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Abstract

Managers of forest wildlife populations make recurring management decisions based on
incomplete knowledge of system states. For example, animal population estimates may
ignore spatial structure that may influence population viability. We built a spatially-explicit
model for a population of birds in a forested landscape. Rates of bird population growth
within forest compartments and rates of bird dispersal among compartments were functions
of stand age and basal area, compartment population size, and inter-compartment distance.
Stand characteristics were imbedded in a dynamic model and assumed perfectly observable
and under the complete control of managers. We constructed a genetic algorithm to search
for the schedule and spatial distribution of silviculture to maximize total bird abundance at
the end of a fixed planning horizon, under combinations of initial habitat and population
distribution. We also found policies for a smaller set of population distributions that a
manager may only presume to occur (e.g. birds equally distributed among stands), as when
managers are only able to observe abundance and not spatial distribution. We investigated
the effect of this loss of system resolution on optimality by examining differences in projected
population sizes under the two types of policies. That is, we used the set of ‘presumed-state’
policies to project population size from each true initial system state, then we compared these
to projections under the best policy for that state. For the planning horizon that we
considered, loss in optimality was highly dependent on initial habitat state and on choice of
presumed population distribution. Generally, loss in optimality and species extinction rate
were both greater for habitat states that were initially poor than initially favorable. For some
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initial habitat states, population projections based on policies for presumed states often
exceeded objective function values for known-state policies, suggesting that the genetic
algorithm frequently fell short of finding bona fide optima. © 2000 Elsevier Science B.V. All
rights reserved.
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system; Spatially-explicit population model

1. Introduction

Management for many forest animal species, particularly forest birds, centers on
silvicultural actions carried out over space and time. Optimal scheduling and
optimal control techniques are finding greater application in silvicultural planning
where objectives and constraints for wildlife populations or their habitats are
explicitly considered (Williams, 1989; Bettinger et al., 1997; Hof and Raphael, 1997,
Hughell, 1997).

Wildlife populations, however, are notoriously difficult to measure. Populations
are rarely completely enumerated. In many cases, population size estimates derived
from a sampling program must suffice in lieu of real measurements, and in many
more cases, all that may be available are indicators of presence or absence of a
species (Conroy and Noon, 1996). Furthermore, many populations follow birth,
death, and movement dynamics so rapid that implementation of the action occurs
at a state substantially different than the one at the time of measurement.

A specific problem of wildlife population measurement is that of measuring
population parameters at spatial scales that are relevant to population dynamics.
For example, all that a manager may be able to discern is that two populations
comprise 1000 animals each. Population dynamics and expected persistence for
these populations may be considerably different if one population is distributed
over 20 proximate habitat patches and the other is distributed over two isolated
patches. Consequently, management approaches for each population, given a
common management objective, might be entirely different if the full state of the
system was known; however, this is often not the case.

Thus, managers are frequently required to make management decisions based on
aggregated system measurements, even as these systems follow finer resolutions of
spatial dynamics. Our objective was to estimate the loss in optimality incurred, if
any, when one is forced to manage in this way, and to determine whether losses
vary as a function of initial states of the system.

2. Model development

We built a deterministic model of a forest ecosystem comprised of two submod-
els. The forest submodel projected stand characteristics through time and in
response to management actions. The population submodel projected abundance of
a forest bird species in response to forest stand characteristics. Our model most
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closely resembled population dynamics for bird species that prefer mature, low-den-
sity southern US pine (Pinus spp.) forests, e.g. the endangered Red-cockaded
woodpecker (Picoides borealis) (Ligon et al., 1986; Walters, 1991) and the poten-
tially threatened Bachman’s sparrow (Aimophila aestivalis) (Dunning and Watts,
1990; Pulliam et al., 1992). However, our purpose was to investigate suboptimal
management in a general, non-specific forest setting. Therefore, we chose model
forms and parameterizations that we found convenient to work with yet reasonably
characteristic of a forest system: they are not necessarily representative of any
known system.

2.1. Forest growth and regeneration model

We modeled a square forest landscape as a grid of four equal-sized (1 square land
unit) square compartments or stands. We numbered the compartments s =1, 2, 3,
4 in a clockwise direction starting from the northwest compartment. We assumed
that each compartment is managed on an even-aged basis. At any 5-year decision
stage, the manager chooses to either (0) do nothing, (1) thin to a fixed basal area,
or (2) clearcut the stand. In any event, the stand is clearcut when it reaches age 120
years.

At any year ¢ and compartment s, three state variables describe the system: (1)
stand age a,,, (2) stand age 4, at last thinning, and (3) population size n, of a
resident forest bird. However, we assume that a manager measures the 12 state
variables only at times 7€{0, 5, 10, ...}. A stand younger than a fixed threshold age
arr = 30 years cannot be thinned. A logistic function relates stand basal area b, to
age of stand and to age of stand at last thinning. Thinning reduces stand basal area
to that corresponding to arr, and we represented an unthinned stand by setting
h,, = arr. Because management interventions over the life of a stand may abruptly
change h,,, the basal area growth function for a stand is discontinuous in a,:
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Here, K, =27.55 m? ha—! (120 ft> acre ~!) is the asymptotic basal area, r, = 0.1
year ! is the basal area maximum growth rate, and a; = 30 years is age of stand at
curve inflection point.

2.2. Bird population model

We modeled a compartment-specific bird population growth rate /4, as a
quadratic function of stand age and basal area

)‘ts = )”max + aO(at.v - ClX)z + b()(bm - bX)za

tmax = 1.15 year ~! is population maximum growth rate, gy = — 3.0 x 103

year ~3 is the curvature coefficient for stand age, ay = 120 years is stand age at 4,,,,,
bo= —1318x 107 year /' m~* ha®> (—1.0x10~* year—!' ft—* acre®) is the

where /
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curvature coefficient for basal area, and by = 13.77 m> ha —! (60 ft> acre —!) is basal
area at A,,,. These parameter settings define a surface that ascends broadly with
stand age to a maximum at age 120 years and that more rapidly ascends with basal
area (from either direction) to a maximum at 13.77 m? ha .

We projected population growth, decline, and movement under the model of
source-sink population regulation (Pulliam, 1988). We considered compartments
where 4,,> 1.0 as population source compartments and those where 4, <1.0 as
population sinks. Source habitats may accommodate individuals to a ceiling of
Nmax = 200 birds; beyond this ceiling, surplus individuals become candidates for
export to other compartments eligible to receive them. All neighboring (any
adjacent compartment sharing a common boundary or corner) sink compartments
may receive unlimited numbers of birds, and neighboring source compartments
may receive birds up to the limit of n,,,,. In no instance does a sink compartment
export birds to other compartments. Surplus animals to be moved are allocated to
recipient compartments in inverse proportion to inter-compartment distances,
measured center-to-center. Compartments sharing a common boundary have an
inter-compartment distance of 1.0, and those sharing a common corner have a
distance of /2. Furthermore, we assumed that the area surrounding this forest
landscape comprised only sink habitat, arranged in similarly-configured
compartments.

2.3. Decision model

For an initial set of habitat and population states {a,, h, 1y}, the manager
seeks the schedule of decisions d,,e{no action, thin, clearcut}, re{0, 5, 10,..., 45}
that maximizes X, ns,,, the total population size at the end of a 50-year (ten-deci-
sion period) planning horizon. The decision policy must satisfy the constraint that
> 4 clearcut actions are taken during decision periods 0-3 (years 0—15) and during
periods 4-7 (years 20—35). One extreme approach to meeting this constraint is to
clearcut all four stands in one decision period; another is to repeatedly clearcut one
compartment over four decision periods. A constraint of this sort might be enforced
to provide for minimum levels of certain secondary forest objectives including wood
volume extraction, openings for other wildlife species, or recreation opportunity.

Following a set of decisions at time #, the new forest habitat state is immediately
established. From this state, both the forest stands and the bird populations are
grown annually until the next decision period 5 years hence.

3. Optimization heuristic

We used a genetic algorithm (GA) (Goldberg, 1989; Davis, 1991) to find the
schedule of decisions that maximize the bird population objective. Alternative
approaches that rely on some degree of decision-state enumeration, such as
dynamic programming, would have to consider 10'* or more decision-state combi-
nations per decision stage, even with population states coarsely discretized. We
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believed that a heuristic procedure, such as the GA, provided a reasonable search
alternative given our desire to derive temporally and spatially-explicit decision
schedules. Though decision schedules provided by the GA are not guaranteed to be
optimal, we nevertheless found their use reasonable for our purposes of making
relative comparisons in objective function values between competing decision
schedules.

We used the simple GA described by Goldberg (1989) with some fitness-scaling
modifications suggested by Davis (1991) (Fig. 1). Chromosomes in our GA popula-
tion comprised 40 genes corresponding to ten decision periods x four compart-
ments. Alleles for each gene were the set {0, 1, 2}, representing the no action, thin,
and clearcut decisions respectively. Thus, one chromosome with a specific configu-
ration of alleles represented a candidate decision schedule for the planning horizon.

Because some decisions were nullified depending on system state, two chromo-
somes with different sets of allele values could encode the same decision schedule.
For example, a,, = 20 years represents a stand younger than the minimum allowable
thinning age. Therefore, an allele value of 1 for the gene corresponding to this
decision period and compartment is acted upon as if its allele value was 0. We
allowed these schedules to freely enter and reproduce in the population. The only
drawback of doing so was a loss of efficiency caused by the GA having to search
unnecessarily over certain regions of the decision space. However, we felt that this
loss was more than compensated by the computational savings in not having to
verify each schedule.

Each chromosome encoded a candidate schedule that was either feasible (clearcut
constraint met) or infeasible. Each schedule provided a non-negative real value for
the population objective function. For feasible schedules, we added 1000 to the
population result. For infeasible schedules, we assigned the value 0.0001. By doing
so, we segregated the list of objective function values arising from a population of
chromosomes into two distinct ranges: > 1000 and 0.0001. We applied a linear
ranking to the set of feasible values (Davis, 1991, pp. 31-34), with 1.0 assigned to
the smallest value > 1000, 100.0 assigned to the largest value, and proportionate
rankings assigned to intermediate values. To construct the mating pool, we drew
chromosomes from the population with selection probability in proportion to
transformed objective function values. In this way, individuals encoding infeasible
solutions were highly unlikely to contribute to the next generation. Individuals
representing feasible solutions were likely to reproduce, but the use of linear
ranking helped to ensure that the GA population did not too quickly favor a super
individual and converge on a local optimum.

We conducted all GA runs with a population size of 200 chromosomes reproduc-
ing over 200 generations. We used elite chromosome selection to ensure that the
top-ranked individual in one generation was transferred intact to the next genera-
tion; the other 199 chromosomes were constructed from the previous generation
through random crossover and mutation (Davis, 1991, p. 34). We used two-site
crossover with crossover probability of 0.8. We chose genes for mutation with
probability 0.15, then we chose an allele with equal probability from the allele set.
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Therefore, the effective gene mutation probability (overall probability of allele
change) was 0.10. We chose these values subjectively, but using guidance from

Schaffer et al. (1989) and from our own experience with related problems.

Crossover: Recombine

with probability PCross;

randomly select 2 loci in
pair for crossover

Y

Mutation: Gene selected
and mutated with
probability PMute

v

Add pair to new GA
population

Genetic
Operators Loop

Replace old GA popn

matrix with new GA popn
matrix

Initialize Report Elite
random Y chromosome, @
seed A ObjVal -1000
[ N
i=i+1
3
Y Initialize a new GA popn ¥ Select next
matrix with random A chromosome for fitness [€7]
allele values evaluation
# ¥
—|Set initial states {ag,, hog, Mg}
Put Elite v
chromosome in
new GA popn Read next allele Elcie
S } uadruplet
[ ¢ 3 + i alleles ?
Selection: Draw
chromosome pair from Project habitat Policy
old GA popn; probability and population feasible
in proportion to NormVal states to next so far ?
; v decision period

ObjVal = 0.0001

ObjVal = final
population size +

4

Last

hromosom

2

S

Fitness Evaluation Loop

[Read next chromosome

NormVal = rank of
ObjVal (1,..., 100)

Objval
1000 ?

Assign chromosome

with NormVal = 100 as
Elite chromosome

Normalization Loop

Fig. 1. Flow diagram of genetic algorithm used for finding optimal decision schedules for forest bird
population objective. Parameter values were set to each of the following: NumGens (number of
generations) = 200, GA population size =200, PCross (probability of crossover)=0.80, and PMute
(effective probability of gene mutation) = 0.10.
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Table 1

Initial age of stand (a, years), initial age of stand at last thinning (%, years), and estimated optimal
population sizes at end of planning horizon (median over 50 samples of initial population state) for
eight configurations of initial forest state®

Compartment

1 2 3 4
Configuration a h a h a h a h Abundance
1 100 95 100 95 100 95 100 95 2.2
2 100 30 100 30 100 30 100 30 2.2
3 60 55 60 55 60 55 60 55 617.5
4 20 30 20 30 20 30 20 30 27.0
5 100 95 70 65 10 30 40 30 483.6
6 100 30 70 65 10 30 40 30 480.3
7 100 95 100 30 10 30 10 30 17.7
8 100 95 10 30 100 30 10 30 20.0

@ Stands never thinned are denoted by /4 = 30.
4. Experimental design

Our aim was to evaluate performance of decision schedules corresponding to
presumed initial population distributions on a sample of true population distribu-
tions. We randomly generated a sample of 1000 vectors from a four-component
simplex volume (all vector components sum to 1.0), then we picked the 50 most
dispersed within the volume (Steuer, 1986, pp. 311-332). We used these vectors to
allocate an initial total population size of 200 birds into the four forest compart-
ments, permitting population states to be represented as fractions of organisms.

We selected eight initial configurations of forest habitat (Table 1). Configurations
1-4 are four states of a homogeneous forest: mature/thinned, mature/unthinned,
mid-rotation/thinned, and young/unthinned, respectively. The other four configura-
tions represent heterogeneous forests. In configurations 5 and 6, stand ages vary in
a gradient across the forest. In configurations 7 and 8, stand ages vary dichoto-
mously between young and mature states. Similar stands are contiguous in configu-
ration 7 and are isolated in configuration 8.

We conducted 20 replications of our GA for each of the 50 x 8 =400 initial
habitat and population states. For each set of replications, we saved the decision
schedule for the replication that provided the greatest value of the objective
function. We refer to this set of 400 decision schedules as the ‘known-state’ policy
or KSP set, and an individual policy from that set is called a KSP. The correspond-
ing objective value for a KSP is called the KSPV.

We also carried out the same optimization exercise for a much smaller set of
initial population states. We considered five typical distributions of birds that a
manager, having knowledge of only the total population size of 200, may presume
to occur among the forest compartments: (1) 50 birds in each compartment, (2) all
200 birds in compartment 1, (3) all 200 in compartment 2, (4) all 200 in
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compartment 3, and (5) all 200 in compartment 4. We considered the same set of
habitat configurations because we believed that a manager would be able to observe
the habitat state of the system at each decision period with relative ease. We refer
to this set of 5 x 8 =40 decision schedules as the ‘presumed-state’ policy or PSP set.

For each of the 400 true population and habitat configurations, we projected bird
populations through time and management interventions under five corresponding
PSPs. We thus obtained a set of five population projections under presumed
conditions for each combination of true conditions, and each was comparable to a
corresponding KSPV. We refer to the population projection of a true state under a
PSP schedule as a PSPV.

We calculated several statistics to aid our comparisons. By computing averages
or medians for these statistics over the sample of true initial population states, we
obtained ‘expected values’ of decision schedule performance when initial population
states must be presumed rather than known.

PCTDIFF was the difference between KSPV and PSPV, scaled by KSPV and
expressed on a percentage basis. We classified the membership of PCTDIFF in four
range classes: PCTDIFF > 95%, 5% < PCTDIFF < 95%, — 5% < PCTDIFF < 5%,
and PCTDIFF < — 5%. These classes qualitatively describe degree of performance
loss under PSPs relative to KSPs as either high, moderate, negligible, or negative
(i.e. performance gain), respectively. Note that if the KSP set constitutes a set of
bona fide optimal decision schedules, then PCTDIFF should never take on negative
values. However, we allow this possibility as our heuristic procedure provides a set
of ‘good’ decision schedules that are not guaranteed to be optimal.

For any KSP or PSP schedule, we considered the population at =150 to be
extinct if nsy, < 2.0 for all s. The indicator variable EXTINCT takes on the value
1 if the population becomes extinct under a PSP but not under the corresponding
KSP, and it takes on the value 0 otherwise. Thus EXTINCT measures the tendency
for the PSP to carry the population to extinction conditional on the fact that the
KSP does not. Another indicator variable, DISAME, takes on the value 1 when the
first-period decision is identical in the PSP and the KSP and 0 otherwise.

5. Results

Decision schedules derived by the GA replications provided objective values that
were generally consistent with our intuition of how initial habitat states would
influence bird abundance over time (Table 1). Habitat configurations 3, 5, and 6
provided initial excellent bird habitat and provided numerous opportunities over
time for management to perpetuate population growth. Configurations 1 and 2,
however, provided little opportunity for improvement through management (the
entire forest had to be clearcut within 20 years) despite the initial provision of
favorable bird habitat. Configurations 4, 7, and 8 provided relatively poor initial
habitat but provided plenty of opportunity for habitat improvement through
management. With a longer planning horizon, we would expect large population
sizes for these latter configurations.
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Average values of DISAME ranged from 0.0 to 0.34 (Fig. 2). Least similarity
occurred for habitat configurations 3, 5, and 6; policies for these configurations
allowed the greatest degree of management latitude over the planning horizon. In
such cases, the first-period decision appears to be highly sensitive to how well one’s
presumption matches the true initial population state. As management options
become more limited (e.g. configurations 1 and 2), choice of an initial decision
seems to become less dependent on the accuracy of this presumption.

The median of PCTDIFF varied strongly with initial habitat configuration and
with initial presumed population state (Fig. 3). For habitat configurations 3, 5, and
6, PSPVs generally were in agreement with KSPVs. We found important excep-
tions, however, for initial presumed population state 4 in habitat configurations 5
and 6. This configuration of states presumed that all 200 birds initially occurred in
a long-term sink habitat, and not surprisingly, PSPVs fell significantly short of
KSPVs. In five cases, median PCTDIFF was negative (one value of — 0.03 was too
small to display in Fig. 3).

In habitat configurations 1 and 2, PSPVs were generally in agreement with
KSPVs (Fig. 3), however, both tended to fall near 0 (Table 1). Median PCTDIFF
was typically significant for habitat configurations 4, 7, and 8 (Fig. 3). Populations
under these initial habitat configurations would certainly grow large given a
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Fig. 2. Proportion of known-state decision schedules (n = 50) where first-period decision agreed with that
of the presumed-state schedule. Values are displayed for five presumed initial population configurations
at each of eight initial habitat configurations.
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Fig. 3. Median difference between objective value from known-state decision schedules (n = 50) and
population projection from presumed-state decision schedule, where difference is expressed as percentage
of objective value. Values are displayed for five presumed initial population configurations at each of
eight initial habitat configurations. Round symbols denote values < 0.03 in absolute value.

sufficiently long planning horizon: whether these large differences between PSPV
and KSPV would persist is unknown.

The distribution of PCTDIFF in range classes provides a better illustration of
how often PSPs were highly, moderately, or negligibly inferior to KSPs (Fig. 4). In
fact, the ‘optimal’ KSP frequently performed poorly relative to the PSP, particu-
larly for initial habitat configuration 3, although the typical difference in perfor-
mance was not great (Fig. 3). We found that performance was most often worse for
initial habitat configurations 4, 7, and 8, though exceptions did occur for particular
combinations of habitat and population configurations.

Average values of EXTINCT followed patterns similar to those described above
(Fig. 5). For habitat configurations 3, 5, and 6, extinctions did not appear to occur
more frequently except in two cases. As noted in the summary of PCTDIFF,
presumed population configuration 4 placed all birds in the long-term sink habitats
of configurations 5 and 6. Therefore, these particular PSPs often led to extinction
whereas the KSPs did not.

More frequent extinctions were also noted for habitat configurations 4, 7, and 8.
As in the previous case, extinctions greatly increase under policies that presume
birds are initially concentrated in very poor habitat (see population configurations
4 and 5 for habitat configuration 7 and population configurations 3 and 5 for
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habitat configuration §; Fig. 5). We also note that extinctions were more frequent
for all PSPs in habitat configurations 1 and 2, but these results may have little
meaning as many KSPs also carried the population to extinction.

6. Discussion and recommendations

We have shown that in many instances under a spatially-explicit model of
population dynamics, decision schedules based on presumed initial distributions of
populations perform quite poorly relative to schedules based on known distribu-
tions. In other instances, the presumed initial population distribution mattered
little. Despite their basis on a very simple model, our analyses suggest that common
presumptions about animal distribution may indicate decision policies that are
suboptimal, or even irreversibly harmful, with respect to the managed resource.
Decision policies for spatially-explicit systems should therefore address uncertainty
regarding the distribution of individuals. One approach is adaptive resource man-
agement (Walters, 1986).
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Fig. 4. Distribution of difference between objective value from known-state decision schedules (n = 50)
and population projection from presumed-state decision schedule, where difference is expressed as
percentage of objective value. Differences are assigned to range classes [95%, 100%)], [5%, 95%), [ — 5%,
5%), and (— o0, —5%) numbered 1-4, respectively. Values are displayed for five presumed initial
population configurations at each of eight initial habitat configurations.
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Fig. 5. Proportion of known initial population states (n = 50) that are carried to extinction under a
presumed-state policy but not under the corresponding known-state policy. Values are displayed for five
presumed initial population configurations at each of eight initial habitat configurations.

The average of the PCTDIFF variable is related to the expected value of perfect
information (EVPI) (Lindley, 1985) for the unknown bird system state. The EVPI
is a measure of what one should be willing to pay, in units of the utility, to obtain
perfect information in making a decision (Lindley, 1985). EVPI compares the
expected utility under perfect information (EUPI) against the maximum expected
utility for any decision in the absence of information. In contrast, our analyses
compared the EUPI against expected utility for that optimal decision corresponding
to a single presumed system state. In a sense, our analysis measured the value of
information against specific ‘worst-case’ scenarios, any of which might be reason-
able presumptions for a habitat manager. Our statistic may most closely approxi-
mate EVPI in case 1 of the presumed initial state, in which birds were distributed
equally among compartments.

We suspect that observed outcomes were highly dependent on the size of our
forest system, on the dynamics and initial size of our bird population, and on length
of planning horizon. Had we considered a much longer planning horizon, these
differences may have been of smaller magnitude as we would have expected the
system to become less dependent on initial state over time. On the other hand, had
we considered smaller initial population sizes, more forest compartments, or
stochastic population dynamics, we might have made system performance even
more sensitive to initial conditions.
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Even for such small and simplistic modeled systems as ours, it is apparent that
obtaining temporally and spatially-explicit decision policies for resource managers
will require alternatives to the classical mathematical programming techniques
(linear programming, dynamic programming, integer programming, etc.). We see
that heuristic procedures including GA, Tabu search (Glover, 1986), neural net-
works (Narendra, 1996), and simulated annealing (Kirkpatrick et al., 1983), espe-
cially hybridized in some manner with the classical techniques, hold great promise
for optimal management of wildlife resources.

Our analyses suggested that a considerable number of decision policies were not
optimal. Without comparison to results from an enumerative optimization proce-
dure, we do not know the extent or degree to which this occurred. However, for a
related optimal control problem of another dynamic system (harvest of waterfowl
populations), comparisons between our GA solutions and those provided by
dynamic programming were not substantially different (C.T. Moore, unpublished
data). Furthermore, we are confident that several options we did not pursue could
have improved the performance of our GA. For example, a ‘GA-within-GA’
approach could have been used to adapt the GA parameters over the course of the
GA run.

Management under a coarse resolution of system scale takes on many forms, and
we addressed only one specific instance. Another common form is the identification
of population states through species presence/absence data. Here, one obtains
spatially-explicit information on the state of the population, but the dichotomous
nature of the data provides only the absolute minimum in information content,
namely, whether a species is truly present or possibly absent in the area. A Bayesian
analysis might be used to identify a spatially-explicit probability distribution of
animal abundance conditional on a particular configuration of presence/absence
indicators among forest compartments. By sampling population values from this
distribution and deriving a known-state policy for each sample, one could begin to
search for policies that return the greatest expected value of the population
objective. Because many sampling programs that provide an estimate of aggregated
population size also provide species indicator data at some finer resolution of scale,
managers might couple both pieces of information to build a probability distribu-
tion on abundance.

Another form of coarse-scale management that deserves study is the inability to
identify the spatially-explicit model operative in the population. A reasonable null
model is that of no spatially-explicit processes whatsoever, but other (incorrect)
spatially-explicit models could be proposed as well. An adaptive approach (Walters,
1986; Williams, 1997) might serve this management situation well, where measure-
ments of the system state over time are matched to each model’s predictions. These
comparisons update relative confidence in each of the proposed models, and in
turn, the revised model credibility weights affect future decision policies. However,
to distinguish among spatially-explicit models through adaptive management will
generally require knowledge of animal distributions.

A final typical form of management under coarse system resolution is that of
carrying out management actions at scales that are large relative to the scale of
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population dynamics of the target organism. Here, a degree of control over
management is lost in that actions are difficult to fine-tune to the precise level
desired for optimal population response. For each management decision and system
state, one must specify a probability distribution for the system’s response to
management. The expected objective value of the optimal policy under this scenario
would likely be smaller than that under a scenario in which the spatial scale of
actions more closely agreed with that of population dynamics.
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