detecting birds, thereby biasing counts.  Bird detection is also influenced by a 

combination of behavioral traits and physical habitat structure.  Species typically found foraging in 

shallow open water areas during non-nesting periods move to wooded habitat during the nesting season , 

so that detectability can change with season. 

 The Everglades consist of a mosaic of habitat types whose characteristics also vary temporally 

(i.e., among seasons and years). These characteristics presumably influence the bird population dynamics 

and may influence the ability to detect birds during surveys. For example, water levels affect both snail 

kite population sizes and detection rates (Bennetts et al. 1999). Bird communities in the Everglades also 

are composed of species with differing resource requirements, morphologies, behaviors and 

detectabilities. Failing to account for differences in detectability when making comparisons among 

habitats and species or through time introduces a systematic error or bias into the data that can lead to 

incorrect interpretations of statistical relationships and poor management decisions.  For example, 

Bromley et al. (1995) found that visibility of arctic geese was lowest during years of highest reproduction 

and suggested that the use of unadjusted count data would lead to erroneous conclusions regarding the 
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status of populations.  To minimize the influence of visual bias on estimates of population change, we 

believe that the methods for adjusting bird counts should be developed to ensure sound management 

decisions. 

 One method of developing bias adjustments is through the calibration of aerial surveys. This can 

be accomplished by comparing aerial counts with known benchmarks, such as ground counts (Frederick 

et al. 1996b; Kingsford 1999), boat counts (Conant et al. 1988), aerial photographs or videography (e.g., 

Dodd and Murphy 1995), and through the use of known numbers of surrogates (e.g., duck decoys; Smith 

et al. 1995).  Evaluations are typically conducted under a variety of sampling conditions encountered in 

the study area and adjustments developed by relating the relative difference in counts to species traits and 

sampling conditions, such as water level.  Russell and Portier (1999) suggested that this type of approach 

would be prohibitively expensive due to what they believed would be a large number of evaluations.  

However in our experience (e.g., Smith et al. 1995), we believe that adequate adjustments could be 

developed at minimal costs if evaluations are focused on factors known to influence aerial counts.  

Further savings would be gained by formally incorporating the results of previous studies under similar 

survey protocols and sampling conditions (Table 1). 

 Another approach to developing bias adjustments is through the use of auxiliary data (Bennetts et 

al. 1999). Certain types of auxiliary data collected during the survey could be used to adjust for 

confounding effects of varying survey conditions.  Clearly, detection rate of birds farther from the 

airplane is lower than the rate for birds near the plane; therefore, a record of distance of each detected bird 

from a transect line or sampling point offers a way to adjust for this effect (Gates 1979, Burnham et al. 

1980, Ramsey and Scott 1981, Buckland et al.1993).  Bird detection also varies with sunlight 

characteristics (e.g., time of day, month, sky conditions), vegetation type, observer experience, group size, 
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bird behavior, and other variables.  Auxiliary data collected on these survey and response characteristics 

would be helpful in removing such sources of variability in detection rate (Drummer and McDonald 1987, 

Samuel et al. 1987). 

 Another fact about the SRF is that the survey cannot distinguish between birds that are and are not 

actively nesting.  Therefore, inferences regarding linkages between the fate of particular nesting colonies 

and foraging activity will be indirect at best.  Perhaps an approach similar to that of Bancroft et al. (1994) 

may prove useful in tentatively identifying such linkages. 

 Assuming that the above issues can be resolved, selection of an appropriate statistical model is not 

clear-cut.  Approaches based on contingency tables or loglinear modeling methods are not appropriate as 

inferences from such models are not robust to the arbitrary choice of survey cell size.  Methods similar to 

those used by Russell and Portier (1999), which account for spatial autocorrelation and extra variation 

induced by bird aggregation, are more appropriate for cell-based responses.  By investigating survey-wide 

monthly bird totals, Russell et al. (2002) avoided the necessity of such complex models, though by doing 

so they also sacrificed any ability to derive spatially explicit types of inferences. 

3.4 Nesting Data 

 Whereas the SRF survey tallies foraging birds in a mostly consistent manner throughout the 

Everglades, there is no comparable standardized system-wide survey of nesting colonies.  Instead, 

colonies are surveyed by a number of cooperators, each adopting a unique protocol.  Since 1995, 

descriptions and summaries of many of these surveys have been compiled annually by the SFWMD (D. 

E. Gawlik, SFWMD, unpublished reports; 1997-2002 reports available electronically at 

http://glacier.sfwmd.gov/org/wrp/wrp_evg/projects/wading01).  However, the level of detail contributed 

to these reports also varied by cooperator, and no metadata structure exists for the entire collection of 
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data.  Therefore, utility of these data cannot be determined without contacting and interviewing each 

cooperator. 

 Nesting surveys differ appreciably in their conduct (Table 2).  Surveys in the WCAs have been 

systematic since the late 1980s and surveys of ENP and WCAs prior to that time have been systematic 

only in some years. Point-to-point surveys of known colonies are usually based on the assumption of 

complete detection of all colonies in an area (D. Gawlik, personal communication).  In some cases, 

colonies are visited incidentally during surveys for other wildlife organisms.  Surveys of larger areas are 

flown, though some of these may use ground-based methods to more carefully count colonies seen from 

the air.  Surveys differ in their timing. Some surveys are conducted only once per year whereas others are 

conducted monthly during the breeding season. 

 Nest detection rate for these surveys is unknown and most likely varies among colony size, bird 

species, vegetative substrate, and survey method.  In a 2002 study of a single large colony, rates of aerial 

detection ranged from 1-28% of matched ground-based counts for nests occurring in a sample of quadrats 

(2002 Wading Bird Report). 

4.0 MODELS FOR RELATING BIRD DISTRIBUTION AND DENSITY TO HYDROLOGY 

4.1 Overview of modeling approaches 

Before describing our approaches to model development for this problem, we briefly consider 

some alternative purposes for modeling. Many possible classifications of ecological models exist; we 

consider one based on the application(s) for which the model is intended (Williams et al. 2002:23-31).   

 First, theoretical models describe possible system responses under specific hypotheses or 

parameter values.  Under this approach, scientific hypotheses express alternative ideas about how an 

ecological system functions and models are used to project the consequences of these hypotheses. The 
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purpose of theoretical models is to explore “the science of the possible” (Caswell 1988), essentially 

playing “what if” games with alternative (but plausible) ideas that may or may not have empirical support.  

Note however that “theoretical” does not imply that such models have no real world, management 

applicability. On the contrary, if contrasting, plausible views about system dynamics result in different 

optimal policies, resolution of which alternative is closer to “truth” suddenly becomes imperative.  

 By contrast, empirical models involve predictions of population or other system behavior, which 

can then be compared to observed behavior.  Empirical models include statistical inference (estimation 

and hypothesis testing).  In estimation, values for model parameters are inferred from observational or 

experimental data, usually under the assumption that a particular parametric model is true. Data, in turn, 

are used to assess the reliability of the model, via goodness-of-fit, confidence intervals, and validation 

(comparison of model predictions to independent observations).  Whereas empirical (statistical) and 

scientific hypotheses can be related, they are not the same, since the former but not the latter depend not 

only on an underlying scientific hypothesis, but also on aspects of sampling design and data collection.  

This distinction is important and must be kept in mind, particularly because poor sampling designs or 

inadequate modeling of sampling processes can easily confound statistical inference about scientific 

hypotheses. 

 The distinction between scientific and statistical hypotheses notwithstanding, empirical models are 

a distinctive part of empirical science, which seeks to use data to discriminate among competing scientific 

hypotheses. There are two (at least) competing approaches to empirical modeling. The first, which we 

characterize as the “single-model approach”, is associated with Popper (1959; 1962; 1972) and Platt 

(1964). Under this approach, a model is used to deduce testable predictions from a scientific hypothesis; 

the hypothesis is compared to data, and, based on a (usually statistical) test, the hypothesis is retained 
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(subject to further testing) or rejected (either modified or replaced with competing hypothesis). 

Hypotheses that survive repeated empirical challenge by this approach are viewed (at least provisionally) 

as the best approximation of reality.  In practice, this approach usually relies heavily on statistical null 

hypothesis testing to support or reject an underlying scientific hypothesis.  An alternative approach, 

usually attributed to Chamberlin (1897) is based on multiple working hypotheses (Platt 1964).  In this 

approach, competing scientific hypotheses and their corresponding predictions are considered 

simultaneously, and relative belief is revised following comparison of predictions under each empirical 

model to observations.  In contrast to the usual emphasis on statistical null hypothesis testing, this 

approach fits naturally with likelihood-based updating using Bayes’ Theorem (Williams et al. 2002: 25) 

and with information theoretical approaches for optimal model selection and multi-model inference 

(Burnham and Anderson 2002).  Finally, information-theoretic and Bayesian approaches usefully blur the 

artificial (in our opinion) distinction between statistical estimation and hypothesis testing. In this view, 

relative (empirical) belief in alternative models becomes just another aspect of estimation, whether this is 

via computation of criterion-based weighting (e.g., AIC weights) or estimation of marginal posterior 

distributions of alternative models (Burnham and Anderson 2002).  

 The third type of model application involves models applied to projecting the consequences of 

scientific hypotheses about system behavior in order to identify an appropriate management action to 

achieve some objective.  Thus, one needs in addition to a model (or, more appropriately multiple models) 

of system behavior, an explicit objective and a set of available management actions or controls.  The 

models also must provide an explicit linkage between alternative management actions and the objective, 

which itself is usually based on some observable state of the system following management. 
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 The use of models is this context fits naturally with previously described approaches to theoretical 

and empirical modeling.  In ecological applications, there will nearly always be more than one alternative 

prediction about the consequences of any management intervention.  Failure to take into account these 

alternative predictions can seriously degrade decision-making, becauce it is seldom (if ever) possible to 

select a single predictive model with certainty.  Rather than endeavor to eliminate alternative models (the 

single-model approach), we endeavor to incorporate feasible, alternative models, appropriately weighted 

where possible to reflect empirically-based relative belief.  

4.2 Review of Everglades models to date 

 Effects of natural phenomena, anthropogenic stressors, and water management decisions on 

wading bird populations in the highly modified Everglades landscape have been explored in a number of 

hypothetical, process simulation models.  Most models are spatially explicit, presuming that spatial 

configuration of habitats is equally or more important than total amount of habitat in terms of bird use.  

Of these, many models are individual-based, allowing population response to arise as an emergent 

property of individual responses. 

 Most population modeling work has occurred within the ATLSS (Across Trophic Level System 

Simulation) framework (DeAngelis et al. 1998; Gross and DeAngelis 2002).  ATLSS is a collection of 

system models, each forecasting organism response across a landscape grid of habitat squares.  The 

organisms chosen for representation in ATLSS models are keystone or umbrella species that collectively 

are thought to most completely integrate the variety of energy, materials, and stressors dispersed across 

space, time, and trophic levels (DeAngelis et al. 1998).  ATLSS models are usually individual-based in 

the belief that realistic population behavior emerges as a synthesis of individual behaviors operating in a 

highly variable, dynamic landscape (DeAngelis et al. 1998). 
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 DeAngelis et al. (1998) describe the ATLSS implementation of a wood stork model based on 

work by Wolff (1994).  Wolff (1994) simulated production response of a hypothetical wood stork colony 

exposed to varying hydrological conditions within a single breeding season; a schematic description of 

the model is found in Fleming et al. (1994).  Elaborate decision rules governing behavior of individual 

adult birds were simulated in a simple environment of varying hydrological and prey base conditions.  

Movement, foraging, and nesting behavior of adults and survival of nestlings were determined through 

many specific functional forms and parameter values.  The model simulated colony activity on fine spatial 

(250 m × 250 m) and temporal (15 min) scales.  Wolff (1994) used the model to investigate colony 

productivity under alternative hydrological patterns. 

 Fleming et al. (1994) used the Wolff (1994) model to simulate colony nest initiation time and 

productivity response under three alternative hypotheses of system-wide wood stork productivity failure 

in the Everglades: (1) general loss of wetland habitat, (2) disproportionate loss of high-elevation, short-

hydroperiod wetlands, and (3) increase in frequency of system wide drydowns.  Their simulation results 

under the disproportionate-loss hypothesis were consistent with patterns of nest initiation and 

reproductive success observed under historical conditions of low, normal, and high early-season water 

levels. 

 Hallam et al. (1996) modified and generalized the Wolff (1994) model to simulate wood stork 

colony response to methyl mercury distributed across the landscape.  In addition to the behavior and 

production rules encoded in the Wolff (1994) model, the contamination-response model required further 

assumptions regarding resource contamination levels and distribution, uptake and bioaccumulation of 

mercury by adults, lethal and sublethal effects of mercury on adults, and production and growth of 

offspring.  The authors were unable to base many of these hypothesized relationships on empirical data, 
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and of those, few were derived from studies of wood storks (Hallam et al. 1996).  The authors performed 

sensitivity analyses for the most tenuous parameters and concluded that their model was sufficiently 

robust to infer that mercury contamination could contribute to colony loss in the long term. 

 Curnutt et al. (2000) also used the ATLSS modeling framework, but unlike the individual-based 

approach used by Wolff (1994), they modeled “habitat potential” for the long-legged wading bird guild.  

They calibrated this spatially-explicit species index (SESI) model against bird foraging data collected on 

SRF flights.  Foraging suitability of a model cell was a function of water depth, fish abundance (based on 

prior-year water depth), and water depth in a neighborhood of cells.  By linking this model to the 

SFWMM, Curnutt et al. (2000) investigated spatial patterns of habitat potential under alternative 

hydrological management regimes.  Curnutt et al. (2000) acknowledged several weaknesses and 

unresolved uncertainties in their model, but they defended its use for unbiased relative comparisons of 

alternative management plans. 

 In all of the preceding models, fish abundance was modeled passively, as a simple, direct function 

of cell hydrological status.  Gaff et al. (2000) built an ATLSS component model of prey fish populations, 

in which prey fish were simulated in size and age functional schools.  Fish functional groups were 

allowed to migrate among cells, evacuate cells, and repopulate cells in response to cell hydrology.  Cells 

varied topographically, which provided refugia for fish under drydown conditions, and in food resources, 

determined in part by cell hydrological history and in part by fish abundance.  The model used fine scales 

for both space (500 m × 500 m) and time (5 days) and employed many parameters and functional forms, 

the majority of which were not estimated using empirical evidence.  By linking their model to the 

SFWMM, Gaff et al. (2000) compared expected prey fish distributions across the landscape in response to 

alternative hydrological management regimes.  Although the model lacked validation or sensitivity 
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assessments, Gaff et al. (2000) defended the model’s use for credible relative comparisons of alternative 

management plans. 

 Mooij et al. (2002) developed an ATLSS prototype model for snail kites to investigate predictions 

about effects of varying spatial and temporal patterns of drought on population size.  Their model was 

spatially-explicit and individual-based, but followed bird fates over an irregular network of wetland 

habitats rather than over a regular grid of polygons.  Water conditions in the wetlands influenced 

availability of prey and, in turn, determined carrying capacity for snail kites; carrying capacity influenced 

the probability of snail kite movement among sites and snail kite fecundity.  The model suggested that the 

population responded negatively both to system-wide droughts and prolonged habitat inundation, but was 

mostly unaffected by more localized droughts. 

 Walters et al. (1992) built a landscape model of hydrological state to portray pre-alteration 

conditions of the Everglades and to provide a basis for assessing relative credibility of four alternative 

hypotheses of wading bird population decline.  Like the SFWMM, against which they compared their 

model results, the model of Walters et al. (1992) provided hydrological input to other models of 

ecological indicators.  They inferred from both models that a large pool of short-hydroperiod water once 

occurred to the east of the system and served as a regulator of flows through the south.  They also 

concluded that larger volumes of water once flowed through the southern Everglades and into the 

estuaries and mangrove forests.  Walters et al. (1992) called for an experimental approach of structural 

modifications and water releases to test whether restoration of the estuarine zone is a necessary condition 

for wading bird population recovery. 

 Smith (1997) constructed an energy flow model of the Lake Okeechobee Great Egret population.  

Unlike other models for wading birds, Smith’s (1997) model was neither spatially-explicit nor individual-
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based, and it was formulated in a continuous time domain.  In this model, interactions among 

environmental forcing variables and state variables that represented the prey population, the adult bird 

population, and the population of recruits were expressed through a large number of parameters and 

functions.  The parameters and functional forms of the model were chosen based on fit of model output to 

a time series of population data. Smith (1997) performed no model validations, but nevertheless used 

model predictions  to support several hypotheses about the influence of hydrological and environmental 

characteristics on Great Egret population dynamics. 

 Empirical models that relate foraging bird response to hydrological conditions were reviewed 

above (Uses of the SRF Data).  McCrimmon et al. (1997) analyzed trend patterns in Christmas Bird Count 

(CBC) data to make inferences on statewide population dynamics for several species of wading birds. 

Their models, however, did not link bird abundance to any variable subject to management control. 

5.0 METHODS 

To evaluate the proposed hypotheses explaining wading bird decline and develop predictive 

models under one or more of these hypotheses, we related observations of birds from the SRF to measures 

of hydrology from the SFWMM and indexes of abundance from the Breeding Bird Survey (BBS). In the 

course of compiling the data, we identified some issues with the SRF and SFWMM data that had to be 

addressed before modeling could proceed. 

5.1 SRF observational data 

 The basic observations from the SRF are bird sightings from a particular flight, transect, and 

longitude. However, this is only one-half of the information that should be available from the survey. The 

areas (SRF cells) where no birds were seen also are of interest for modeling purposes. This information 

may be inferred by plotting the observations against the surveyed cells such that cells where no 
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observations occur may be assigned values of zero. To do this, we had to determine where the 

observations occurred and identify the cells that were being surveyed. We determined a survey extent for 

each region based on how each was surveyed. In the northern survey region, the extent was determined by 

the westernmost terminus of the surveyed transects, the eastern regional boundary, the southernmost 

surveyed transect, and the northern regional boundary (Figure 2). In the Big Cypress survey region, the 

extent was determined by the easternmost terminus of the surveyed transects, the western regional 

boundary, the northern regional boundary, and the southernmost surveyed transect (Figure 3). Finally, the 

surveyed extent for the Everglades National Park was determined based on a map provided by the park 

(Figure 4; Mario Alvarado, Everglades National Park, personal communication). 

With the survey extents defined, we then assigned observations to SRF cells. However, we found 

a number of observations in the northern regions had longitude values that placed them outside of the 

survey extent. To address this issue, we dropped those points outside of the survey extent. This eliminated 

the obviously inaccurate points, but ignored the possibility of positional errors for observations within the 

survey area.  

 As noted earlier, at an unknown time, a shift occurred in the transects used to monitor the northern 

regions. As far as we can determine, the shift occurred sometime before 1988 in the surveys conducted by 

the Audubon Society for the WCAs who then presumably passed on the shifted transects to the Army 

Corps of Engineers.  Because the shifted transects resulted in an entirely different set of SRF cells being 

surveyed, it was decided by the parties involved to continue using them.  This had two ramifications.  

First, an entire transect in the middle of the Everglades was no longer surveyed. Second, the latitudes of 

the locations for the WCAs prior to 1988 are unknown and may be off by an entire row (i.e., 2 km).  We 
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dealt with the first problem by editing the surveyed area for the effected years.  To deal with the second 

problem, we assumed that the shift occurred at the beginning of the survey (1985).  

 In most cases, a survey for a given region occurred over a period of multiple days, with individual 

flights within each survey covering a subset of transects in that region.  In some cases, flights within a 

survey re-flew transects that were surveyed by a previous flight. This occurred rarely (WCAs 27 times 

and BCNP 3 times). Because dealing with these overlaps would unnecessarily complicate the modeling, it 

was determined that only the observations from the flight that initially surveyed each transect would be 

retained. 

 Each of these issues with the SRF resulted in the final analysis data set being a subset of the total 

amount of data available. The steps and amount of data removed at each step are summarized in Table 3.  

5.2 Hydrology data 

 The South Florida Water Management Model (SFWMM) is a spatially explicit computer model 

that simulates the hydrology of South Florida (Fennema et al. 1994; South Florida Water Management 

District 1997).  It is regional in spatial extent and uses a 3.2km-by-3.2km fixed-resolution gridded model 

domain. The SFWMM assumes homogeneity in hydrologic characteristics within each grid cell and runs 

at a fixed time step of one day.  It predicts the mean water depth relative to sea level (i.e., absolute depth) 

for each grid cell. This absolute depth level then is adjusted for each grid cell using the mean elevation of 

the cell estimated from a digital elevation model. This results in a relative measure of water depth for each 

cell that did not reflect variation in microtopography within a cell. 

 Hydrology data from the SFWMM have gone through an extensive testing process, and water 

patterns predicted by the model match observed patterns well (South Florida Water Management District 

1997).  The hydrologic data extracted from SFWMD gages are subjected to rigid quality assessment and 
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control measures (Crowell and Mtundu 2000).  After the raw data are retrieved, they are loaded into a 

Data Collection/Validation Preprocessing System (DCVP).  The DCVP system verifies the station name 

and checks the period of record for ascending dates/times, gaps, and overlaps.  The DCVP system also 

screens the data for values outside of the min/max and rate of change tolerances. The data are then 

graphically analyzed by skilled personnel trained in the interpolation of hydrologic data.  During the 

graphical review, comparison data sources are also used to identify errors. Any inconsistencies are 

corrected and/or tagged by the data processors. The data are then updated and filtered against daily 

minimum/maximum and rate of change tolerances. Daily averages are computed, extracted, and reviewed.  

 The grid cells from the SRF surveys did not match the grid cells from the SFWMM.  To calculate 

predicted water levels in each SRF cell, it was necessary to reconcile the SFWMM cells with the SRF 

cells. To accomplish this for each SRF cell, we recorded the water depths from the SFWMM cells that 

overlapped the SRF cell. We then calculated an average water depth for the SRF cell weighted by the 

proportion of the area of the cell within each SFWMM cell that it overlapped.  

Unfortunately, portions of the area surveyed by the SRF were not encompassed by the SFWMM 

projections. These areas were mainly tidally influenced zones on the edges of regions (‘regions’ are 

defined in Fig. 1). Because of the lack of coverage in these areas, we were unable to generate the dynamic 

hydrology variables critical to testing the hypotheses in which we were interested. Therefore, these areas 

and the observations within were removed from the analysis data set. 

5.3 Subregion classification 

Previous studies of the SRF wading birds indicated substantial and unquantified variation in 

microtopography in the SRF area that could obfuscate wading bird-water level relationships (Russell et al. 

2002).  To minimize these potential influences, we develop strata (henceforth, subregions) by grouping 
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SRF cells based on the similarity of vegetative structure (which itself is based on the Florida Land Use 

and Cover Classification System [FDOT 1999]) and water level characteristics (i.e., mean, minimum and 

maximum of predicted water levels for period of study) via k-means cluster analysis.  K-means clustering 

is a robust form of non-hierarchical cluster analysis that is used to group data into k clusters (i.e., k = 

number of clusters or groups) based on their similarity (Romesburg 1990).  The optimal number of 

number of clusters (groups) is considered to be the smallest value of k that maximizes the within-group 

(strata) similarity and maximizes the differences among groups.  This optimal number was determined by 

fitting k-means clusters for several values of k and plotting the overall R2 versus the number of clusters.  

The overall R2 is a measure of the predictability of the characteristics (e.g., habitat) of cluster members 

(e.g., streams) and is analogous to r2 in regression analysis (Hartigan 1985).  The optimal number of 

clusters (subregions) was considered the lowest value of k at which the R2 began to level off and reach an 

asymptote. These candidate subregions then were plotted and the maps shown to experts familiar with the 

SRF area who suggested minor modifications to the subregions. 

5.4 Development of a hierarchical model synthesizing major, alternative hypotheses 

5.4.1 Summary of general approach 

We modeled bird counts at the cell level as random outcomes of effects determined at larger 

scales.  The parameters are hierarchically structured and consist of water depth at the cell level; the rate of 

drawdown (water recession); a measure of smoothness of the drawdown (i.e., severity of pattern of 

hydrologic reversals); availability of "optimal habitats" during a critical pre-nesting period and throughout 

the nesting season; and an index of annual bird abundance elsewhere in the species range.  Initially we 

began with relatively simple, fixed-effects models that incorporate principally cell-level predictors.  As 

the analyses and modeling continued, we added hierarchical effects that account for broad-scale 
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phenomena (e.g., general availability of birds); time lags (e.g., to account for recruitment impacts), and 

spatially and temporally auto-correlated random effects (to account both for unexplained temporal and 

geographic patterns in the data, as well as the effect of repeated measures over time and space).  Finally, 

we incorporated, to the extent possible, fixed and random effects due to imperfect and presumably 

heterogeneous detection rates in the SRFs.  

5.4.2 Alternative hypotheses of foraging patterns 

 We considered temporal and spatial variability in Everglades wading bird abundance under four 

hypotheses that were expressed as alternative simplifications of a general hierarchical model of foraging 

abundance N.  These hypotheses – distant magnets, regional recruitment, food limitation, and 

hydropattern alteration – were described earlier (see literature review).  We did not build models for the 

estuarine degradation or transitional habitats hypotheses (see literature review) because they describe 

phenomena that had occurred before the initiation of this survey, and their underlying mechanisms could 

probably not be explored without large-scale experimental manipulation (Walters et al. 1992).  

Furthermore, their investigation required data not available to us (water level for estuarine degradation) or 

required specification of somewhat conceptual conditions defined by combinations of space and time 

(transitional habitats). 

We began by modeling the average number of birds counted in SRF cell i (of subregion j within 

region k) during survey s of year t as: 

)()),(()()),(()()),(( tskjitskjitskji ND β= , 

where )()),(( tskjiN  is the true abundance of birds in cell i at survey s and )()),(( tskjiβ  is the corresponding 

detection probability (generally, 1)()),(( ≤tskjiβ  and variable over space and time).  Thus, in general the 
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expected cell count )()),(()()),(( tskjitskji ND ≤  due to imperfect detection; more generally, )()),(( tskjiβ  may 

include random effects, including spatially and temporally heterogeneous detection. 

In each model, cell counts were modeled as a random outcome of a subregional average cell 

density, initially  

)(Poisson~ )(),()()),(( tskjtskji Dy . 

However, initial examination of SRF counts indicated a high degree of overdispersion ( 2)( xxE σ>> ) and 

led us to model cell counts via a lognormal distribution ),(lognormal~)()),(( σµtskjiy .  Thus, we log-

transformed all cell counts, i.e., Yi(j(k)),s(t) = log(yi(j(k)),s(t) + 0.001), and we modeled Yi(j(k)),s(t) as a linear 

function of predictor variables and normally-distributed error terms. 

 For several reasons, we focused our modeling efforts on counts of two species, Great Egret and 

White Ibis.  These species were seen in relatively high abundance and frequency, which was likely to be 

helpful in separating any signal of system drivers from the background noise of unknown phenomena.  

Their large size and distinct profiles suggest they were unlikely to be incorrectly or indeterminately 

identified (except, as noted by Russell et al. (2002), possible observer confusion between Great Egret and 

the far less abundant Great White Heron).  Detection probability was likely to be higher and more 

consistent for these large, white birds than for other species, an important consideration given that our 

ability to account for detection probability was considerably limited.  Whereas these two species are 

comparable in several aspects, they have distinct foraging habits (e.g., different foraging ranges, flocking 

behaviors, hunting tactics, and giving-up prey densities) likely to be conveyed in the models. 

 Water depth predictions provided by the South Florida Water Management Model (WMM) were 

the primary source of data used as environmental drivers in two of the following four models.  The cells 

of the WMM overlap with approximately 2,400 SRF cells, but a significant portion of SRF coverage – the 
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tidally-influenced estuarine zone in the southwest – is not covered by the WMM. As noted earlier, 

although the SRF contains some measure of hydrology, these can only be related to water at the time of 

the survey, therefore it was impossible to generate the trend data needed for these models in areas of non-

overlap. Therefore, we decided that the only way to deal with these portions of the study area was to drop 

them from the analysis. 

5.4.3 Distant magnets hypothesis 

 Two of the hypotheses described temporal patterns at the scale of the entire study area and did not 

directly (i.e., through structural means) address spatial variability within the system.  The distant magnets 

hypothesis (Frederick and Collopy 1988, Walters et al. 1992) suggests that bird populations overall have 

not declined, but that decreases observed in the Everglades have been offset by increases in bird numbers 

elsewhere in the southeastern U.S., perhaps as a consequence of improved conditions in those areas.  We 

evaluated support for this hypothesis by associating (log) cell abundance with annual average Breeding 

Bird Survey (BBS) indices: 

)()),(()(,nest)(,pre
)DM(

1)(,0)()),(( tskjikjkjtkjtskji QbbY εγγ ++++= , 

),(Normal~ 00)(,0 τbb kj , 

),(Normal~ prepre)(,pre τγγ kj , 

),(Normal~ nestnest)(,nest τγγ kj , 

),0(Normal~)()),(( τε tskji . 

The main structural element of this model relates an annual BBS survey index, Qt, to cell abundance 

through a model parameter )DM(
1b .  Whereas we treated this parameter as a fixed effect, we included other 

parameters as subregion-level random effects to account for spatial and within-season temporal variation 
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not well accommodated by the structural component.  Random effects included the model intercept, 

)(,0 kjb , and a pair of additive terms expressing the effect of the pre-nesting ( )(,pre kjγ ) or nesting ( )(,nest kjγ ) 

phase of the season.  Each random effect was assumed to have arisen from a normal distribution with a 

fixed mean ( 0b , preγ , and nestγ , respectively) and precision ( 0τ , preτ , and nestτ , respectively).  Finally, 

variance not accounted for by any of these parameters was conveyed in the residual error term )()),(( tskjiε . 

We constructed Qt as a weighted average of annual BBS indices published for the period 1966-

2005 (Sauer et al. 2005).  We obtained annual indices for Great Egret and White Ibis within each of the 

BBS strata 2, 3, and 4 (Floridian, Coastal Flatwoods, Upper Coastal Plain).  These strata form a region 

that captures the range of both species in the southeastern U.S. outside of the Everglades.  Weights used 

in the average were (1) inverse variance of the stratum-specific BBS trend estimate from which the 

indices were calculated, (2) inverse distance of the stratum from the Everglades (measured ordinally as 1, 

2, or 3), and (3) stratum area.  We chose these weights because they relate either to the precision of the 

index (case 1) or to the likely influence of the stratum as a population “magnet” (cases 2 and 3).  Thus, 

strata that are larger, closer to the Everglades, and supply indices with greater precision carried greater 

weight in the computation of the predictor value Qt. 

This model predicts a system-wide, average annual cell abundance as a function of bird 

abundance outside of the Everglades system, but, as mentioned above, there is no structural means 

of modeling spatial and within-year survey variability in counts.  For this reason, we made use of 

random effects in the model to account for overall spatial variation ( )(,0 kjb ) and within-season 

temporal variation ( )(,pre kjγ , )(,nest kjγ ).  This was also the case in all the remaining models; therefore 

the same random effects occur in each and are defined identically.  Breeding periods are different 
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for Great Egret and White Ibis; therefore, the pre-nesting and nesting periods for Great Egret are 

December-January and February-May, respectively, whereas the corresponding periods for White 

Ibis are December-February and March-May.  

5.4.4 Regional recruitment hypothesis 

 The second hypothesis that directly addressed only temporal variability is the regional 

recruitment hypothesis, which specifies that abundance in year t is principally a function of system-wide 

recruitment from a prior year t-v.  We modeled this essentially identically to the distance magnets 

hypothesis, except the predictor ( vtkD −, ) is mean region-wide count averaged over the vts −′  surveys 

conducted at the end of the breeding season of prior year t-v:  

)()),(()(,nest)(,pre,
)RR(

1)(,0)()),(( tskjikjkjvtkkjtskji DbbY εγγ ++++= − , 
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where )RR(
1b  specifies the relationship between prior-year abundance and current-year abundance, and 

)(,0 kjb , )(,pre kjγ , )(,nest kjγ , and )()),(( tskjiε  were random effects defined as before.  Unfortunately, we have no 

way of estimating what fraction of vtkD −, is actually available to recruit at t, so the model parameter )RR(
1b  

implicitly involves survival and fidelity to the system from vtkD −, .  The lag period, v, was species-specific, 

corresponding to the time spent by most birds in a pre-reproductive stage.  For Great Egret, we set v = 2, 

whereas for White Ibis, we fixed v at 3 (Dale Gawlik and Mark Cook, personal communication). In order 

to accommodate these lags it was necessary to use observations only from 1988 onwards as vtkD −,  would 

be unavailable in 1985-1987 for White Ibis. 
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5.4.5 Food limitation hypothesis 

 The remaining two hypotheses were explored under models that incorporated structural predictors 

of both temporal and spatial variability of bird abundance within the system.  Both hypotheses linked 

observed bird foraging patterns with distributions of shallow water habitats at local scales, but they 

differed as to whether the association is strictly contemporary or is influenced by antecedent trends in 

habitat availability.  We refer to the former case as the food limitation hypothesis.  It states that bird 

abundance in each SRF cell at each survey is a random outcome of subregion-level habitat conditions: 

)()),(()(,nest)(,pre
2

)()),((
)FL(

)(,2)()),((
)FL(
)(,1)(,0)()),(( tskjikjkjtskjikjtskjikjkjtskji WbWbbY εγγ +++++= , 

),(Normal~ )FL(
1

)FL(
1

)FL(
)(,1 τbb kj , 

),(Normal~ )FL(
2

)FL(
2

)FL(
)(,2 τbb kj . 

Under this model, bird abundance is a curvilinear (linear and quadratic) function of cell-specific water 

level )()),(( tskjiW  with slope parameters )FL(
)(,1 kjb  and )FL(

)(,2 kjb  specific to subregion j(k).  The slope parameters 

themselves are random rather than fixed, assumed to arise from normal distributions centered at fixed 

means, )FL(
1b  and )FL(

2b , and with fixed levels of precision, )FL(
1τ  and )FL(

2τ , respectively.  In addition to 

these structural components, the model included the same set of random effects )(,0 kjb , )(,pre kjγ , )(,nest kjγ , 

and )()),(( tskjiε  used in previous models. 

5.4.6 Hydropattern alteration hypothesis 

 The hydropattern alteration hypothesis suggests that observed spatial patterns of abundance at 

time s are consequences of past trends of water depth behavior that either concentrate or disperse prey.  

Specifically, a given patch is expected to receive high foraging use when water depth on the patch has 

smoothly and continuously fallen during a short time period immediately preceding s.  If water depth 
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reduction is too slow or has reversed at some point during the period, prey become dispersed, and birds 

will avoid the patch even if foraging depth is adequate.  Under this model, bird abundance in a cell in 

subregion j(k) during survey s(t) is a function of the rate of drying in the subregion and the consistency of 

that pattern: 

)()),(()(,nest)(,pre)(),(
)HA(
)(,3

2
)(),(

)HA(
)(,2)(),(

)HA(
)(,1)(,0)()),(( tskjikjkjtskjkjtskjkjtskjkjkjtskji rbrbrbbY εγγ +++′+++= , 

),(Normal~ )HA(
1

)HA(
1

)HA(
)(,1 τbb kj , 

),(Normal~ )HA(
2

)HA(
2

)HA(
)(,2 τbb kj , and 

),(Normal~ )HA(
3

)HA(
3

)HA(
)(,3 τbb kj . 

This model defines a curvilinear (linear and quadratic) function of the preceding 14-day average trend in 

water level for the subregion, )(),( tskjr , with model parameters )HA(
)(,1 kjb  and )HA(

)(,2 kjb .  Bird abundance is also a 

function of degree of departure from the trend, measured as the root mean squared error )(),( tskjr′  of the 

regression, with model parameter )HA(
)(,3 kjb .  As we did in the food limitation model, we modeled the 

regression parameters as random effects drawn from normal distributions with respective fixed means 

)HA(
1b , )HA(

2b , and )HA(
3b  and precision parameters )HA(

1τ , )HA(
2τ , and )HA(

3τ .  Lastly, the model included the 

same set of random effects )(,0 kjb , )(,pre kjγ , )(,nest kjγ , and )()),(( tskjiε  used in previous models. 

 

5.4.7 Global model 

 Each of these hypotheses (I – IV) can be shown to be a special case of a global model: 
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 (included but not shown are associated higher-order hierarchical components).  Because it is unlikely that 

bird foraging patterns arise from any single mechanism, we used the global model to consider these 

hypotheses individually and in combination with others.  During construction of the global model, we 

analyzed residuals for evidence of systematic lack of fit, for example, spatio-temporal patterns of 

autocorrelation or interactions among model effects, and we considered any additional model structure 

needed to account for it. 

5.5 Model fitting 

We were primarily interested in the evaluating the relative plausibility of the four hypotheses 

relating patterns in wading bird density to local and regional factors. Wading bird abundance, however, is 

known to vary seasonally. Therefore, we developed two species-specific binary (0, 1) indicators variables 

for pre-nesting (Great Egret: December-January and White Ibis: December-February) and nesting time 

periods (Great Egret: February-May and White Ibis: March-May) and included these as “nuisance” 

variables in all candidate models. That is, we were not interested in evaluating the relative support of 

hypotheses of whether or not there was seasonal variation because is was known to occur.  In addition, we 

eliminated data for the months of October and November because they were collected inconsistently 

among regions and only for three years, 1985, 1992, and 1993. 

5.5.1 Mixed model analysis in SAS 
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Previous analyses of the SRF data (Russel and Portier 1989) suggested that the data was spatially 

autocorrelated, which would preclude the use of traditional regression techniques (Sokal and Rohlf 1995).  

Thus, we initially fit a global (i.e., model containing all of the predictors) linear regression model of Great 

Egret and White Ibis density.  An evaluation of the residual plots from each global model ordered by 

subregion indicated significant dependence among subregions for both Great Egret and White Ibis.  To 

account for the spatial autocorrelation, we examined relationships between wading bird densities with 

hierarchical models.  Hierarchical models differ from more familiar regression techniques in that 

autocorrelation among cells within subregions, defined as lower level units (cells) within upper level units 

(subregions), is incorporated by including random effects for lower level intercepts and slopes (Snijders 

and Bosker 1999).  For our study, random effects are estimates of the variability of the effect of cell-

specific (lower level unit) characteristics on wading bird density among subregions (upper level units).  

For example, a water level random effect estimates the extent to which the relationship between water 

level (i.e., the regression slope) and wading bird density varies from subregion to subregion.  Fixed 

effects are estimates of the average effect of cell-specific characteristics across regions and the effect of 

annual characteristics (e.g., species-specific abundance in the breeding bird survey; Table 5) on wading 

bird density. All models were fit using SAS Proc Mixed (Littell et al. 1996). 

Prior to evaluating the fit of our candidate models, we evaluated the relative-fit-of two different 

variance structures for the hierarchical model random effects using the global (all predictors) model. The 

first variance structure modeled each random effect as independently normally distributed and the second 

modeled covariances among random effects.  To assess the relative fit of each model, we calculated 

Akaike’s Information Criteria (AIC; Akaike 1973) with the small-sample bias adjustment (AICc; Hurvich 

and Tsai 1989). AICc is an entropy-based measure used to compare candidate models for the same data 
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(Burnham and Anderson 2002), with the best fitting model having the lowest AICc. The number of 

parameters used to estimate AICc included the fixed effects, random effects, and random effect 

covariances when included in the error structure (Burnham and Anderson 2002). The best fitting variance 

structure for each species then was used during the evaluation of the relative plausibility of the candidate 

models. Eleven candidate models representing various combinations of our four hypotheses were fitted 

using hierarchical linear models for each species. The relative plausibility of each candidate model (i.e., 

hypothesis) was assessed by calculating Akaike weights as described in Burnham and Anderson (2002).  

These weights range from 0 to 1, with the most plausible candidate model having the highest weight. 

To allow for ease of interpretation of the relative magnitude of fixed and random effects, we 

plotted empirical Bayes (shrinkage) estimates (Snijders and Bosker 1999) of the relationship between 

water level characteristics and Great Egret and White Ibis density for each subregion using the best fitting 

model. We also estimated standardized coefficients to facilitate comparisons among predictor variables. 

The precision of each fixed and random effect was estimated by computing 95% confidence intervals 

based on a t-statistic with n-1 degrees of freedom (Littell et al. 1996).  

We evaluated goodness-of-fit for each model by examining (1) normal probability plots of the 

lower level residuals and (2) plots of the empirical Bayes residuals by their corresponding chi-square 

scores with Q-1 degrees of freedom, where Q is the number of upper (i.e., subregion) level effects 

included in the candidate model (Bryk and Raudenbush 1992). 

Model evaluation.- For each species, we assessed the predictive ability of each model in the 

confidence set using leave-one-out cross validation. Cross validation estimates are nearly unbiased 

estimators of out-of-sample model performance (Funkunaga and Kessel 1971) and provide a measure of 

overall predictive ability without excessive variance (Efron 1983).  Hence, they should provide an 
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estimate of the ability of the models to estimate bird density under conditions similar to those under which 

models were parameterized.  During this procedure, the observations from one month and year 

combination (e.g., February 1990, May 1995) were excluded from the dataset, the composite hierarchical 

model was fit with remaining data, and the density of birds at each cell in the left out month and year 

combination were predicted using the fitted model. This procedure was repeated for each month and year 

combination (i.e., a total of 111 times), and error was estimated as the difference between the predicted 

and observed bird density. Relative accuracy was estimated as the root mean square error across samples. 

5.5.2 Zero-inflated estimation using PyMC 

 In the majority of the cells from any given SRF survey, no birds were observed. For this reason, 

we believed that a zero-inflated model of abundance (Welsh et al. 1996) may prove more effective then 

the hierarchical linear models previously described. The complex nature of a hierarchical zero inflated 

model precluded the use of traditional maximum likelihood methods. Thus we fit a hierarchical zero 

inflated model using Markov Chain Monte Carlo (MCMC) methods as implemented in PyMC software 

version 1.0 (Fonnesbeck 2006). 

 Although advances in computing have increased the complexity of the problems that can be 

tackled using MCMC, problems involving large amounts of data remain intractable in some cases. 

Therefore, it was necessary to reduce the complexity of the problem by summarizing the data over the 

subregions described earlier.  Since many of the hypotheses being investigated involve processes 

occurring at the subregion level, we believed that the impact on the model would be minimal.  In fact, the 

predictors remained unchanged for each hypothesis except for the model representing the food limitation 

hypotheses. The food limitation linear hierarchical regression model used a cell level measure (‘water 

depth during the survey’) that could not be used in the zero inflated models. However, the water depth 
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during the surveys of cells within a region were highly correlated (Pearson r = 0.86) with the subregion 

level intercept from the hydrology regression of the 14 days prior to the survey.  Therefore, we deemed it 

reasonable to use this value as an indicator of the availability of food on the subregion wide level. 

 The zero-inflated model has two parts (henceforth, sub-models). The first part predicts the 

percentage of the subregion occupied, which is estimated as the number of occupied cells observed in a 

subregion during a survey versus the total number of cells surveyed in that subregion. The second part 

predicts the average abundance in occupied cells only as estimated by the average abundance in occupied 

cells in the subregion. The combination of these two sub-models is used to predict the mean cell level 

abundance for each subregion.  

 For each part of the model, we developed 5 candidate sub-models representing each hypothesis 

and a global model.  Model structure and parameters corresponding to each hypothesis were identical to 

the initial analysis except as noted above. Identical to the hierarchical linear regression model (discussed 

above), parameters for the food limitation and hydropattern alteration hypotheses were allowed to vary 

randomly across subregions but were assumed to have common means and standard deviations. Each 

model was fit over 20,000 iterations with a 10,000 iteration burn in. We evaluated relative plausibility of 

each candidate sub-model using Akaike weights (Burnham and Anderson 2002) as described earlier. We 

evaluated goodness-of-fit for the sub-models using the discrepancy measure produced by PyMC and 

described by Gelman et al. (1996).  

Model evaluation.- As discussed above, the computer intensive nature of MCMC methods 

precluded the use of leave one month per year out cross validation. Thus, we evaluated the relative 

predictive ability of the best fitting models with two methods. We first estimated the within sample 

prediction error by comparing model predictions using the mean parameter estimates (from the MCMC 
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posterior distributions) to the observations that were used during model fitting.  Note that the estimate of 

within sample error is known to be a negatively biased (optimistic) estimator for model performance 

(Johnson and Wichern 1992) but provides a relatively quick estimate of model performance when 

examining several complex models with large data sets, such as those used here.  We also evaluated out 

of sample predictive ability using two-fold cross validation. Here we divided the data randomly into two 

parts. The first part was used to fit the most plausible combined model as determined via Akaike weights 

(above).  The posterior means of the parameters from this fitting were then used to predict the values of 

the held-out data, and error was estimated as the difference between predicted and observed. Relative 

accuracy was estimated as the root mean square error across samples. 

5.6 Visibility estimation 

To evaluate visibility (detection) rates on the SRF, we designed dual-observer trials, which were 

flown by biologists from ENP during February and March, 2004.  During these trials, 1 observer was 

seated in the right front seat (RF) and the other observer in the right rear seat (RR).   Three observers 

(labeled observer E, L, or M) rotated between the front and back seat positions over the course of 8 survey 

days. Observers independently recorded birds seen by species and did not communicate or otherwise 

provide cues to one another.  We matched observations of the observers by synchronization of the 

observation times, assuming that observations taken within 10 s (approx. 400 m at aircraft speed) by 2 

observers were of the same group.  The observations were used to construct detection histories by each of 

9 species or species groups: Great Egrets (GREG), White Ibis (WHIB), Great Blue Herons (GBH), small 

dark herons (SDH), small white herons (SWH), Wood Storks (WS), Glossy Ibis (GI), Roseate Spoonbills 

(RS) and Great White Herons (GWH) for each observer-position, with ‘11’ denoting detection by both 

observers, ‘10’ by the RF but not RR, ‘01’ by RR but not RF, and ‘00’ by neither.  To model detection 
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probability we considered only observations in which birds were known to occur; that is, we conditioned 

on the histories 11, 10, and 01.  Thus, we modeled the effects of species, observer, and position effects via 

a conditional, single-trial multinomial, with event probabilities as: 
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where ),( kjpi  is the probability of encounter for species i by observers j=o1, o2  in the front (k=0) and 

rear (k=1) positions, respectively, and 
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Additionally, we considered models in which probability of detection was influenced by group size and 

water conditions.  First, we calculated iC  as the average of RF and RR observers’ count s when 11=ix  

and as the count for the observer that detected the group otherwise.  We then summarized the data by 5 

group-size categories: 1=iC ; 51 ≤< iC ; 105 ≤< iC ; 5010 ≤< iC ; and 50>iC .   Finally, observers 

recorded water conditions in 5 categories: dry (DD), dry transitional (DT), wet-dry (WD), wet-transitional 

(WT), and wet (WW).  We summarized detection history frequencies for each species by combinations of 

front and rear observers, group-size categories, and water conditions, and fit alternative models with 

Markov chain Monte Carlo (MCMC) (Gilks et al. 1996), using information theoretics (Akaike 1973, 

Spiegelhalter et al. 2002) to compare alternative models.  

5.6.1 Evaluation of effect of visibility bias on bird abundance patterns 
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 Previously cited studies suggest that the incomplete detection of birds during sampling potentially 

affects models of wading bird abundance and distribution and hence, statistical inferences regarding 

population trends and bird distribution patterns. We evaluated the influence of incomplete detection by 

conducting relatively simple simulations of SRF sampling protocols using known abundances and 

population growth rates for Great Egret and White Ibis. The simulation models began at year one with a 

specified number of birds in the population. The simulated sampling crew consisted of two observers in 

the rear seats of an aircraft that were randomly assigned prior to the survey and counted during the 

sampling period (i.e., the observers did not change during the survey). The number of groups (flocks) of 

birds foraging during the survey was modeled as a function of the total number of birds in the population 

(Table 4).  The number of birds per flock were randomly generated assuming a negative binomial 

distribution with a mean equal to the population size divided by the number of groups, and variance that 

was modeled as a function of the mean (Table 4). During sampling, individual groups of birds were 

randomly assigned to an observer. The detection of individual groups then was randomly determined 

using a Bernoulli distribution with probability of success estimated as a function of the observer, location 

(rear seat), species, and group size using the best fitting model estimated above.  If a group was detected, 

we assumed that all members were counted accurately. The observed population size was estimated as the 

sum of all birds detected by both observers. During the next time step, the population size changed 

assuming fixed population growth rate (λ) that varied with simulation scenario (Table 4). This population 

then was sampled using the same protocol with two randomly assigned observers. The process was 

repeated until the specified timeframe was reached (Table 4) and the known and observed population 

trend was estimated by fitting a model of the known and observed population size, respectively vs. survey 

year. Detection of a trend was assumed when P < 0.10. 



 

 

51

51

 We evaluated the relative influence of population size, rate of population change, and number of 

years surveyed on the detection of population change by evaluating all possible combinations of 3 initial 

population sizes, 9 population growth rates, and 5 survey end times. For each scenario and species, we ran 

1000 replicate simulations and estimated the correct detection rate, defined as correctly detecting a 

positive or negative change in population change; the false detection rate, defined as falsely detected a 

positive population trend when it is negative or there is none and falsely detected a negative population 

trend when it is positive or there is none; and the bias in the slope of the regression, which was estimated 

as the known slope minus the observed slope. 

 5.7 Evaluation of the relationship between SRF counts and annual nesting effort 

As indicated earlier, one of our objectives was to develop performance measures based on the 

relationship between wading bird distribution and nesting effort.  However unlike the wading bird 

distribution modeling, we had no a priori expectation or hypotheses regarding the nature of the 

relationships between bird nesting effort, SRF counts, and hydrologic variables. Therefore, we conducted 

an exploratory analysis by fitting all subsets of models relating month and region-specific SRF bird 

counts and hydrologic variables to region-specific counts of nesting effort. Separate nesting effort data for 

WCA regions 2 and 3 were not available (i.e., counts were combined for both regions), so we combined 

the SRF counts for these regions and treated these as a single region in the modeling procedure. Similar to 

the zero-inflated modeling, we also averaged the water level regression measures across cells within 

regions to obtain a single value for each month and region. Nesting count data also were not available for 

BCNP so the SRF data for this region were not used during the modeling. 

Similar to the bird distribution modeling, we used hierarchical linear models to relate bird nesting 

effort to SRF counts and water level statistics. Prior to exploratory data analysis, we evaluated the relative 
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fit of two the different variance structures (as described above) for the hierarchical model random effects 

using the global (all predictors) model and selected the best via AICc. The best fitting variance structure 

for each species then was used during the exploratory analysis. For each species, we then fit all possible 

subsets of predictor variables that included: total SRF counts for each month in the nesting season, the 

mean of 14 day water level intercept parameter, the mean root mean squared error of water level 

regression, mean slope of water level change for 14 days prior to survey.  Goodness-of-fit for the best 

fitting model was assessed as described above. 

6.0 RESULTS 

6.1 Descriptive summary 

 From the cumulative SRF database of observations, we had 438,468 observations available to us 

from 336 surveys conducted between 1985 and 2003. In the course of preparing these observations for 

analysis, a number of observations were excluded due to the issues with data integrity and clarity detailed 

above. Additionally, the model structure required some additional editing of the data. The incorporation 

of data from the SFWMM required the exclusion of observations in areas where the SFWMM did not 

overlap with the SRF. The introduction of a three year lag for some of the parameters required excluding 

data from the first three years of the survey. Finally, surveys from October and November were not 

considered because they were only surveyed in two of the available years. The results of each of these 

removals and the numbers of observations removed are summarized in Table 5.  

 After the necessary editing, there were 14 years and 109 months of surveys. Graphs of counts of 

each species by month, year, and region can be found in Appendix A. The mean counts for each species 

by region can be found in Tables 5-7.  The Everglades National Park (ENP) region was the most often 

surveyed, followed by the Water Conservation Areas (WCA) with Big Cypress (BCNP) surveyed the 
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least.  Survey protocols varied between regions.  Some species were not surveyed or were pooled into 

larger categories dependent upon that region’s protocol. For example, while the WCA and BCNP regions 

maintained some separate observations of Cattle Egrets, ENP lumped all of those observations into the 

“Small White Herons” category. 

 Of our focal species, the White Ibis was the most abundant. There was more variation in the count 

of White Ibises than in the counts for Great Egrets, which were the second most abundant species in the 

surveys.  The mean count per cell was highest for White Ibis at 6.5 birds per cell. The average count for 

Great Egret was 2.6 birds per cell. Despite being less abundant, Great Egrets were detected on average in 

33% of cells per survey, while White Ibises were detected in only 14% of surveyed cells. White Ibises 

were the most abundant in the WCA region. Great Egrets were most abundant in the ENP.  BCNP had the 

lowest mean counts for both species among the three regions. 

6.2 Subregion classification 

Cluster analysis of cell vegetative and water level characteristics indicated that the optimal group 

count based on the cell characteristics used was approximately 52.  These groups were further refined 

based on the judgment of experts resulting in 60 subregions in the final classifications (Figure 5).  These 

subregions were used during the modeling of wading birds detailed below.  

6.3 Model fitting 

6.3.1 Mixed models in SAS 

An examination of the normal probability plot of lower level residuals from all candidate 

hierarchical linear models predicting Great Egret and White Ibis density indicated that the residuals 

departed from expected (i.e., the plots were curvilinear rather than linear).  To normalize these data, we 

log transformed the data (i.e., ln[density + 0.001]) and re-fit the candidate models. An examination of 
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normal probability plots of lower level residuals and the chi-square plots of the empirical Bayes residuals 

from each candidate model fit with the transformed data indicated that the fit of the models was 

reasonable.  However, the residual plots for both species had longer lower tails than expected presumably 

due to the large number of zeros in the data. 

Great Egret 

The most plausible model of Great Egret density was the gobal model containing all of the 

predictors: SRF cell water depth during survey and quadratic term, slope of water level change for 14 

days prior to survey and quadratic term, root mean squared error of water level regression for 14 days 

prior to survey, average abundance of Great Egrets during nesting season in year t-2, and the BBS index 

for areas outside of the SRF (Table 10). There was virtually no support for the other candidate models; 

hence we based all of our inferences on the global model. 

Great Egret density was nonlinearly related to both cell water level during the survey and slope of 

water level change for 14 days prior to survey (Table 11), but relationships were highly variable among 

regions (Figures 6 and 7, top).  The water level random effect suggested that the influence of water level 

(i.e., the parameter estimate) and drying rate varied by more than 82% (
3.292

 7.341 ) and 99% among regions, 

respectively (Table 11).  Great Egret density was negatively related to the root mean squared error of 

water level regression suggesting a negative relationship with the magnitude or frequency of drying 

disruptions in the 14 days prior to survey.  Great Egret density also was negatively related with the BBS 

index for areas outside of the SRF, which was consistent with the expectations under the distant magnet 

hypothesis.  In contrast, density was positively related to the average Great Egret density during the 

nesting season in year t -2. The standardized estimates suggest that water level during the survey had the 
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greatest influence on Egret observed densities, whereas BBS index for areas outside of the SRF had the 

least. 

Predictions based on the global model (Table 11) suggested an optimal water level and drying rate 

for Great Egrets. On average, we predict that Egret densities are greatest at cell depths of approximately 

0.6 m (Figure 6 bottom), but the optimal values varied widely among regions (Figure 6 top). The variation 

was presumably due to differences in microtopography and hence, error in the water-level estimates rather 

than a variable response by birds. Similarly, we predict that Egret densities are greatest at a drying rate of 

approximately 0.01 m per day (Figure 7 bottom). 

White Ibis 

The most plausible model of White Ibis density also was the global model containing all of the 

predictors (Table 12).  Similar to Great Egrets, virtually no support existed for the other candidate models, 

so we based all of our inferences on the global model. 

White Ibis density was nonlinearly related to both cell water level during the survey and slope of 

water level change for 14 days prior to survey (Table 13), and the relationship also was highly variable 

among regions (Figures 8 and 9, top). We estimate that the relationship between White Ibis density and 

water level and drying rate varied by more than 250% and 77% among regions, respectively (Table 13).  

White Ibis density also was negatively related to the root mean squared error of water level regression and 

was negatively related with the BBS index for areas outside of the SRF.  These relationships were 

consistent with our expectations.  However, White Ibis density was negatively related to the average 

White Ibis density during the nesting season in year t -3, which was not consistent with our expectations.  

In contrast to the Great Egret models, the standardized estimates suggest that water level drying rate for 
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the period 14 days prior to the survey had the greatest influence on White Ibis observed densities, and 

White Ibis density during the nesting season in year t -3 had the least (Table 13). 

Predictions based on the model global model (Table 13) suggested optimal water levels and drying 

rates for White Ibis that differed for Great Egrets.  On average, we predict that White Ibis densities are 

greatest at cell depth at 0.01 m (Figure 8 bottom), but the optimal values varied widely among regions 

(Figure 8 top). As with the Great Egret, we believe that the variation is probably due to variation in 

microtopography.  We also predict that Ibis densities are, on average, greatest at a drying rate of 

approximately 0.016 m per day (Figure 9 bottom). 

Model evaluation.- Leave one month-year out cross-validation of the best fitting Great Egret and 

White Ibis models indicated that it was relatively poor at predicting wading bird densities. Root mean 

squared errors for Great Egret and White Ibis were 8.6 and 12.2, respectively and represented more than 

200% error, on average, from the average bird density per cell. An examination of the cell by cell 

predictions indicated that most of the error was due to the inability of the models to predict large 

concentrations of birds on individual cells. 

6.3.2 Zero-inflated estimation 

Great Egret 

 The most plausible sub-models for presence and density of Great Egrets were the global models. 

Similar to the results from the first analysis, virtually no support existed for the individual hypothesis 

models.  Model goodness of fit was poor for the occupancy sub-model and good for the density sub-

model.  Posterior estimates of the common parameter means are summarized in Tables 13-14 and are 

similar with the hierarchical linear models in terms of relative magnitude and direction. 
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White Ibis 

 Models for the White Ibis followed a similar pattern. The global sub-models received virtually all 

of the weight. Goodness of fit was again poor for occupancy and good for density sub-models. Posterior 

estimates of the common parameter means (Tables 15-16) were similar to the initial analysis. As in the 

initial hierarchical linear regression analysis, the regional recruitment parameter was negative.  

Model evaluation.-  Mean within sample error for both Great Egret and White Ibis was high with 

an RMSE of 7.46 birds or 280% of the mean density 2.87 per cell and 1.55e+16 birds per cell, 

respectively. However, these errors were largely due to extreme predictions in areas with rapidly receding 

water levels. The median within sample error were much lower at 0.427 and 0.338 birds for Great Egret 

and White Ibis, respectively. These errors represented less than 5% of the mean count of birds per cell for 

both species. Two-fold cross validation errors also showed great increases in accuracy compared to the 

hierarchical linear model with medians of 0.433 and 0.230 for Great Egret and White Ibis, respectively. 

6.4 Visibility trials 

We successfully completed 8 survey days with dual observers during February and March 2004.  

Surveys generally commenced at approximately 0730h and were completed by 1500h (EST).  Front and 

back observers were paired throughout, rotating as previously described; however, in the first (morning) 

portion of the 3 March survey, data for the back seat were lost due to recording error, and the front seat 

observations were therefore excluded from analysis.  We obtained a total of 4152 detections (occasions 

where 1≥  bird were counted) by at least 1 observer, in frequencies of 1373, 1984, and 795 among the 01, 

10, and 11 observer-position histories, respectively (Table 18).   The most frequently detected species 

were GREG (2424 detections) followed by WHIB (1001), with the remaining 7 species accounting for 
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727 detections.  Estimated size of detected groups ranged from 1 to 275, with group sizes highest for 

WHIB and GI.  

All the MCMC models fit the data; however, a model including species, observer, and position 

interactive effects with additive group size effects was superior as judged by model selection criteria 

(Table 19).  This model produced species-, observer-, and position-specific estimates of detection 

probability and an estimated slope on the logit scale for group size (Table 20).   We used the posterior 

parameter values from this model to generate predictions, as follows.  First, for each combination of 

candidate predictors (species, observer, position, and group size), we drew parameter values from normal 

distributions with mean and SD specified by the posterior parameter estimates.  We then combined each 

simulated parameter value with the candidate predictor to form a prediction under the logit model, 

repeated this process 10,000 times to form posterior predictive distributions for each combination of 

candidate predictors, and summarized the results for selected combinations of predictors (Figures 10a-c).  

These reveal substantial variation among species, with GREG and WHIB having higher predicted 

detection probabilities than other species (Figures 11a; note that the prediction for GWH should be 

discounted, because only 5 GWH were detected in total).  Detection probability also varied across 

observers and seemed to depend on position in the aircraft, with detection higher for observer M and in 

the front seat position (Figure 10b).  Finally, predicted detection varied with group size, with increasing 

detection with increasing group sizes; however, we note that this analysis does not take into account 

counting inaccuracies but rather assumes that observers perfectly counted a group if it was detected 

(Figure 10c).   
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6.4.1 Evaluation of effect of visibility bias on bird abundance patterns 

Simulations of the effect of incomplete detection on the evaluation of wading bird population 

trends indicated that the effect differed with initial population size, rate of population change, years 

surveyed, and species. In general, the correct detection rates were positively related to initial population 

size, rate of population change, years surveyed and were greatest for White Ibis (Figures 11 and 12). 

Correct detection rates were lowest for 3 survey years and were generally less than 60%, on average, 

across species and growth rates (Figures 11 and 12). After 7 years, correct detection was 100% when 

population growth rates were relatively high (+/- 5% and 7% per year), but were much lower for smaller 

growth rates. Similarly, false detection rates were highest when growth rates and number of survey years 

were low and the were greatest under no population change (Figures 13 and 14). The simulations suggest 

that false detection rates are as high as 10% even after 11 survey years for both species under no 

population change.   

An evaluation of the bias in the parameter estimates indicated that they differed very little with 

initial population size (less than 10%) and with number of survey years (Figure 15). Observed estimates 

of the magnitude of the population change (i.e., the slope) always were less than the known and the 

magnitude of the bias varied with population growth rate. Under the greatest growth rates (λ = 0.93 and 

1.07), the observed slope underestimated the true rate of change (+/- 0.07), on average, by 0.035 and 

0.021, for Great Egret and White Ibis, respectively. This represented 50% and 30% underestimates in the 

true population trends, respectively.  

6.5 Evaluation of the relationship between SRF counts and annual nesting effort 

  The best-fitting model relating Great Egret nesting effort to SRF count and hydrologic variables 

contained Great Egret SRF counts in February and May (Table 21). The model accounted for 44% of the 
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variation in Great Egret nesting effort. Interestingly, nesting effort was negatively related to SRF counts 

in February and positively related to counts in May. The model was fairly poor at explaining variation 

among regions as 62% of the remaining variation was due to differences among regions. 

 The best-fitting model relating White Ibis nesting effort to SRF count and hydrologic variables 

contained White Ibis SRF counts in March and April, the mean of root mean squared error of water level 

regression for 14 days prior to survey in April, and the mean of slope of water level change 14 days prior 

to survey in May (Table 21). In contrast to Great Egret, the model accounted for 86% of the variation in 

White Ibis nesting effort. Nesting effort was positively related to the March and April SRF counts, but the 

relationship for March varied 238% among regions (Table 21). White Ibis nesting effort was negatively 

related to the root mean squared error of water level regression during April suggesting a negative 

relationship with the magnitude or frequency of drying disruptions during April. Conversely, White Ibis 

nesting effort was positively related to the mean of slope of water level change 14 days prior to survey in 

May suggesting a positive relationship with increasing water levels. 

 

7.0 DISCUSSION AND RECOMMENDATIONS 

7.1 Modeling outcomes 

 Our modeling supports the belief that multiple factors described in the competing hypotheses 

affect wading bird abundance and distribution. Under both approaches and for both species, we found that 

a model that incorporated effects from all of the hypotheses was the most plausible. These models also 

received so much of the weight that the individual hypothesis models could be virtually ignored when 

making inference about the system.  
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We found that the impact of the factors from each hypothesis often varied widely spatially but 

very little temporally. Our spatial effects were based around a nested hierarchy of ownership regions and 

subregions that represented vegetative and hydrologic divisions within those regions.  It is unsurprising 

then that functional relationships between birds and factors on the landscape should vary within these 

subdivisions.  

Relationships described by the parameters of the models were generally what we expected based 

on the hypotheses we were investigating. However, the negative relationship to the regional recruitment 

parameter for White Ibis in both modeling approaches was unexpected. Whenever a statistical 

relationship fails to match with biological expectations, it is possible to craft plausible explanations (i.e., 

some unknown correlated effect or a temporal trend).  It seems very unlikely that large numbers of White 

Ibises in the nesting season are actually having a negative impact on numbers three years later. 

Tests of the ability of our models to make predictions produced mixed results.  For the majority of 

the observations, error rates were fairly low. However, our models were unable to account for some 

extreme observations and areas with unusually rapid drying rates. This trend held true for our hierarchical 

linear models and the zero inflated models.  Mean error rates were similar for both modeling approaches. 

We had hoped that the zero-inflated models would be more able to handle the patchy distribution of the 

SRF observations.  However, in order to fit these models, we necessarily used summarized subregion data 

rather than the cell by cell information available to the hierarchical linear models.  It seems likely then 

that the gains from zero inflating the model are mitigated by the information lost in summarizing the data. 

7.2 Difficulties with the SRF 

 There are few surveys of similar temporal and spatial breadth as the SRF.  The SRF started and 

continues as a decentralized effort, in which data collection and data management responsibilities are 
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divided between two organizations.  Compared to centrally-controlled efforts, decentralization imposes 

fewer constraints on the survey teams, and this has undoubtedly been helpful in maintaining this 

ambitious scope of survey coverage.  Whereas many of the day-to-day survey logistics can and must 

remain at the discretion of the survey teams, we believe that three components of the survey are 

compromised by a lack of centralized organization:  (1) establishment and enforcement of consistent 

survey protocols, (2) flight recording and survey documentation, and (3) data assembly and quality 

review.  Greater coordination in each of these areas would greatly enhance the value of information 

returned by the survey. 

7.2.1 Inconsistent Survey Protocols  

As mentioned earlier (see Literature Review), we found documented evidence of different survey 

protocols in use by different survey crews:  e.g., aircraft altitude, georeferencing methods, and type and 

specificity of collected data.  Furthermore, during the course of our analyses, we uncovered other 

evidence of inconsistent survey protocol among or within survey units.  For example, the occurrence of 

overlapping bird locations among multiple days of a single survey or between crews working in different 

survey areas demonstrated the absence of a protocol that prevents multiple sampling, or at least one that 

describes the manner in which these cases are to be resolved at the data compilation stage. 

 The principal outcome of inconsistent survey protocol is the introduction of unknown sampling 

effects in the data.  These “nuisance” effects often are confounded with biological effects of interest and 

are not necessarily removable through analysis.  Our recommendation is that a group comprised of survey 

participants and other interested parties establish and document a set of survey protocols to be applied to 

the entire survey effort.  This group should meet regularly to review the protocols, adjusting them in a 

consistent manner as needed.  The protocols should address every aspect of the survey that influences 
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how the resource is observed and how the observations are interpreted.  These aspects would include, but 

are not limited to, spatial and temporal design of the survey; allowable survey conditions; composition 

and roles of the crew; direction, speed, and altitude of the aircraft; rules for observing, interpreting, and 

recording bird and habitat data; rules for monitoring and recording aircraft, environmental, and observer 

conditions; and formats for the recording of data. 

 We were often unable to determine what protocol had been followed because of insufficient 

documentation about the survey flight (e.g., what altitude was flown?; how many observers were on the 

flight and what were their roles?), and we could not resolve ambiguities in the data because real-time 

conditions of the flight had not been recorded (e.g., were birds truly not seen in a cell, or was the cell not 

completely traversed?).  We ultimately resolved some of these questionable situations by establishing 

arbitrary rules that altered or removed elements from the data, but filtering the data in this way introduced 

some unknown degree of variation.  As part of the survey protocol above, we recommend the collection 

and central organization of data that describe the basic conditions and parameters of each flight, perhaps 

those recorded at the start of each flight.  The changing status (time, speed, altitude, location, orientation) 

of the aircraft should also be recorded in a systematic fashion, either continuously or at discrete intervals, 

but not less frequently than at the end of each transect. 

7.2.2. Data Entry and Management 

 The different protocols used in assembling and verifying the data also caused problems in 

analysis, forcing us to make arbitrary decisions about which data could be used.  A database provided to 

us that contained numerous, obvious errors for one part of the survey was later replaced with a “cleaned” 

version, but how these errors were corrected (long after the surveys were flown) was not made clear to us, 

and it suggested the possibility of similar, unaddressed data quality issues throughout the entire survey.  
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We recommend that a means be developed of transmitting the data to a central location where they can be 

assembled and archived.  While much quality checking can be performed by the survey crews themselves 

immediately after the survey, persons knowledgeable in the operation of the SRF should be responsible 

for conducting comprehensive quality checks of the data, corresponding as needed with the flight crews to 

resolve questionable values. 

7.2.3 Heterogeneity in Detection Rates 

Our dual-observer experiment indicated that detection probabilities for the SRFs may be lower 

than previously suggested.  Previous authors have suggested that detection rates for wading birds were 

approximately 85% (Hoffman et al. 1990).  However, Russell and Portier (1999) estimated detection rates 

of 0.54 for “large dark birds” and 0.26 for “large white birds.”  Our data indicate rates of 40-60% or even 

much lower, depending on species and other factors, and are certainly more in agreement with the 

estimates of Russell and Portier (1999) than with previous assertions.   

This under-detection of birds from the SRF would be less of a concern if detection rates could be 

assumed constant. Unfortunately, our analyses strongly suggest that this assumption is invalid. Use of the 

SRF data for comparative purposes, and modeling must take into account that detection of groups varies 

by species, in relation to group size (so, smaller groups tend to be missed more frequently), and in relation 

to operational issues (observer identity, position of observer in the aircraft).  Many other controllable 

(e.g., aircraft altitude) and uncontrollable (e.g., year effects) factors that we were not able to examine may 

also affect detection rate.  To the extent that these factors are unaccounted for, extreme caution must be 

exercised in interpreting comparisons based on raw SRF data.  In particular, comparisons between species 

with greatly different detection rates, or combination of data across species, or inferring habitat quality 
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through relative comparisons of foraging group size distributions, may be strongly confounded, unless 

detection is estimated and accounted for. 

Our dual-observer experiments could only address factors that affect the detection of groups of 

birds and did not address the accuracy of counting for groups that are detected.  Under- or over-counting 

of groups obviously would bias estimates of abundance, even if group detection was 100%; therefore, our 

estimates of detection may, in fact, be optimistic assessments over the accuracy of the SRF as abundance 

measures.  Finally, however, we note that technical limitations on the dual observer experiments and data 

recording allow the possibility that some ‘detection histories’ were misclassified, which conceivably 

could result in underestimation of detection. We doubt that such conditions were common enough to 

substantially influence our results, particularly our modeling of sources of variation in detection rates.  

Nevertheless, we suggest replication of these experiments, over a larger span of spatial and temporal 

conditions, and with improved technology for classing detection histories.  Indeed, estimation of 

detection—by dual observer experiments, ground calibration, or other means—could be incorporated into 

operational surveys via a double sampling design (Thompson 1992), much in the same way as is done for 

surveys of waterfowl (Pospahala et al. 1974). 

Our simulation modeling of the effects of incomplete and heterogeneous detection suggest that 

huge biases can occur in estimates of model parameters from data that have not been corrected for 

detection.  This is apparent in even simple models of temporal or spatial difference (i.e., trends); the 

impacts would be even more profound in models designed to estimate and predict the impacts of physical 

and biotic factors, such as those that we have considered here.  Only under the most fortuitous 

circumstances would incomplete, heterogeneous detection have a neutral effect on model parameters and 

predictions.  We can easily envisage situations in which detection rates could interact with physical or 
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biotic predictors in a form of “demonic intrusion” (Hurlbert 1984) that either mask true relationships, or 

create apparent (but nonexistent) ones. 

Our simulations were simplifications of the sampling process that did not include all of the factors 

that are likely to affect population estimates. For example, we assumed that all the birds in a group were 

counted if a group of birds were detected, whereas previous studies suggest that counts of birds can be off 

by as much as 70% (Frederick et al. 2003).  Nonetheless, the simulations indicated that incomplete 

detection can have a substantial effect on the detection of population trends, particularly at relatively short 

time intervals (3 years or less) and small changes in population size. Given the effect of sampling error 

(i.e., random variation) on the detection of population trends (Thompson 1992), we expect that detection 

of actual trends with the SRF data would require longer time intervals and larger changes in actual 

population sizes.  

7.3 Performance measures based on the SRF 

As described earlier, one of our tasks was to develop performance measures for wading birds in 

the Everglades system based on the SRF survey data.  More specifically, such performance measures 

would be used to “gauge the progress and success of the Everglades restoration (§1.1). There is also 

specific interest in “performance measures for CERP based on relationships between wading bird spatial 

distributions and annual nesting effort (§1.2). Our analyses of the latter from SRF and nesting surveys 

indicate a relationship between nesting effort and bird distribution for Great Egret and White Ibis. This 

suggests that SRF bird counts during the breeding season can be used to estimate nesting effort for 

gauging progress of CERP efforts using the best-fitting models.  However, we caution that these models 

were the result of exploratory analysis and may represent spurious statistical relationships. If the 

performance has to directly relate nesting effort to SRF counts, we believe that better models may be 
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developed by incorporating additional nesting and SRF data after 2000, carefully considering the 

underlying biological mechanisms, and developing specific hypotheses regarding the relationship between 

nesting effort and wading bird abundance and distribution.  

As an alternative to directly relating nesting effort to SRF counts, we think that a performance 

measure along the lines of the first definition—to “gauge the progress and success of the Everglades 

restoration”—is feasible based on our wading bird distribution models and analyses.  Our best supported 

model is the “global” model described in §5.4.7, which predicts cell-level bird abundance assuming that 

all of the major physical and biological factors considered under our alternative models, are operating. 

Given that we now have estimates of model coefficients (or, for random effects, of mean and dispersion 

factors), the implementation of the models for prediction and adaptive management would be 

straightforward: 

• A vector of initial conditions (current bird distribution and hydrologic conditions) would 

be specified. 

• A range of alternative hydrologic scenarios would be specified that would result in 

spatially-explicit values for hydrologic conditions. 

• The initial conditions and hydrologic conditions under each scenario would be used as 

inputs to our global models, and each sub-model under specific, alternative hypotheses. 

• The above would result in cell-specific predicted values for bird abundance, which could 

be considered to be the performance measure. Under optimal decision making, these 

performance measures (predictions) would be aggregated to form a composite measure, 

possibly involving differential weighting to over or under dispersion, and a scenario 

selected corresponding to the highest expected, composite performance measure. 
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• Following implementation of the (possibly optimal) decision, the performance measure/ 

prediction would be compared to future SRF observations, and likelihoods computed that 

represent the discrepancy between predicted and observed values under each model. 

• The likelihoods would then be used to update the weightings on each alternative model 

(and the global model), and the process repeated under new initial conditions.  

Such an adaptive approach would allow for the resolution and modification of hypotheses 

regarding the relative effect of multiple factors influencing wading bird populations as 

discussed previously. 
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Table 1.  Date sources and variables available for inference on Everglades wading birds.  

Scale(s) Type Data source Variable(s) observed 

Regional Abundance- ancillary Christmas bird counts  

Peninsular Florida Abundance- ancillary Christmas bird counts  

  State surveys, 

Audubon(?) 

 

 Vegetation-ancillary Florida Gap  

 Hydrology, wetlands-

ancillary 

USGS, NWI  

Everglades, WCA Abundance-ancillary Nesting surveys Relative abundance and 

location of nest colonies 

SRF Abundance at 

foraging sites 

SRF abundance count at time 

t, coordinates x, y  

    

 



 

 

84

84

Table 1. continued. 

  Composition of SRF Large herons 

Great Blue Heron 

Great White Heron 

Great Egret 

Wood Stork 

White Ibis 

Glossy Ibis  

Roseate Spoonbill 

 

Small light herons 

Little Blue Heron, 

Snowy Egret 

 

Small dark herons 

Tricolored Heron 

Little Blue Heron 

SRF Hydrology Model predictions  

 Elevation USGS  

 Surface water 

classifications 

?  

 Vegetation (ENP and 

WCA3) 
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Table 2. Mean aerial counting efficiency and colony detection estimates ( p̂ ) and standard errors (se) by sampling detection 

group.  Estimates are relative to ground counts and were from reported values or were calculated using data provided in Dodd 

and Murphy (1995), Rodgers et al. (1995), Frederick et al. (1996b), and Kingsford (1999). 

  Nest count efficiencya Nesting colony detectionb Non-nesting count efficiency

Sampling group Species p̂  se p̂  se p̂  se 

Great Blue Heron 0.787 0.631 0.743 0.037 0.46 0.075 

Great White Heron       

Great Egret       

Wood Stork       

Large heron 

Roseate Spoonbill       

Cattle Egret 0.773 0.268 0.732 0.332 0.712 0.612 

Snowy Egret       Small light heron 

White Ibis       



Table 2 (continued) 
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Yellow-crowned  

Night-Heron 0.211 0.256 0.243 0.267 0.187 0.038 

Black-crowned  

Night-Heron       

Reddish Egret       

Tricolored Heron       

Little Blue Heron       

Green Heron       

Small dark heron 

Glossy Ibis       

Anhinga     0.289 0.045 
Anhinga 

Double Crested Cormorant       

       a Excluding great blue heron estimates in Frederick et al. (1996b) otherwise p̂  (se) is 0.464 (0.602). 

       b Excluding great blue heron estimates in Frederick et al. (1996b) otherwise p̂  (se) is 0.296 (0.384). 
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Table 3.  Summary of wading bird nesting efforts, as reported in SFWMD Annual Wading Bird Reports, 1995-2002. 

Survey Area 

Land 

area 

(km2) 

Years 

Reporteda 

Reporting 

Organizationb

 Nests/ 

year 

Survey 

frequency 

and timing Typec Mode 

WCA 2 & 3 2,980 1995-2002 UF 16,929 Md: Jan-Jun
systematic / aerial and 

ground 
FWe, airboat 

Loxahatchee NWR 620 1995-2002 USFWS 8,903 irregular 

PTP (1995-1998) and 

systematic (1999-2002) / 

aerial and ground 

FW, helicopter, 

airboat 

Everglades NP 4,300 1995-2002 NPS 2,181 M: Jan-Jul PTP / aerial FW 

Florida Bay NAf 1996-2001 NOAA 2,567 M: Jan-Dec PTP (islands) / aerial helicopter 
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Table 3. continued. 

Southwest Coast NA 
1996, 1998-

2002 
NAS, RBS 1,276 once/year PTP / aerial or ground 

walk, canoe, 

powerboat, FW

Big Cypress NP 2,570 
1996-97, 

2000-2002 
NPS NA once/year 

systematic (1996) or 

incidental / aerial 
FW, helicopter

Holey Land, 

Rotenberger WMAs 
260 1996-2002 FFWCC NA irregular incidental / aerial FW, helicopter

Ding Darling NWR 25 1998-2002 USFWS 1,587 M: Apr-Aug PTP / ground motorboat 

Solid Waste Authority 

of PB County 
NA 2000-2002 SWAPBC 4,543 M: Mar-Jun PTP / ground boat 

NF St. Lucie R. NA 2000-2002 SFWMD NA once/year PTP or incidental / ground
motorboat, 

kayak 
a Reported in Annual Wading Bird Reports; additional and unreported surveys may have occurred prior to these years. 
b UF = University of Florida, USFWS = U.S. Fish and Wildlife Service, NPS = National Park Service, NOAA = National Oceanic and 

Atmospheric Administration, NAS = National Audubon Society, RBS = Rookery Bay Sanctuary, FFWCC = Florida Fish and 

Wildlife Conservation Commission, SWAPBC = Solid Waste Authority of Palm Beach County, SFWMD = South Florida Water 

Management District. 
c Surveys classified as systematic, point-to-point (PTP), or incidental, and as aerial or ground-based. 
d Monthly; e Fixed-wing ; f Not reported, not available, or not calculated. 
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Table 4. Parameters used during the simulation of SRF sampling protocols. The coefficients of determination (r2) 

values are for models fit to SRF data of observed bird counts and group sizes. 

  Simulation component Great Egret White Ibis 

Initial population size 5000, 7000, 10000 5000, 10000, 15000 

Population growth per year No change (λ = 1), increase or decrease of: 0.01, 0.03, 0.05, 0.07 

Number of years sampled 3, 5, 7, 9, 11 

Number of groups1 
0.478 + 0.818*ln(population size), 

r2 = 0.81 

199.82 + 0.050*(population size), 

r2 = 0.71 

Variation in group size2 
0.420 + 1.461*ln(mean group size) , 

r2 = 0.71 

0.323 + 1.208*ln(mean group size), 

r2 = 0.88 

   
1 Estimate for number of Great Egret groups requires exponential transformation. 
2 Variation is expressed as a standard deviation and requires exponential transformation for  

   both species.
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Table 5. Observations eliminated at various steps in the database management process to generate final data set for analysis. 

Region Raw Data Outside of Survey Area After Year 2000a Eliminated Due to 

Survey Overlap 
Final 

Big Cypress 26273 2938 11% 1167 4.4% 64 .24% 22104 

WCAs 180676 10319 5.7% 8879 4.9% 2987 1.6% 158491 

Everglades NP 231519 7537 3.2% 60285 26% NA  163697 

         
a Observations after 2000 eliminated because that is the time cut off for the analysis. 
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Table 6. The number of surveys, mean counts, standard deviation (SD), minimum, and maximum 

count of species in the Systematic Reconnaissance Flights for the Northern Survey region. 

Species Surveys Mean Count SD Minimum Maximum 

Black-crowned Night Heron 79 2.924050633 7.710752 0 46

Cattle Egret 79 7.392405063 22.35404 0 153

Glossy Ibis 79 221.1392405 310.7332 0 1394

Great Blue Heron 79 197.4050633 162.3771 30 924

Great Egret 79 1910.949367 1058.863 150 5901

Great White Heron 79 1.189873418 1.901929 0 9

Little Blue Heron 79 89.50632911 126.5877 0 753

Reddish Egret 79 0.012658228 0.112509 0 1

Roseate Spoonbill 79 10.96202532 26.40292 0 148

Small Dark Heron 79 113.9746835 184.6656 0 1026

Small White Heron 79 316.6202532 340.4543 3 1742

Snowy Egret 79 27.84810127 56.17237 0 335

Tri-Color Heron 79 72.50632911 117.1239 0 818

White Ibis 79 4093.177215 5219.684 0 32668

Wood Stork 79 158.0253165 236.5086 0 1241

Yellow-crowned Night Heron 79 0.518987342 4.387806 0 39
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Table 7. The number of surveys, mean counts, standard deviation (SD), minimum, and maximum 

count of species in the Systematic Reconnaissance Flights for Big Cypress. 

Species Surveys Mean Count SD Minimum Maximum 

Black-crowned Night Heron 34 0 0 0 0

Cattle Egret 34 63.7058824 118.1934 0 617

Glossy Ibis 34 5.47058824 7.844069 0 23

Great Blue Heron 34 43.1764706 99.55917 1 477

Great Egret 34 576.323529 460.2426 47 2238

Great White Heron 34 0.70588235 2.431229 0 13

Little Blue Heron 34 24.7352941 32.73522 0 124

Reddish Egret 34 0.02941176 0.171499 0 1

Roseate Spoonbill 34 0.26470588 0.790428 0 3

Small Dark Heron 34 13.9705882 26.35364 0 130

Small White Heron 34 147.5 158.5302 0 838

Snowy Egret 34 8.88235294 23.49954 0 130

Tri-Color Heron 34 7.02941176 8.200093 0 37

White Ibis 34 951.5 1091.583 23 4767

Wood Stork 34 90.1764706 137.422 0 508

Yellow-crowned Night Heron 34 0 0 0 0
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Table 8. The number of surveys, mean counts, standard deviation (SD), minimum, and maximum 

count of species in the Systematic Reconnaissance Flights for Everglades National Park. 

Species Surveys Mean Count SD Minimum Maximum 

Black-crowned Night Heron 86 0 0 0 0

Cattle Egret 86 0 0 0 0

Glossy Ibis 86 116.4186047 180.4619 0 939

Great Blue Heron 86 133.1744186 102.4392 7 480

Great Egret 86 2202.104651 1398.345 59 7261

Great White Heron 86 33.73255814 57.1877 0 425

Little Blue Heron 86 0 0 0 0

Reddish Egret 86 0 0 0 0

Roseate Spoonbill 86 96.12790698 83.21097 3 459

Small Dark Heron 86 222.0697674 195.2775 6 819

Small White Heron 86 379.9418605 347.3703 17 1517

Snowy Egret 86 0 0 0 0

Tri-Color Heron 86 0 0 0 0

White Ibis 86 3112.290698 2769.443 93 14718

Wood Stork 86 274.3372093 328.5695 0 2197

Yellow-crowned Night Heron 86 0 0 0 0
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Table 9.  Mean, standard deviation (SD), range for predictor variables used in fitting log-linear hierarchical 

model models of Great Egret (GREG) and White Ibis (WHIB) counts during the SRF. 

Predictor Mean SD Range 

SRF cell water depth during survey (m) 0.09 0.36 -1.53 - 1.94 

Slope of water level change for 14 days prior to survey (dm)  0.01 0.06 -0.45 - 0.19 

Root mean squared error of water level regression for 14 

days prior to survey (dm) 0.11 0.11 0.00 - 1.14 

Average density of WHIB during nesting season in year t-3 3.01 1.07 0.84 - 5.02 

BBSa index for WHIB outside SRF 12.25 4.42 7.88 - 20.49 

Average density of GREG during nesting season in year t-2 1.51 0.28 0.94 - 1.95 

BBSa index for GREG outside SRF 5.44 1.03 4.16 - 8.33 

    
a Breeding Bird Survey
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Table 10. Hypotheses AICc, ∆AICc, and Akaike weights (w) for the set of candidate 

models (i) for predicting Great Egret density during the SRF.  Akaike weights are 

interpreted as relative plausibility of candidate hypotheses. 

Hypothesis AICc ∆AICc wi 

Global (all hypotheses) 1085633.8 0.0 1.0 

Food limitation + Hydrologic alteration 1085709.6 75.8 0.0 

Food limitation + Regional recruitment 1087237.6 1603.8 0.0 

Food limitation 1087274.9 1641.1 0.0 

Food limitation + Distant magnet 1087276.8 1643.0 0.0 

Hydrologic alteration + Regional recruitment 1100057.6 14423.8 0.0 

Hydrologic alteration + Distant magnet 1100087.3 14453.5 0.0 

Hydrologic alteration 1100128.1 14494.3 0.0 

Distant magnet + Regional recruitment 1105691.6 20057.8 0.0 

Distant magnet 1105711.6 20077.8 0.0 

Regional recruitment 1105838.6 20204.8 0.0 
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Table 11. Estimates, standard errors, upper and lower 95% confidence intervals of fixed and random effects from best fitting log-

linear hierarchical model of Great Egret (GREG) density for the SRF.  Fixed effects are interpreted as the average effect for the 

SRF area and the random effects as the variability of the effects from subregion to subregion. 

Fixed effects Estimate(SE) 

Standardized 

estimate (SE) Upper Lower 

Intercept -4.109 (0.179) -3.966 (0.150) -3.751 -4.466

SRF cell water depth during survey 3.292 (0.364) 1.019 (0.146) 4.022 2.563

SRF cell water depth squared -2.633 (0.879) -0.348 (0.115) -0.873 -4.392

Slope of water level change for 14 days prior to survey (negative 

values indicate drying) -5.801 (0.831) -0.363 (0.050) -4.137 -7.464

Slope of 14 day water level change squared -24.952 (3.766) -0.074 (0.011) -17.416 -32.488

Root mean squared error of water level regression for 14 days 

prior to survey (large values indicate large or frequent disruptions) -3.183 (0.377) -0.341 (0.042) -2.428 -3.938

Pre-nesting season 0.361 (0.089) 0.359 (0.089) 0.538 0.183

Nesting season 0.373 (0.082) 0.372 (0.082) 0.536 0.209

Average abundance of GREG during nesting season in year t-2 0.265 (0.031) 0.074 (0.009) 0.325 0.205

BBSa index for GREG outside SRF -0.014 (0.008) -0.015 (0.009) 0.002 -0.031

   
a Breeding Bird Survey 
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Table 11. continued. 

Random effects Estimate(SE) 

Standardized 

Estimate (SE) Lower Upper 

Intercept 1.696 (0.321) 1.299 (0.246) 2.555 1.208

SRF cell water depth during survey 7.341 (1.413) 1.183 (0.229) 11.141 5.203

SRF cell water depth squared 43.468 (8.468) 0.736 (0.144) 66.334 30.690

Slope of water level change for 14 days prior to survey 33.125 (7.555) 0.121 (0.027) 54.833 22.171

Slope of 14 day water level change squared 

548.530 

(157.160) 0.005 (0.001) 1055.490 335.520

Root mean squared error of water level regression for 14 days 

prior to survey 6.668 (1.450) 0.082 (0.018) 10.751 4.539

Pre-nesting season 0.360 (0.081) 0.358 (0.081) 0.592 0.242

Nesting season 0.325 (0.074) 0.325 (0.074) 0.538 0.217

Residual error 11.525 (0.036) 11.525 (0.036) 11.596 11.455
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Table 12. Hypotheses AICc, ∆AICc, and Akaike weights (w) for the set of candidate 

models (i) for predicting White Ibis density during the SRF.  Akaike weights are 

interpreted as relative plausibility of candidate hypotheses. 

Hypothesis AICc ∆AICc wi 

Global 1028062.4 0.0 1.0 

Food limitation + Hydrologic alteration 1028276.2 213.8 0.0 

Food limitation + Distant magnet 1029113.4 1051.0 0.0 

Food limitation + Regional recruitment 1029169.6 1107.2 0.0 

Food limitation 1030922.3 2859.9 0.0 

Hydrologic alteration + Distant magnet 1035460.7 7398.2 0.0 

Hydrologic alteration + Regional recruitment 1035748.1 7685.7 0.0 

Hydrologic alteration 1035818.2 7755.8 0.0 

Distant magnet + Regional recruitment 1036792.7 8730.3 0.0 

Distant magnet 1037122.0 9059.6 0.0 

Regional recruitment 1037490.3 9427.9 0.0 
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Table 13. Estimates, standard errors, upper and lower 95% confidence intervals of fixed and random effects from proposed global 

model of White Ibis (WHIB) density for the SRF.  Fixed effects are interpreted as the average effect for the SRF area and the 

random effects as the variability of the effects from subregion to subregion. 

Fixed effects Estimate(SE) 

Standardized 

estimate (SE) Lower Upper 

Intercept -5.049 (0.110) -5.903 (0.082) -4.828 -5.270 

SRF cell water depth during survey -0.073 (0.258) -0.218 (0.095) 0.445 -0.590 

SRF cell water depth squared -3.012 (0.598) -0.396 (0.078) -1.815 -4.209 

Slope of water level change for 14 days prior to survey (negative 

values indicate drying) -4.021 (0.502) -0.239 (0.030) -3.017 -5.025 

Slope of 14 day water level change squared -11.466 (2.531) -0.035 (0.007) -6.402 -16.530 

Root mean squared error of water level regression for 14 days 

prior to survey (large values indicate large or frequent disruptions) -1.980 (0.285) -0.211 (0.032) -1.409 -2.551 

Pre-nesting season 0.713 (0.108) 0.707 (0.108) 0.930 0.497 

Nesting season 0.576 (0.068) 0.571 (0.069) 0.713 0.439 

Average abundance of WHIB during nesting season in year t-3 -0.087 (0.007) -0.093 (0.008) -0.073 -0.101 

BBS a index for WHIB outside SRF -0.023 (0.002) -0.101 (0.008) -0.019 -0.026 

     
a Breeding Bird Survey 
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Table 13. continued. 

Random effects Estimate(SE) 

Standardized 

estimate (SE) Lower Upper 

Intercept 0.593 (0.116) 0.367 (0.072) 0.906 0.418 

SRF cell water depth during survey 3.591 (0.698) 0.480 (0.095) 5.476 2.537 

SRF cell water depth squared 19.640 (3.935) 0.335 (0.068) 30.375 13.742 

Slope of water level change for 14 days prior to survey 9.718 (2.452) 0.036 (0.009) 17.101 6.262 

Slope of 14 day water level change squared 200.910 (67.053) 0.002 (0.001) 439.890 114.640 

Root mean squared error of water level regression for 14 days 

prior to survey 3.550 (0.880) 0.047 (0.012) 6.179 2.303 

Pre-nesting season 0.630 (0.127) 0.623 (0.125) 0.976 0.441 

Nesting season 0.222 (0.050) 0.224 (0.050) 0.364 0.150 

Residual error 8.712 (0.027) 8.711 (0.027) 8.765 8.658 
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Table 14. Posterior mean, standard deviation and upper and lower 95% confidence intervals of common means and standard 

deviations of parameters from zero-inflated global sub-model for average cell density of cells occupied by Great Egrets for the SRF. 

Parameter Mean 

Standard 

Deviation Lower Upper 

BBS index for GREG outside SRF -0.038 0.000 -0.039 -0.038

Mean of Intercept parameter 0.152 0.076 0.000 0.294

Mean of Nesting Season parameter 0.036 0.109 -0.167 0.250

Mean of Pre-Nesting Season parameter 0.103 0.105 -0.103 0.305

Mean of Root mean squared error of water level regression for 14 

days prior to survey parameter 0.975 0.431 0.167 1.837

Mean of Slope of water level change 14 days prior to survey 

parameter 2.030 1.290 -0.401 4.645

Mean of Slope of water level change 14 days prior to survey squared 

parameter 3.519 9.770 -14.618 23.527

Mean of 14 day water level intercept parameter 0.017 0.028 -0.042 0.067

Mean of 14 day water level intercept squared parameter -0.004 0.005 -0.013 0.005

Regional Recruitment of GREG parameter 0.228 0.007 0.216 0.240

Standard deviation of Intercept parameter 0.572 0.058 0.466 0.690

Standard deviation of Nesting Season parameter 0.820 0.084 0.659 0.981
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Table 14. continued. 

Standard deviation of Pre-nesting Season parameter 0.819 0.080 0.670 0.980

Standard deviation of Slope of water level change 14 days prior to 

survey parameter 3.327 0.363 2.697 4.065

Standard deviation of Slope of water level change 14 days prior to 

survey squared parameter 9.761 0.978 7.917 11.629

Standard deviation of 14 day water level intercept parameter 73.984 9.482 56.052 92.381

Standard deviation of 14 day water level intercept squared parameter 0.208 0.024 0.159 0.251

Standard deviation of Slope of water level change 14 days prior to 

survey parameter 0.035 0.005 0.026 0.045
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Table 15. Posterior mean, standard deviation and upper and lower 95% confidence intervals of common means and standard 

deviations of parameters from zero-inflated global sub-model of occupied area for Great Egrets for the SRF. 

Parameter Mean 

Standard 

Deviation Lower Upper 

BBS index for GREG outside SRF -0.030 0.005 -0.039 -0.019

Mean of Intercept parameter -0.653 0.099 -0.842 -0.460

Mean of Nesting Season parameter 0.179 0.054 0.079 0.285

Mean of Pre-Nesting Season parameter 0.178 0.050 0.082 0.277

Mean of Root mean squared error of water level regression for 14 

days prior to survey parameter -2.143 0.270 -2.739 -1.666

Mean of Slope of water level change 14 days prior to survey 

parameter -1.252 0.563 -2.377 -0.176

Mean of Slope of water level change 14 days prior to survey squared 

parameter 0.016 0.012 -0.008 0.037

Mean of 14 day water level intercept parameter 0.290 0.029 0.229 0.344

Mean of 14 day water level intercept squared parameter -0.041 0.006 -0.053 -0.029

Regional Recruitment of GREG parameter 0.240 0.019 0.198 0.276

Standard deviation of Intercept parameter 0.781 0.081 0.621 0.941
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Table 15. continued. 

Standard deviation of Nesting Season parameter 0.365 0.041 0.287 0.443

Standard deviation of Pre-nesting Season parameter 0.335 0.037 0.268 0.409

Standard deviation of Slope of water level change 14 days prior to 

survey parameter 1.846 0.242 1.403 2.331

Standard deviation of Slope of water level change 14 days prior to 

survey squared parameter 3.921 0.770 2.352 5.366

Standard deviation of 14 day water level intercept parameter 0.025 0.012 0.006 0.046

Standard deviation of 14 day water level intercept squared parameter 0.220 0.022 0.180 0.266

Standard deviation of Slope of water level change 14 days prior to 

survey parameter 0.046 0.005 0.037 0.055
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Table 16. Posterior mean, standard deviation and upper and lower 95% confidence intervals of common means and standard 

deviations of parameters from zero-inflated global sub-model for average cell density of cells occupied by White Ibises for the SRF. 

Parameter Mean 

Standard 

Deviation Lower Upper 

BBS index for WHIB outside SRF -0.043 0.002 -0.045 -0.039

Mean of Intercept parameter 1.275 0.178 0.915 1.611

Mean of Nesting Season parameter 0.324 0.163 -0.006 0.633

Mean of Pre-Nesting Season parameter 0.245 0.166 -0.077 0.564

Mean of Root mean squared error of water level regression for 14 

days prior to survey parameter 1.135 0.927 -0.745 2.873

Mean of Slope of water level change 14 days prior to survey 

parameter 2.422 2.333 -2.315 6.759

Mean of Slope of water level change 14 days prior to survey squared 

parameter -22.041 16.669 -54.745 10.476

Mean of 14 day water level intercept parameter -0.021 0.052 -0.130 0.078

Mean of 14 day water level intercept squared parameter -0.018 0.008 -0.035 -0.002

Regional Recruitment of WHIB parameter -0.010 0.009 -0.022 0.007

Standard deviation of Intercept parameter 1.229 0.128 0.994 1.501
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Table 16. continued. 

Standard deviation of Nesting Season parameter 1.273 0.131 1.035 1.542

Standard deviation of Pre-nesting Season parameter 1.315 0.124 1.089 1.561

Standard deviation of Slope of water level change 14 days prior to 

survey parameter 6.994 0.760 5.547 8.413

Standard deviation of Slope of water level change 14 days prior to 

survey squared parameter 18.004 2.034 14.405 22.029

Standard deviation of 14 day water level intercept parameter 128.845 14.977 99.940 156.662

Standard deviation of 14 day water level intercept squared parameter 0.401 0.042 0.323 0.483

Standard deviation of Slope of water level change 14 days prior to 

survey parameter 0.063 0.008 0.048 0.079
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Table 17. Posterior mean, standard deviation and upper and lower 95% confidence intervals of common means and standard 

deviations of parameters from zero-inflated global sub-model of occupied area for White Ibises for the SRF. 

Parameter Mean 

Standard 

Deviation Lower Upper 

BBS index for WHIB outside SRF -0.072 0.001 -0.074 -0.070

Mean of Intercept parameter 0.000 0.000 0.000 0.000

Mean of Nesting Season parameter 0.090 0.114 -0.132 0.310

Mean of Pre-Nesting Season parameter 0.234 0.125 -0.005 0.476

Mean of Root mean squared error of water level regression for 14 

days prior to survey parameter -0.001 0.000 -0.001 0.000

Mean of Slope of water level change 14 days prior to survey 

parameter 0.841 0.474 -0.078 1.726

Mean of Slope of water level change 14 days prior to survey squared 

parameter -0.007 0.004 -0.015 0.000

Mean of 14 day water level intercept parameter 0.082 0.033 0.013 0.147

Mean of 14 day water level intercept squared parameter -0.101 0.010 -0.121 -0.081

Regional Recruitment of WHIB parameter -0.264 0.004 -0.273 -0.257

Standard deviation of Intercept parameter 0.000 0.000 0.000 0.000
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Table 17. continued. 

Standard deviation of Nesting Season parameter 0.867 0.085 0.713 1.033

Standard deviation of Pre-nesting Season parameter 0.945 0.106 0.737 1.144

Standard deviation of Slope of water level change 14 days prior to 

survey parameter 0.000 0.000 0.000 0.000

Standard deviation of Slope of water level change 14 days prior to 

survey squared parameter 3.098 0.364 2.434 3.807

Standard deviation of 14 day water level intercept parameter 0.011 0.006 0.005 0.026

Standard deviation of 14 day water level intercept squared parameter 0.250 0.025 0.202 0.299

Standard deviation of Slope of water level change 14 days prior to 

survey parameter 0.074 0.008 0.059 0.088
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Table 18. Summarized detection histories by species for dual-observer detection trials. 

 Detection history   Group size 

Species 01 10 11 

Total 

detections 

 

Mean SE range 

Great Egret 745 1093 586 2424  1.770833 2.344148 1- 75 

White Ibis 348 485 168 1001  6.876083 18.87498 1- 275 

Great Blue Heron 83 95 17 195  1.037915 0.191444 1- 2 

Small dark herons 40 49 5 94  1.56701 1.079228 1- 6 

Small white herons 77 145 2 224  1.491071 1.497355 1- 15 

Wood Stork 53 85 11 149  2.322785 3.12636 1- 28 

Glossy Ibis 12 13 2 27  4.241379 5.047313 1- 20 

Roseate Spoonbill 12 17 4 33  1.837838 1.802984 1- 10 

Great White Heron 3 2 0 5  1.000000 0.000000 1- 1 

Total 1373 1984 795 4152     
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                              Table 19.  Model comparison and fit statistics for dual-observer detection trials.  

Model AIC DIC GOF 

Species*observer*position + count 8366.63 8291.42 0.13588 

Species*observer*position 8381.789 8304.816 0.134355 

Species + count 8408.54 8393.771 0.136813 

Species*position*count 8422.866 8269.527 0.160073 

Species*observer 8423.611 8390.043 0.150219 

Species + observer + position 8425.873 8412.742 0.172165 

Species*observer*count 8462.871 8233.252 0.152433 

Species + observer 8514.606 8502.374 0.185109 

Species 8564.473 8552.986 0.105304 

Species*observer*position*count 8597.444 8112.944 n/a 

Null 8715.749 8714.799 0.104672 

Species*observer*count*water*position 10931.95 8293.495 0.157543 
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Table 20. Parameter estimates for best fitting detection model (Species*observer*position + count). 

Parametera Speciesb Observer Position Mean SE Lower Upper 

count ----   0.023718 0.005972 0.012145 0.035783

     

p GREG E Front 0.406542 0.023769 0.359678 0.449259

   Rear 0.397895 0.018822 0.361089 0.435661

  L Front 0.38409 0.025457 0.337014 0.435144

   Rear 0.279873 0.017339 0.245628 0.31113

  M Front 0.46524 0.021403 0.426249 0.510942

   Rear 0.317848 0.022115 0.272342 0.358331

 WHIB E Front 0.243006 0.032407 0.176894 0.300549

   Rear 0.244483 0.024924 0.186175 0.290946

  L Front 0.230158 0.026997 0.170753 0.274001

   Rear 0.175687 0.025816 0.126958 0.222367

  M Front 0.374615 0.035614 0.293622 0.442022

   Rear 0.277699 0.033619 0.185992 0.336345

 GBH E Front 0.210022 0.063806 0.105834 0.337501

   Rear 0.201464 0.055663 0.111779 0.368021

  L Front 0.129609 0.058962 0.034883 0.254418

   Rear 0.230051 0.061691 0.127844 0.337782

  M Front 0.246324 0.052102 0.137498 0.329371

   Rear 0.093203 0.045341 0.024211 0.218527

 SDH E Front 0.176057 0.069821 0.06607 0.320785

   Rear 0.139406 0.045455 0.063069 0.228554

  L Front 0.085055 0.055516 0.013207 0.218646

   Rear 0.362259 0.077972 0.242044 0.507653

  M Front 0.236127 0.069776 0.094842 0.358199

   Rear 0.109946 0.072528 0.017212 0.261166
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Table 20. continued. 

 SWH E Front 0.081665 0.044357 0.016218 0.176641

   Rear 0.030459 0.010708 0.012768 0.053711

  L Front 0.027453 0.018444 0.003002 0.071825

   Rear 0.187613 0.075609 0.040711 0.321074

  M Front 0.284359 0.065192 0.162202 0.412054

   Rear 0.06911 0.044391 0.008798 0.179794

 WS E Front 0.143116 0.081128 0.032359 0.301077

   Rear 0.109348 0.03491 0.054441 0.184845

  L Front 0.178451 0.071613 0.059021 0.302302

   Rear 0.161565 0.081594 0.04255 0.304036

  M Front 0.270177 0.06365 0.149632 0.403924

   Rear 0.094496 0.036496 0.031366 0.162511

 GI E Front 0.40454 0.200689 0.039332 0.699257

   Rear 0.271654 0.083025 0.152542 0.436123

  L Front 0.08382 0.058539 0.005121 0.205146

   Rear 0.513556 0.115136 0.341839 0.70712

  M Front 0.520645 0.093028 0.372452 0.67895

   Rear 0.161112 0.068163 0.03021 0.325586

 RS E Front 0.526156 0.183045 0.248043 0.837708

   Rear 0.130677 0.049271 0.028209 0.245679

  L Front 0.458684 0.093238 0.292354 0.683648

   Rear 0.500869 0.060447 0.397854 0.636333

  M Front 0.190035 0.067689 0.044575 0.303294

   Rear 0.454308 0.200512 0.138309 0.698587
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Table 20. continued. 

 GWH E Front 0.448209 0.105761 0.302704 0.643725

   Rear 0.234103 0.123388 0.028892 0.441037

  L Front 0.115842 0.080807 0.00468 0.299027

   Rear 0.609987 0.1617 0.335258 0.808154

  M Front 0.582625 0.17104 0.191325 0.812719

   Rear 0.340924 0.123494 0.13524 0.541426

      
aModel predicts detection as Xpitpit posobsspp ×+= − β)ˆ(log)(log ,,

1 , where X is median group size in 

each of 5 categories  : 1=C ; 51 ≤< ijC ; 105 ≤< C ; 5010 ≤< C ; and 50>C . 
bGREG=Great Egret, WHIB=White Ibis; GBH=Great Blue Heron; SDH=Small dark herons; 

SWH=Small white herons; WS=Wood Stork; GI=Glossy Ibis; RS=Roseate Spoonbill; 

GWH=Great White Heron. 
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Table 21. Estimates, standard errors, upper and lower 95% confidence intervals of fixed and random 
effects from exploratory analysis of the relationship between nesting effort and SRF counts and 
hydrologic variables for Great Egret and White Ibis.  Fixed effects are interpreted as the average effect 
for the SRF area and the random effects as the variability of the effects from region to region. 

Parameter Estimate SE Lower Upper 
Great Egret     

Fixed effects     
Intercept 1151.97 411.01 346.39 1957.55
GREG SRF counts in February -0.55 0.1475 -0.84 -0.26
GREG SRF counts in May 0.97 0.2181 0.54 1.40

Random effects  
Intercept 374043 334318 111490 7855205
Residual error 225814 68272 134904 453366

White Ibis     
Fixed effects     

Intercept -270.12 389.89 -1034.30 494.06
WHIB SRF counts in March 0.54 0.15 0.26 0.83
WHIB SRF counts in April 1.47 0.77 -0.04 2.97
Mean of Root mean squared error of water 
level regression for 14 days prior to survey 
parameter in April -9222 2102 -13342 -5102
Mean of Slope of water level change 14 days 
prior to survey parameter in May 16256 4181 8062 24450

Random effects     
WHIB counts in March 1.67 1.41 0.52 26.56
Residual error 675524 214048 395028 1411159
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Figure 1.  Location of Everglades study areas and Systematic Reconnaissance Flights (SRF). 
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Figure 2. Northern Survey region with transects flown by the SRF. 
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Figure 3. Area of Big Cypress surveyed by the SRF with transect and SRF cells. 



 

 

119

119

 

 

Figure 4. Area of the Everglades National Park surveyed by the SRF. 
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Figure 5. Subregions based on cluster analysis of vegetative and hydrologic factors for analysis and 

modeling of the SRF. 
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Figure 6.  Empirical Bayes estimates of the relationship Great Egret density versus cell depth during 

the nesting season for each subregion (top) and the average relationship between cell depth and Great 

Egret abundance (bottom).  Subregion-specific relationships (top) are only plotted for the sampled 

range of cell water depths predicted for each subregion.  The average relationship (bottom) is based on 

the best fitting hierarchical model of Great Egret density using average values observed during the 

study for other parameters in the model (Table 9). 
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Figure 7.  Empirical Bayes estimates of the relationship between Great Egret density versus the slope 

of water level change for 14 days prior to survey during the nesting season for each subregion (top) 

and the average relationship between cell depth and Great Egret abundance (bottom).  Subregion-

specific relationships (top) are only plotted for the sampled range of slopes predicted for each 

subregion.  The average relationship (bottom) is based on the best fitting hierarchical model of Great 

Egret density using average values observed during the study for other parameters in the model (Table 

9). 
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Figure 8. Empirical Bayes estimates of the relationship White Ibis density versus cell depth during the 

nesting season for each subregion (top) and the average relationship between cell depth and White Ibis 

abundance (bottom).  Subregion-specific relationships (top) are only plotted for the sampled range of 

cell water depths predicted for each subregion.  The average relationship (bottom) is based on the best 

fitting hierarchical model of White Ibis density using average values observed during the study for 

other parameters in the model (Table 9). 
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Figure 9. Empirical Bayes estimates of the relationship between White Ibis density versus the slope of 

water level change for 14 days prior to survey during the nesting season for each subregion (top) and 

the average relationship between cell depth and White Ibis abundance (bottom).  Subregion-specific 

relationships (top) are only plotted for the sampled range of slopes predicted for each subregion.  The 

average relationship (bottom) is based on the best fitting hierarchical model of White Ibis density using 

average values observed during the study for other parameters in the model (Table 9).
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Figure 10.  Predicted detection probabilities in relation to selected combination of species, observer, 

and group size from dual-observer trials.  (a) Detection in relation to species or species group, 

conditioned on Observer =M, Position= Front, and 1<Flock Size ≤5; (b) Detection in relation to 

observer and position in aircraft, conditioned on Species=GREG and 1<Flock Size ≤5..  (c) Detection 

in relation to group size for Great Egret GREG) and White Ibis (WHIB), conditioned on Observer=M, 

Position= Front.   GBH=Great Blue Heron; SDH=Small dark herons; SWH=Small white herons; 

WS=Wood Stork; GI=Glossy Ibis; RS=Roseate Spoonbill; GWH=Great White Heron. 
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Figure 11. The proportion of simulations that detected the correct population trend by number of 

simulated sampling years using linear regression and α = 0.10 for simulated positive (solid) and 

negative (broken) changes in annual population growth of 0.07 (black), 0.05 (gray), 0.03 (blue), 0.01 

(green), and no change (red)  and 3 initial population sizes for Great Egret. Proportion based on 1000 

simulations of two randomly assigned rear observers during SRF surveys. 
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Figure 12. The proportion of simulations that detected the correct population trend by number of 

simulated sampling years using linear regression and α = 0.10 for simulated positive (solid) and 

negative (broken) changes in annual population growth of 0.07 (black), 0.05 (gray), 0.03 (blue), 0.01 

(green), and no change (red)  and 3 initial population sizes for White Ibis. Proportion based on 1000 

simulations of two randomly assigned rear observers during SRF surveys. 
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Figure 13. The proportion of simulations that falsely detected a population trend by number of 

simulated sampling years using linear regression and α = 0.10 for simulated positive (solid) and 

negative (broken) changes in annual population growth of 0.07 (black), 0.05 (gray), 0.03 (blue), 0.01 

(green), and no change (red)  and 3 initial population sizes for Great Egret. Proportion based on 1000 

simulations of two randomly assigned rear observers during SRF surveys. False detections were 

defined a determining a significant decrease in population size (a = 0.10) when there was a simulated 

increase and vice versa. 
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Figure 14. The proportion of simulations that falsely detected a population trend by number of 

simulated sampling years using linear regression and a = 0.10 for simulated positive (solid) and 

negative (broken) changes in annual population growth of 0.07 (black), 0.05 (gray), 0.03 (blue), 0.01 

(green), and no change (red)  and 3 initial population sizes for White Ibis. Proportion based on 1000 

simulations of two randomly assigned rear observers during SRF surveys. False detections were 

defined a determining a significant decrease in population size (a = 0.10) when there was a simulated 

increase and vice versa. 
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Figure 15. Estimated bias in population trend using linear regression by number of simulated sampling 

years for simulated positive (solid) and negative (broken) changes in annual population growth of 0.07 

(black), 0.05 (gray), 0.03 (blue), 0.01 (green), and no change (red) for Great Egret and White Ibis, 

averages across initial population sizes. Bias is estimates as known parameter estimate (population 

growth rate) minus simulated observed estimate. Proportion based on 1000 simulations of two 

randomly assigned rear observers during SRF surveys. 
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12.0 APPENDICES 

APPENDIX 1 

Graphs of counts for birds by year, month, and region. 

APPENDIX 2 

Project Orientation report 

APPENDIX 3 

Work Plan 

APPENDIX 4 

Count Statistics Report 

APPENDIX 5 

Graphics File (on CD previously submitted) 

APPENDIX 6 

SAS Model Code 

SAS Library for Model Code 

APPENDIX 7 

PYMC Model Code 

PYMC Data Files 

PyMC available at http://trichech.us/?page_id=3 

Python (necessary for running PyMC) available at http://code.enthought.com/enthon/ 

APPENDIX 8 

Dual Observer Code 

Dual Observer Data File 


