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Abstract: Stochastic and structural uncertainties about forest dynamics present challenges in the management
of ephemeral habitat conditions for endangered forest species. Maintaining critical foraging and breeding habitat
for the endangered red-cockaded woodpecker (Picoides borealis) requires an uninterrupted supply of old-growth
forest. We constructed and optimized a dynamic forest growth model for the Piedmont National Wildlife Refuge
(Georgia, USA) with the objective of perpetuating a maximum stream of old-growth forest habitat. Our model
accommodates stochastic disturbances and hardwood succession rates, and uncertainty about model structure.
We produced a regeneration policy that was indexed by current forest state and by current weight of evidence
among alternative model forms. We used adaptive stochastic dynamic programming, which anticipates that
model probabilities, as well as forest states, may change through time, with consequent evolution of the optimal
decision for any given forest state. In light of considerable uncertainty about forest dynamics, we analyzed a set
of competing models incorporating extreme, but plausible, parameter values. Under any of these models, forest
silviculture practices currently recommended for the creation of woodpecker habitat are suboptimal. We endorse
fully adaptive approaches to the management of endangered species habitats in which predictive modeling,
monitoring, and assessment are tightly linked. FOR. SCI. 52(2):155–172.
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I N RECENT DECADES, management of public forest lands
in the United States has shifted from a primary focus on
commodity production to one that provides greater

consideration of other resource objectives (Rose and Chap-
man 2003). In particular, an emphasis on ecosystem man-
agement has spurred natural resource agencies to integrate
and plan for old-growth conditions in many forest manage-
ment schemes (Franklin 1997, Thomas 1997). These con-
ditions are requisite for the recovery and population main-
tenance of several species of special concern, including the
endangered red-cockaded woodpecker (Picoides borealis,
hereafter “woodpecker”), a native cavity-nesting bird of
pine (Pinus sp.) forests throughout the southeastern United
States (Ligon et al. 1986, Jackson 1994).

Thus, on forests that are identified as woodpecker recov-
ery areas, there is a management desire to promote old-
growth conditions as rapidly as possible and to sustain
suitable amounts of these conditions over perpetuity. A plan
for recovery of the woodpecker on forests within the US
Fish and Wildlife Service National Wildlife Refuge System
(US Fish and Wildlife Service 1998) provides guidelines for
regeneration of pine forest stands so that the maintenance of

an old-growth component is assured. This plan proposes the
“area control” method of forest regeneration planning for
even-aged or two-aged management systems. Under this
method, the proportion of forest regenerated each year,
either through the clearing of all (clearcutting) or a majority
(seed tree, shelterwood) (Smith 1962) of the mature over-
story, is a constant ratio of compartment entry cycle to
forest rotation length. Thus, 8% of forest in a compartment
should be regenerated annually if the forest is managed on
a 100-year rotation and compartments are visited every 8
years for treatment.

The area control approach may be overly simplistic for
several reasons. First, it assumes that the forest age class
distribution is uniform, which may not be realistic, e.g., in
naturally regenerated forests. Recognizing this, the Refuge
System plan makes the ad hoc recommendation of avoiding
harvests of the two oldest age classes (where age classes are
defined by the entry cycle) in any year until a uniform age
distribution is achieved (US Fish and Wildlife Service
1998). Second, managers may expect to gradually lose (e.g.,
succession to hardwood) or gain pine acreage over the long
term, and anticipation of those trends may affect the optimal
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choice of current harvest. Third, failure to acknowledge
stochastic events such as forest disturbance and hardwood
succession may also result in suboptimal decisions (Reed
and Errico 1986, Gassmann 1989, van Kooten et al. 1992,
Teeter et al. 1993). Fourth, uncertainty exists about the
system’s mechanistic structure, i.e., the fundamental dy-
namics of forest growth. As a consequence, management
decisions that would be appropriate under the belief in one
model of the system may be inappropriate if another model
is more realistic (Conroy and Moore 2002). These reasons
raise legitimate concerns about the unquestioning applica-
tion of the area control method (or its ad hoc variants) for
optimally managing old-growth habitat.

Optimal decision-making for the creation and mainte-
nance of old-growth conditions or any other transitory forest
condition must be predicated on models that explicitly ac-
knowledge these dynamics and sources of uncertainty. Sto-
chastic uncertainty has been addressed in previous applica-
tions of dynamic optimization models in forest manage-
ment, for example, in burning to promote persistence of a
woodland shrub (McCarthy et al. 2001) and in holding areas
of primary forest to maximize future social nonuse benefits
(Bulte et al. 2002), but to our knowledge, none have also
taken into account structural uncertainty.

We present a forest succession model for the Piedmont
National Wildlife Refuge, Georgia, where the objective is
sustenance of a red-cockaded woodpecker population. Thus,
forest management at the Refuge is oriented toward the
creation and maintenance of old-growth (�80 years)
loblolly (P. taeda) and shortleaf (P. echinata) pine forest
conditions. Our model projects the response of the forest to
harvest from each of three forest age classes and to stochas-
tic influences of disturbance and forest succession.

For each possible age class composition of the forest, our
goal was to find optimal amounts of forest area to regener-
ate annually for the return of a maximum stream of old-
growth habitat over an infinite time frame and under
stochastic outcomes of disturbance and succession. Most
importantly, we also required this decision policy to account
for structural uncertainty in the average rate of conversion
from pine to hardwood forests, which are inhospitable to
woodpeckers. Different hypotheses about succession imply
different optimal harvest policies; however, managers can-
not postpone decision-making until this uncertainty is re-
solved. The value of our policy is that it provides optimal
decision values both in cases of complete uncertainty
among competing hypotheses and in cases where some
knowledge is available, perhaps as a result of management
experience. Because the policy is computed by taking into
account the expected flow of information returned by each
cycle of decision-making, the decision policy is said to be
actively adaptive. Decision-making under an actively adap-
tive policy may sacrifice some gain in the short term to elicit
information that ultimately improves management perfor-
mance over the long term (Walters and Hilborn 1978, Wil-
liams 1997, Williams et al. 2002).

Study Area

The Piedmont National Wildlife Refuge, located in cen-
tral Georgia, is a 14,136-ha unit of the US National Wildlife
Refuge System (Figure 1). The site supports a second-
growth mixed pine (loblolly and shortleaf) and hardwood
(Quercus sp., Carya sp.) forest that regenerated naturally on
severely eroded farmland abandoned before 1940 (Gabriel-
son 1943, Czuhai and Cushwa 1968). Forest management is
directed toward the maintenance of all native flora and
fauna, sustenance of important ecosystems, and provision of
public recreation, including wildlife viewing and sport
harvest of some wildlife species (US Fish and Wildlife
Service, Piedmont National Wildlife Refuge, http://
piedmont.fws.gov. Accessed 23 Sep 2005). The Refuge is
also a designated recovery site of the red-cockaded wood-
pecker (US Fish and Wildlife Service 2003) and hosts the
largest woodpecker population (about 40 breeding groups)
in the Piedmont physiographic province.

The woodpecker’s preferred foraging and breeding hab-
itat consists of pure, open stands of mature (�80 years) pine
with a fire-maintained herbaceous understory and sparse
hardwood midstory (Loeb et al. 1992). Throughout the
southern United States these forest habitats have become
highly fragmented or have disappeared altogether, particu-
larly since the early 20th century, as intensification of
management on industrial forest lands emphasized shorter
timber rotations and as exclusion of fire permitted increased
hardwood succession (Ligon et al. 1986). Because the Ref-
uge is identified as a woodpecker recovery site, forest
management is oriented toward increasing woodpecker
abundance. To this end, forest managers use thinning and
regeneration cutting, prescribed burning, and mechanical
vegetation removal to maintain the desired habitat condi-
tions (US Fish and Wildlife Service, Piedmont National
Wildlife Refuge, Habitat Management Plan, 1982 [unpub-
lished report]. Hereafter, “Refuge Habitat Management
Plan”).

The Refuge uses retention (irregular) shelterwood silvi-
culture (Refuge Habitat Management Plan; J.D. Metteauer,
personal communication, Piedmont National Wildlife Ref-
uge, 2000), an even-aged regeneration system in which
some shelter trees are left on-site until the following rotation
(Smith 1962). In addition to protecting the developing seed-
ling crop, the retained trees may serve as woodpecker for-
aging (US Fish and Wildlife Service 1998) or nesting (Con-
ner et al. 1991) habitat. Refuge managers designate pine
stands as sapling (P1, �16 years), poletimber (P2, 16–40
years), or sawtimber (P3, �40 years).

Until recently (2003), pine stands were managed on an
80-year average rotation length; the specific length de-
pended on site fertility (Refuge Habitat Management Plan).
Average rotation length is now 100 years (C. Schmidt,
personal communication, Piedmont National Wildlife Ref-
uge, 2005) in keeping with woodpecker recovery guidelines
for loblolly pine forests (US Fish and Wildlife Service 1998,
2003). Rotations of length �100 years are considered in-
feasible because of limitations imposed by site conditions,

156 Forest Science 52(2) 2006



the biological environment, and physiological characteris-
tics of the tree (C. Schmidt, personal communication, Pied-
mont National Wildlife Refuge, 2005). A series of interme-
diate thinnings is carried out over the rotation to achieve
specified density and crown closure goals for woodpeckers
(Refuge Habitat Management Plan).

Pine stands throughout the Refuge are transforming into
hardwood stands, often rapidly (Refuge Habitat Manage-
ment Plan). Refuge managers use fire and mechanical re-
moval to control the hardwood understory in those stands
where woodpeckers exist or are desired. However, in an
effort to increase Refuge habitat diversity, managers do not

try to impede hardwood succession on many other upland
areas (Refuge Habitat Management Plan). Managers fore-
casted in 1982 that succession will continue until 40% of the
forest cover comprises upland and bottomland hardwood
types (Refuge Habitat Management Plan).

Methods
Forest Decision Model

To manage woodpeckers and their habitat, Refuge man-
agers must make a series of decisions through space and
time. We considered regeneration cutting through time as

Figure 1. Piedmont National Wildlife Refuge (darkened area), Georgia, USA, and extent of Piedmont physi-
ographic province within Georgia (shaded).
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the primary regulator of the amount of old-growth forest,
and we constructed a forest decision model to analyze
cutting decisions. Although spatial arrangement of suitable
habitat is a central concern in woodpecker management
(Walters 1991, Letcher et al. 1998, Azevedo et al. 2000),
decisions about where habitat is located could be reasonably
made in a secondary step after determining how much
habitat to create (e.g., Boston and Bettinger 2001). There-
fore, we ignored stand-level characteristics, including spa-
tial distribution of stands, and we instead focused on harvest
of age classes at the whole-forest level. Our model also did
not consider prescribed burning as a means of controlling
hardwood succession at the whole-forest level. Placement of
prescribed burning at the Refuge occurs mostly in response to
current understory vegetation conditions at existing or potential
woodpecker nesting sites. Financial constraints and conserva-
tion mandates prevent the Refuge from applying fire at the
greater scales needed to control hardwood succession at the
whole-forest level (J.D. Metteauer, personal communication,
Piedmont National Wildlife Refuge, 2000).

The state of the forest at any point in time was repre-
sented in our model as the distribution of total forest area
into five seral classes: P1 and P2 age classes (as previously
defined), P3 (pine 40–80 years), P4 (old-growth pine �80
years), and UH (upland hardwood). We split the Refuge’s
single �40-year pine class into the classes P3 and P4
because of the need to specifically recognize and manage
for very old stands suitable for woodpecker nesting habitat.
The Refuge distinguishes upland from bottomland hard-
wood types, but we ignored this latter type in our model on
assumption that these habitats remain largely unchanged in
extent over time (�9.4% of Refuge area).

Our model advanced the state of the forest through time,
in annual steps, in response to forest growth, stochastic
succession and disturbance events, and cutting decisions.
This Markov decision process (Puterman 1994) was repre-
sented in a stage-based matrix model (Caswell 2001), in
which a set of transition parameters expressed rates of
exchange among the pine age classes and the upland hard-
wood forest type.

Model Structure

We represented forestwide proportions of the four pine
age classes and the upland hardwood class occurring at time
t by the vector yt. The model thus projected the forest state
from year t to year t � 1 as:

yt�1 � �tyt,

where �t is the matrix product Ct � G � Ht � Dt. The
components of �t represent forest disturbance (Ct), growth
(G), hardwood succession (Ht), and regeneration decisions
(Dt), respectively, and are described in detail below. All
processes except growth (G) were time-specific and thus are
indexed by t. The five forest class proportions (P1, P2, P3,
P4, UH) occurred in positions 2–6 of the state vector yt.
Position 1 was a forest class used to temporarily store the
current year’s regeneration cut (see below).

Consistent with Refuge management, our model allowed
regeneration harvests from P2, P3, and P4. Although in
practice small hardwood patches may be cut for regenera-
tion of pine, these cuts are infrequent and chosen opportu-
nistically to augment a neighboring pine harvest: Because
cutting of hardwood stands is not part of the scheduled
silviculture at the Refuge, we did not consider cuts from the
UH class in our model. The first step of the model applied
a set of class-specific cutting decisions {d2t, d3t, d4t} at time
t. These decisions transferred d2tyP2,t � d3tyP3,t � d4tyP4,t

amount of pine forest into a temporary “regeneration” class
(Figure 2), which was used only for accounting purposes
and to prevent newly regenerated forest from immediately
growing into the P2 class. After the model calculated the
growth transitions (G, see below), the regeneration class
was completely emptied into the P1 class and was thus
zeroed out. Matrix Dt was as follows:

Dt � �
1 0 d2t d3t d4t 0
0 1 0 0 0 0
0 0 1 � dt 0 0 0
0 0 0 1�d3t 0 0
0 0 0 0 1�d4t 0
0 0 0 0 0 1

�.

The model next calculated portions of the pine forest lost
to hardwood succession (Figure 2). We assumed that the
average rate of loss is persistent each year but is controllable
by the amount of harvest taken from each pine class. Thus,
through regular cutting, managers may slow or stop the rate
of pine cover loss. We assumed that the loss rate, eit, i � 1,
2, 3, 4 for the four pine classes, was stochastic. For example,
environmental conditions that affect hardwood establish-
ment or the ability of managers to suppress hardwood may
vary unpredictably each year. The realized rate of loss, Eit,
was the positive amount of eit that exceeded dit, i.e.,

Eit � max(0, eit � dit).

Note that, because d1t � 0 (i.e., no harvest in P1), E1t � e1t.
Each simulation year, we drew a random variate st from a
beta distribution with mean � and coefficient of variation ve.
We obtained the individual eit by applying a set of scaling
factors �(ei) to st. Thus, the eit were random, but they
covaried perfectly with each other. The Eit were applied in
the model as

Ht � �
1 0 0 0 0 0
0 1 � E1t 0 0 0 0
0 0 1 � E2t 0 0 0
0 0 0 1 � E3t 0 0
0 0 0 0 1 � E4t 0
0 E1t E2t E3t E4t 1

�.

Following succession to hardwood, portions of each pine
class graduated to the next older class (Figure 2). Transition
rates were constant through time and were denoted �ij,
where the transition occurs from the younger class j to the
older class i. Thus, �21, �32, and �43 describe the rates of
transition from P1 to P2, from P2 to P3, and from P3 to P4,
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respectively. A portion of P4, denoted �14, automatically
regenerated each year. Because not all sites on the Refuge
are of sufficient quality to support the oldest stands of trees
(Refuge Habitat Management Plan), only a portion, k, of the
P3 class eligible to graduate actually entered the P4 stage.
We assumed that the remainder regenerated as P1. Finally,
the model emptied the temporary regeneration class into the
P1 class. These transitions appear as

G � �
0 0 0 0 0 0
1 1 � �21 0 �1 � k	�43 �14 0
0 �21 1 � �32 0 0 0
0 0 �32 1 � �43 0 0
0 0 0 k�43 1 � �14 0
0 0 0 0 0 1

�.

The last component of the model applied an annual
stochastic catastrophic disturbance event ct to the older pine
classes and to the UH class (Figure 2). The event converted
the affected pine cover into the P1 type. Only a portion, q,
of the affected hardwood type regenerated as pine cover,
with the rest remaining as type UH. The ct were drawn from
a beta distribution with mean �(c) and variance �2(c). The
matrix C expresses these transitions as

Ct � �
1 0 0 0 0 0
0 1 ct ct ct ctq
0 0 1 � ct 0 0 0
0 0 0 1 � ct 0 0
0 0 0 0 1 � ct 0
0 0 0 0 0 1 � ctq

�.

Applying these transitions to the vector yt in the above
order produced the matrix product �t � Ct � G � Ht � Dt.
Elements in �t specified rates of transition among all com-
partments of the model (Figure 3).

Model Parameterization

Thirteen parameters controlled this model. Unfortunately,
no data exist from the Refuge to estimate any of them. In some
cases (e.g., age transition) we were able to infer reasonable
parameter values based on first principles and reasonable,
biological assumptions. In other cases the parameter values are
purely guesses, but were chosen to produce outcomes in forest
composition that are consistent with past experience.

We fixed values for the age class transitions (�21, �32, �43,
�14) at (1/16, 1/24, 1/40, 1/40). In other words, we assumed
that rates of transition among age classes occurred in pro-
portion to the time span of the younger age class. This is a
reasonable assumption if ages are uniformly distributed
within an age class. We fixed the value of the P4 admission
rate, k, at 0.5, implying that only half of the forest type
leaving the P3 age class enters the P4 class. This value is
reasonable for the Refuge, as only approximately half of the
Refuge is of sufficient fertility to support the oldest stands
of pine (Refuge Habitat Management Plan).

We simulated the proportion of forest destroyed by cat-
astrophic disturbance in year t, ct, from a beta distribution
with mean 0.003394 and variance 0.0003572, providing

98th and 99.8th percentile values of 0.05 and 0.20, respec-
tively, equivalent to destruction of 5% of the forest during
a 50-year disturbance event and 20% destruction during a
500-year event. These probabilities appear consistent with es-
timates of tornado (Peterson 2000) and hurricane (Hooper and
McAdie 1995) strike probabilities for the region. Below the
90th percentile (i.e., 10-year and more common events), prac-
tically none (�0.002) of the forest is destroyed. The propor-
tion, q, of the hardwood class destroyed by a catastrophic event
that regenerates as pine cover was fixed at 0.25.

We had little objective guidance in choosing values for
parameters representing mean proportions of succession to
hardwood in each class, �(ei), and coefficient of variation of
the succession rate, ve. After much trial and error, we chose
the values (0.0006, 0.015, 0.015, 0.03) for the �(ei), i � 1,
2, 3, 4, and we fixed the value of ve at 40%. The ve value
was small enough to provide a nearly symmetric distribu-
tion of beta variates yet large enough to realistically reflect
considerable ecological variability. We believed that the
rate of hardwood succession should be larger in older than
in younger stands, thus �(ei) increases with stand age.
Simulations of the model with these values and with harvest
rates fixed at the values dit � �(ei) projected the UH
component to grow to an asymptotic limit of �50%. Al-
though these values may be the most arbitrary of the entire
set, they are consistent with available data. The average of
the �(ei), weighted by the age class transition rates �ij, was
0.012, comparable to the 0.0087 annualized rate of hard-
wood succession in natural loblolly pine stands in Georgia
during the period 1961–1972 (Bechtold et al. 1991).

Model Optimization

Our goal was to derive a state-specific, stationary (time-
independent) regeneration policy that maximizes, over time,
the amount of nesting habitat available for the red-cockaded
woodpecker. The estimated minimum amount of nesting hab-
itat needed to support the recovery goal of 96 woodpecker
groups on the Piedmont National Wildlife Refuge (US Fish
and Wildlife Service 1998, 2003) is 388.5 ha, or 0.03096 of the
modeled forest cover, assuming a 4.05-ha minimum cluster
size (US Fish and Wildlife Service 1998, 2003) and assuming
total forest area (pine and upland hardwood) remains constant
over time. We defined an objective function

v�yt, 
dit�, st, ct	 � yP4,t�1,

where the amount of habitat in the P4 class at the next time
period (yP4,t�1) is a function of the forest state (yt), set of
decisions ({dit}), and stochastic outcomes (st, ct) at time t.
For any arbitrary current forest state yt0, we searched for the
series of cutting decisions {dit} over a distant time horizon
T that maximized

V�yt0	 � �
t�t0

T

v�yt0, 
dit�, st, ct	,

with respect to all realizations of the stochastic variables st and
ct. Thus, the objective function directs management to seek
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those decisions that yield maximum return of woodpecker
nesting habitat as quickly as possible, but in a context in which
these returns are sustained over a long time frame.

We used stochastic dynamic programming (Nemhauser
1966, Gluss 1972, Anderson 1975, Dreyfus and Law 1977)
implemented in program ASDP (Lubow 1995, 1997) to
search for an optimal regeneration decision policy under
this model. In general terms, stochastic dynamic program-

ming seeks the decision set � that solves the recurrence
relationship

V�xt	 � Max�Ez�v�xt, �f, zt	
 � �
xt�1

p�xt�1�xt, �t	V�xt�1	�,
�

where xt, �t, and zt are the vectors of possible system states,
decisions, and stochastic events at time t, v is the immediate

Figure 2. Transitions among cover types of a forest dynamics model, developed for forest management at the
Piedmont National Wildlife Refuge, are displayed for successive processes within a single time step. Amounts of
forest area are transferred among regeneration (RG), sapling (P1), poletimber (P2), sawtimber (P3), and old-
growth (P4) pine age classes and among an upland hardwood (UH) type. Rates of hardwood succession, ei, are
partially controllable by harvest actions (d2, d3, and d4), yielding realized rates of succession, Ei. Parameter values
used in the baseline (F0) dynamics model are indicated.
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value returned by carrying out decision �t given state xt and
random outcome zt, p(xt�1�xt, �t) is the probability of tran-
sition from state xt to new state xt�1 (where stochasticity is
inherited from zt) given �t, and V(xt�1) is the expected
maximum cumulative return given arrival at future state
xt�1 (Nemhauser 1966, Gluss 1972, Williams et al. 2002).
In other words, the goal is to find the set of decisions that
maximizes the immediate return plus the maximum accu-
mulated return expected over all possible values of the

future state xt�1, without regard to how state xt came to be
from whatever decision sequence preceded it. This defini-
tion of the problem is an expression of Bellman’s (1957)
Principle of Optimality, and it suggests a recursive compu-
tational strategy that explores the decision space backward
through time, facilitated by the representation of forest
states, harvest decisions, and stochastic effects as discrete
points on a grid (Nemhauser 1966, Gluss 1972). For each
step backward in time, tA, and for each possible forest state,

Figure 3. Transitions (�ij) among classes of the forest dynamics model for the Piedmont National Wildlife
Refuge, expressed as products of the individual processes of forest disturbance (c, proportion of forest disturbed;
q, proportion of destroyed hardwood class regenerating to pine), growth (�ij, transition rate from pine age class
j to age class i; k, admission rate to P4 pine age class from P3), hardwood succession (Ei, realized rate of
hardwood succession in pine class i), and regeneration decisions (di).
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the dynamic programming procedure provides a decision
that maximizes the expected return accumulated over the
interval tA, tA�1, . . . , T. The entire set of optimal decisions
over all forest states and time events constitutes the decision
policy. The policy is said to be stationary when further steps
backward in time do not elicit further changes in the array
of state-specific decisions (Anderson 1975); at this point,
the decision policy requires no reference to time and can
therefore be appropriately applied in the context of deci-
sion-making over the infinite time horizon.

We discretized cutting decisions for each harvestable
class (values of dit) in steps of 0.02 over the range 0.0–0.2.
We defined 997 distinct forest states (combinations of seral
classes), and the policy found by ASDP provided optimal
cutting decisions from P2, P3, and P4 for each state. We
required ASDP to consider T � 1,000 stage (year) itera-
tions. We selected this iteration limit to assure that we
obtained a policy that was optimal with respect to a reason-
ably long time horizon. We counted the number of final
iterations over which the solution was unchanged for evi-
dence that the solution was truly stationary.

Parametric Uncertainty

Because the parameter values in our model were estab-
lished under considerable uncertainty, we investigated the
sensitivity of the optimal decision policy to perturbations in
the parameters. We used ASDP to calculate optimal deci-
sion policies under two alternatives to the default model
(model F0): (1) parameter values that projected a lower rate
of transition to the P4 type and a higher transition rate to the
hardwood type (model F1) relative to model F0, and (2)
parameter values that projected a higher rate of transition to
the P4 type and a lower transition rate to the hardwood type
(model F2) relative to model F0 (Table 1). Most parameter
values were simply halved or doubled to produce the de-
sired dynamics in P4 and UH (Table 1). Disturbance events
were less likely in model F1 (5% destruction in 100-year
event, 20% destruction in 1,000-year event) than in F0 and
more likely in model F2 (5% destruction in 25-year event,
20% destruction in 250-year event). We did not alter values
for parameters �21, �32, and �43 among model alternatives
because we assumed that they consistently reflected transi-
tions between age classes under any model (Table 1).

We compared the alternative decision policies with re-
spect to their aggressiveness of cutting actions in each of the
pine types. We also extracted from each policy the optimal
regeneration decisions that would have been applicable for
the estimated state of the Refuge forest in year 2000 (Moore
2002).

Adaptive Optimization under
Model Uncertainty

Beyond the obvious differences in details (management
objectives, forest states, and system dynamics), our problem
formulation to this point is rather indistinct from the optimal
timber production models of Lembersky and Johnson

(1975), van Kooten et al. (1992), and Teeter et al. (1993).
However, uncertainty due to model structure (i.e., existence
of a discrete or continuous set of candidate Markovian
transition matrices, each a plausible description of system
dynamics) was not formally addressed in these previous
studies. Under structural uncertainty, optimal decisions are
chosen to minimize Bayesian loss, given the current relative
degree of confidence that each candidate model is the ap-
propriate model of system dynamics (Ducey 2001, Kangas
and Kangas 2004). An actively adaptive approach to opti-
mal decision-making under uncertainty takes the further
step of balancing this choice against the need to elicit
information (i.e., response by the system) that will allow
learning about the system to occur as rapidly as possible.

The adaptive optimization problem generalizes the ear-
lier problem by explicitly recognizing (1) alternative models
of state dynamics, (2) model-specific optimal return values,
and (3) an “information state” of time-specific model prob-
abilities (relative degrees of confidence that each model is
the appropriate representation of system dynamics) (Wil-
liams 1996a). In general terms, our aim is to find the set of
decisions � that solve

V̄�xt, �t	

� Ma
�

x�v̄�xt, �t, zt	 � �
xf�1

p̄�xt�1�xt, �t)V̄(xt�1, �t�1	� ,

where

V̄�xf, �t	 � �i 	t,iVi�xt	,

v̄�xt, �t, zt	 � �i 	t,iEz�vi�xt, �t, zt	
,

p̄�xt�1�xt, �t	 � �i 	t,ipi�xt�1�xt, �t	,

Table 1. Values chosen for parameters in baseline (F0) and alterna-
tive (F1, F2) models of forest stage dynamics for the Piedmont Na-
tional Wildlife Refuge

Parameter1 Model F0 Model F12 Model F22

�21 1/16 1/16 1/16
�32 1/24 1/24 1/24
�43 1/40 1/40 1/40
�14 1/40 1/20 1/60
�(e1) 0.0006 0.0012 0.0003
�(e2) 0.015 0.03 0.0075
�(e3) 0.015 0.03 0.0075
�(e4) 0.03 0.06 0.015
ve 40% 80% 20%
k 0.5 0.25 1.0
q 0.25 0.125 0.5
�(c) 0.003394 0.001707 0.006711
�2(c) 0.0003572 0.0001816 0.0006911
1 Parameters: �ij, transition rate from pine age class j to age class i; �(ei),
mean rate of succession to hardwood in pine age class i; ve, coefficient of
variation of hardwood succession rate; k, admission rate to P4 pine age
class from P3; q, proportion of destroyed hardwood class regenerating to
pine; �(c), �2(c), mean and variance of beta distribution of size (area) of
catastrophic disturbance.
2 Alternative model F1 (F2): lower (higher) rate of transition to P4 age
class and higher (lower) rate of transition to hardwood class than in
baseline model F0.
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and the 	t,i are model-specific elements of the probability
vector �t (Williams et al. 2002). This problem statement
resembles the previous one, and as before, the optimal
decision at t is chosen in light of the expected accumulated
return from the current state of the system xt and its future
possible states. However, adaptive optimization also takes
into account the current state of information about the
system, �t, and how this measure of system uncertainty may
evolve in response to the current decision and all future
decisions: This evolution occurs via a Bayesian linkage
between �t and �t�1 embedded in the optimization equa-
tion (Williams et al. 2002). Because it explicitly considers
the relationship between decisions, reduction in model un-
certainty, and expected accumulation of returns, an adaptive
decision policy may trade off management performance in
the short term for information expected to help identify the
appropriate model and ultimately deliver larger gains in the
long term (Walters and Hilborn 1978, Walters 1986, Wil-
liams 1997, Williams et al. 2002).

The adaptive optimization problem is solved using back-
ward iterative search under dynamic programming (Wil-
liams 1996b). The approach is much the same as previously
described, but a dimension of computation is added by
having to accommodate the information state, which ASDP
does. We represented the information state at time t as the
vector �t � (	t,0, 	t,1, 1 � 	t,0 � 	t,1), where the compo-
nents reflect current degree of belief in forest models F0,
F1, and F2, respectively. We used ASDP over T � 1,000
stage iterations to produce a set of optimal cutting decisions
from P2, P3, and P4 for all combinations of 997 forest states
and 10 discrete levels of the information state. As we did for
the single-model optimization runs, we assessed the itera-
tion history for evidence that the decision policy at the final
iteration was stationary.

This policy anticipates that information will be accrued
through decision-making and that the information state will
evolve over time. For the purpose of estimating the man-
agement value of resolving uncertainty in harvest decision-
making, we computed a second policy for the special case in
which uncertainty among the models is still considered but
is assumed to remain fixed through time, i.e., forest re-
sponses to management are either never measured or ap-
plied to the reduction of uncertainty. Assigning the proba-
bilities � � (1⁄3, 1⁄3, 1⁄3) as weights on models F0, F1, and
F2, we computed an optimal policy based on model-aver-
aged state predictions and decision returns using the single-
model dynamic programming technique described above.
We computed the expected value of perfect information
(EVPI), an estimate of the value, in units of the resource,
that would be gained by resolving structural uncertainty in
this problem (Lindley 1985):

EVPI(y) � �VF0�y	 � VF1�y	 � VF2�y	
/3 � VF� (y),

where Vi(y) is expected maximum cumulative return for
system state y under one of the system models (i � F0, F1,
F2) or the model-averaged form (i � F�).

Simulations

We simulated each model under its own nonadaptive
optimal policy for each of four initial forest states (i.e., a
specific type and age class composition of the forest). The
selections were arbitrary but represented a range of forest
conditions: a mostly young forest (S1), a forest with bal-
anced age structure (S2), a mostly mature forest (S3), and
the estimated forest composition in year 2000 (S4) (Moore
2002). Additionally, we simulated each model under the
adaptive decision policy corresponding to complete uncer-
tainty among models, in which we held the information state
at a fixed value of � � (1⁄3, 1⁄3, 1⁄3) over the simulated time
frame. We also simulated the area control policy because of
its prominence in red-cockaded woodpecker recovery plan-
ning (US Fish and Wildlife Service 1998). Each initial
state � model � policy combination was simulated 500
times, and mean annual amounts of old-growth forest oc-
curring at 10, 100, and 1,000 years were recorded.

We also used simulation to assess how rapidly uncer-
tainty could be resolved in this system if a forest monitoring
program was in place and to discover how observation error
may affect learning rate. We simulated each model under a
realistic implementation of adaptive decision-making and
information updating. A simulation run began with an initial
forest state y0 expressed in logit form u0, i.e., each vector
element uk � log(yk/y5) for k � 1, . . . , 4 (y simplified here
as a five-element vector). Given a fixed SD value � � 0 to
represent size of observation error in measuring forest state,
we simulated an observed forest state at time 0 as

ỹ0 � logit�1�ũ0) � logit�1�u0 � �),

where � was a random vector drawn from a multivariate
normal distribution with mean 0 and variance I�2, and
logit�1(x) was the inverse logit operation that transformed
vector x with K � 1 elements into a K-element vector of
proportions. Thus, the simulation kept track of both the true
(y) and observed (ỹ) states of the forest (and were equiva-
lent only when � � 0). Using ỹ0 and the initial value of the
information state �0 � (1⁄3, 1⁄3, 1⁄3) as “look-up” terms in the
adaptive policy table, the simulation program retrieved the
corresponding set of harvest decisions {d2, d3, d4}. The
model then advanced the true system state y0 to a new state
y1 given the set of decisions and stochastic realizations of
hardwood succession and forest disturbance. In the same
manner as before, a corresponding observed new system
state ỹ1 was simulated from y1 and �.

We updated the information state vector �0 to new state
�1 as follows. Given the observed system state ỹ0 and set of
decisions {d2, d3, d4} chosen at time 0, we computed 500
bootstrap predictions of the outcome y1 under each system
model i. Each set of these ŷ1i constituted a sampling distri-
bution for assessing the likelihood that the new observed
system state ỹ1 could have arisen under model i given ỹ0.
The ŷ1i and ỹ1 were transformed to the logit scale as vectors
û1i and ũ1, respectively. Scatterplots of the û1i revealed that
the models induced high pairwise correlations among forest
components and sharp domain boundaries, making proper
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assessment of ũ1 in the context of the multivariate distribu-
tion of the û1i difficult, at least in terms of the û1i coordinate
system. Therefore, for each model i, we computed principal
component scores û*1i through the linear transformation U*

� UE, where U was the 500 � 4 matrix formed by append-
ing the (mean-corrected) û1i vectors and E was the matrix of
eigenvectors for the product U�U. Similarly, we projected
ũ1 into the same coordinate space, yielding ũ*1. For each
vector element ũ*k in ũ*1, k � 1, . . . , 4, we calculated its rank
rk,i among the 500 ordered values of û*k,i, the corresponding
elements from the vectors û*1i. We computed an empirical
likelihood of membership for ũ*k among the û*k,i as

pk,i � 1 � �250 � rk,i�/ 250,

or pk,i � 0.001, whichever was larger. In other words,
likelihood of membership was proportional to rank differ-
ence (in either direction) from the median value of û*k,i, but
no smaller than the arbitrary minimum bound of 0.001.
Given ũ0 and the set of decisions, we obtained a total
expression of likelihood for ũ1 under model i as P1i �
�k

4 pk,i
0.25. After performing the bootstrap analysis for the

remaining models and obtaining those values of P1i, we
updated the information state vector by applying Bayes
formula:

	1i � 	0iP1i��
j�1

3

	0jP1j.

By this point, the simulation had arrived at decision period
1 with new values of y1, ỹ1, and �1, and it proceeded to find
values of y2, ỹ2, and �2 in an identical manner as above.

We simulated adaptive decision-making under uncer-
tainty for each underlying model, for each of the four initial
states, and for each value � in the set {0.0, 0.01, 0.02, 0.03,
0.04, 0.05}. Each trial simulated a 100-year time span of
management, and we ran 500 simulation trials for each
initial state � model � � combination. We tracked the
information state through time, particularly the probability
value corresponding to the underlying model to determine
under what conditions that value approached 1.0 (indicating
correct identification of the model), and how quickly it
occurred.

Results

Program ASDP did not achieve a stationary cutting pol-
icy for model F0 within 1,000 stage iterations. However, the
decision policy changed only 11 times in the last 100
iterations, and each occurrence was limited to a single state
of the 997 possible states. Therefore, it is likely that the
policy produced at the final stage iteration very closely
resembles a bona fide stationary (time-independent) pol-
icy. Optimal harvest values for four representative initial
states of the forest reveal that the policy is indeed state-
dependent: Harvest decisions are not generally equal
across seral stages or unvarying among states (Table 2,
Policy F0).

Distribution of cutting amounts within the optimal policy
was highly dependent on choice of forest dynamics model
(Figure 4). Policy F1 identified more states requiring ag-
gressive harvesting of P2 and P3 forest than did policies F0
or F2. The no-harvest decision was identified more often in

Table 2. Optimal regeneration harvest decisions for each of four sample forest states at the Piedmont National Wildlife Refuge, under certainty
with respect to each of three alternative forest dynamics models, and under uncertainty with respect to all models

Initial forest state
(seral stage compositions)1

Policy2

Regeneration amounts (proportion
taken) from seral stage

P1 P2 P3 P4 UH P2 P3 P4

S1. Mostly young forest
0.47 0.38 0.03 0.03 0.09 F0 0.04 0.0 0.0

F1 0.08 0.0 0.0
F2 0.0 0.0 0.0

Uncertain 0.08 0.0 0.0
S2. Even-aged forest

0.16 0.23 0.37 0.20 0.04 F0 0.0 0.0 0.0
F1 0.0 0.0 0.0
F2 0.02 0.0 0.0

Uncertain 0.02 0.0 0.0
S3. Mostly mature forest

0.10 0.10 0.40 0.30 0.10 F0 0.0 0.0 0.0
F1 0.0 0.0 0.0
F2 0.0 0.0 0.0

Uncertain 0.10 0.20 0.02
S4. Piedmont NWR, 20003

0.03 0.15 0.57 0.07 0.18 F0 0.02 0.14 0.02
F1 0.02 0.14 0.02
F2 0.0 0.0 0.0

Uncertain 0.0 0.14 0.08
1 Seral stages are P1 (pine 0–16 yr), P2 (16–40 yr), P3 (40–80 yr), P4 (�80 yr), and UH (upland hardwood). Values are proportions of total forest area.
2 F0, decision policy for baseline model; F1, policy for alternative model of high hardwood competition; F2, policy for alternative model of low hardwood
competition.
3 Estimated composition of the Refuge forest in year 2000 (Moore 2002).
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policy F2 than in the others. The sensitivity of the decision
to choice of model is also apparent for the four representa-
tive initial forest states presented earlier (Table 2). For this
sample of states, decisions are least divergent among mod-
els when the forest occurs in a predominately mature state
and most divergent for the contemporary (year 2000) state
of the Refuge forest (Table 2).

The adaptive optimization procedure under uncertainty
among the three models also failed to converge on a sta-
tionary solution; however, so few decisions changed in the
last 100 iterations (x� � 3.1 of 9,970 information-forest
states per iteration) that we concluded that the solution
closely resembled a stationary policy. Under complete un-
certainty with respect to model choice, one uses that part of

Figure 4. Distribution of age-specific (P2, P3, and P4) forest harvest amounts tabulated from optimal decision
policies (997 system states per policy) that correspond to three alternative forest dynamics models for the Piedmont
National Wildlife Refuge. Decision frequencies for a fourth policy (9,970 states), that of uncertainty among the
three models, is also displayed.
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the decision policy that corresponds to placing confidence
weight 1⁄3 on each model.

In general, decisions under complete uncertainty appear
to be a compromise action among the competing models,
with some notable exceptions. Under complete uncertainty,
frequencies of different levels of harvest are intermediate
relative to those found in the policies of model certainty
(Figure 4). Similarly, for the sample of initial forest states,
optimal decisions under uncertainty tend toward “average”
decision values found under the certainty policies (Table 2).
However, decisions for the initial state of mostly mature
forest (Table 2, S3) portray a striking exception to this
general pattern. Whereas 0.0 is the optimal cutting amount
from all harvest classes under any model, the optimal action
when choice of model is uncertain is to cut from all classes;
substantially for the younger classes. Because such an ac-
tion is not an optimal one when the model is
known—whatever that model may be—this harvest action
suggests a trading off of management performance in the

short term for a rapid gain of information intended to
improve management over the long term. The fact that
optimal decisions are similar under scenarios of certainty
and uncertainty for the other initial states indicates that such
aggressive “probing” for information (Walters and Hilborn
1978, Walters 1986) is too costly in terms of the long-term
management objective and that resolution of uncertainty
must proceed in a more risk-averse manner from these
states.

Average (over the 997 discrete states of forest composi-
tion) optimal returns (expected annual average of proportion
of forest in P4 habitat) were 0.0241, 0.00414, and 0.0788 for
models F0, F1, and F2, respectively. These values compare
to the model-averaged result of 0.0197, the mean optimal
value expected under continuing model uncertainty. Aver-
age EVPI was 0.0160 (SE � 1.66 � 10�5, min/max �
0.0133/0.0171), indicating that failing to resolve model
uncertainty implies a resource sacrifice (i.e., an opportunity
cost of management) of approximately 0.016 proportion

Figure 5. Results for decision policies simulated from four initial forest states (A–D) under three alternative forest dynamics models. Response
variables are averages, over three time horizons (10, 100, 1,000 years), of annual area (ha) of old-growth forest habitat that occurs (upper plot panels)
and annual success rate of exceeding the Refuge target habitat threshold of 388.5 ha (lower plot panels). Starting states (S1–S4) and models (F0–F2)
are described in Table 2. For each response variable, simulation means and 99% confidence intervals (staggered on the time axis for visual clarity)
are provided for the optimal policy corresponding to the simulated model (solid line), for the adaptive optimal policy under continuing uncertainty
among the models (dotted line), and for the area control policy (dashed line).
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units, a substantial cost in light of the average optimal
values above.

Analysis of each model simulated under its correspond-
ing optimal policy demonstrated that (1) expected annual
area in old-growth pine forest (Figure 5A–D, upper plot
panels) approached long-term stable values of �1,000 ha
for model F2, �100 ha for model F1, and some intermediate
value for model F0; (2) average annual frequency of old-
growth area exceeding the habitat goal threshold of 388.5 ha
(Figure 5A–D, lower plot panels) approached 100% under
model F2, 0% under model F1, and some intermediate value
under model F0; and (3) direction of these trends depended
on starting state.

Simulation of the models under the adaptive decision
policy but assuming continuing uncertainty indicated some
sacrifice in old-growth habitat (Figure 5A–D, dotted lines)
relative to the model-certain policies (solid lines), particu-
larly over the long time frame. This is not surprising, as the
models were simulated without performing model likeli-
hood updating, i.e., the system was treated artificially as if
uncertainty is never resolved through time. In practice (and
as carried out in the fully adaptive simulation below), as
management experience is accumulated, evidence toward or
against specific models is expressed in the reassignment of
model likelihoods over time, and optimal decisions begin to
more closely reflect those from one of the model-certain
policies. Thus, losses in system performance due to model
uncertainty would diminish over time as more is learned
about the system. Simulation results for the area control
policy (Figure 5A–D, dashed lines) reveal that the policy
always provides less habitat over the long term (1,000
years), even relative to the policy under continuing model
uncertainty.

Simulations of fully adaptive decision-making (updating
of the information state based on forest response monitor-
ing) under uncertainty indicated that the underlying models
were quickly identified (belief weight assigned to underly-
ing model �0.98 after two annual cycles of forest harvest-
ing) if forest composition was measured without error (Fig-
ure 6). The simulation model generated little variability in
individual age class components of the observed forest state
vector (CV often 5% or less), even at the maximum value of
0.05 for the observation error parameter �. However, ability
to correctly identify the underlying models F0 or F2 dimin-
ished rapidly as observation error increased (Figure 6), with
models most often misidentified as F1.

For the estimated composition of the Refuge in year
2000, optimal total area of regeneration cutting was 0 ha
for model F2, 1,056 ha for models F0 and F1, and 1,071
ha under model uncertainty. During the decade
1989 –1998, the average area of pine forest annually
regenerated was 53.6 ha (J.D. Metteauer, personal com-
munication, Piedmont National Wildlife Refuge, 2001),
an amount more consistent with management under belief
in model F2 than belief in any other model or uncertainty
with respect to all models.

Discussion
Scope and Limitations

The adaptive optimization and informed decision-mak-
ing framework we have presented is applicable in any forest
management setting in which structural uncertainty can be
described, an objective of management exists, management
occurs as a sequence of decisions with clear alternatives at
each stage, and some form of system monitoring provides
periodic feedback of information. Furthermore, because in-
formation can be obtained and applied to the reduction of
uncertainty whether or not decisions happen to be optimal
ones, there is no strict requirement for dynamic optimiza-
tion for carrying out adaptive forest management. Thus,
alternative techniques such as simulation, nondynamic (sin-
gle-step) optimization, or heuristic procedures (e.g., Moore
et al. 2000, Conroy and Moore 2001) can be used to provide
reasonable approximations to optimal dynamic decisions
under uncertainty, yet the steps of decision-making, moni-
toring, and model updating can nevertheless be followed to
reduce uncertainty before selection of any subsequent
decision.

The matrix structure of our model is one commonly used
for modeling linear dynamics of stage-based systems (Cas-
well 2001), including many forest management applications
(e.g., Lembersky and Johnson 1975, Reed and Errico 1986,
Gassmann 1989, van Kooten et al. 1992, Teeter et al. 1993).
Often, stages represent the compositional parts of a whole,
such as proportions of total forest area in age classes,
density classes, species types, or some other categorical
attribute. The model can be made spatially explicit by
including components representing two or more spatial
units and by including parameters representing reclassifica-
tion of forest area within units conditional on unit member-
ship. With added complexity, however, optimization be-
comes more challenging.

Of course, our implementation of the model is specific to
this application of upland pine forest harvest management in
the Piedmont region of central Georgia, in which pine forest
dynamics are believed to be governed by harvesting, hard-
wood succession, and forest disturbance. However, all of
the parameter selections (Table 1) were subjective and
received only circumstantial support from empirical
sources. Therefore, there is little basis to argue why our
model would be less appropriate in similar forest and physi-
ographic settings within or outside of the state. But it was
this very issue of uncertainty in a data-poor climate that
cautioned us to not place full faith in any single model but
to instead consider highly distinct, but plausible, alterna-
tives to the baseline model. Our hope is that other environ-
ments of uncertainty will prompt forest managers to propose
alternative models that try to frame the limits of uncertainty,
especially models that challenge existing data or conven-
tional wisdom.

Our approach to optimization of forest habitat is dis-
tinctly different from the scheduling approaches used by
Bettinger et al. (1997), Moore et al. (2000), and Bettinger et
al. (2002). Our approach recognizes that the managed forest
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system is dynamic and responsive to stochastic perturba-
tions rather than static and deterministic. As such, any
future state of the forest can be anticipated as a consequence
of its previous state and intervening management decisions
and stochastic events. An optimal dynamic policy provides
an optimal decision for any arbitrary state of the forest at
each decision opportunity, whereas a harvest schedule of-

fers a fixed prescription of management actions regardless
of unpredictable events that transpire over the management
time frame. Of course, a harvest schedule can be re-com-
puted at any time in response to such events, but this, by
definition, constitutes a suboptimal policy, as the course
correction was not anticipated at the beginning of the time
frame (Dreyfus and Law 1977).

Figure 6. Simulation of adaptive decision-making and updating of the information state under three alternative
forest models, starting from an initial forest state of balanced age classes (state S2; similar response patterns were
produced for three other initial states). Responses are means and (selected) 99% confidence intervals of
probability weight assigned to the underlying model when the forest state is measured under alternative levels of
observation error (�).
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One obvious limitation of our model is the fact that the
management objective of maximizing old-growth forest
does not, in itself, address the habitat needs of the red-
cockaded woodpecker, nor does the model take into account
temporal and spatial dynamics of the existing woodpecker
population. Old-growth forest patches may become suitable
woodpecker nesting patches only if certain additional con-
ditions exist: a sparse overstory of large-diameter trees,
almost complete absence of a hardwood midstory, a fire-
maintained ground cover, and spatial connectivity of the
patch to source patches and foraging areas (Walters 1991,
Loeb et al. 1992, Letcher et al. 1998, Azevedo et al. 2000,
US Fish and Wildlife Service 2003). However, woodpecker
family groups, forest patches, and the fine-scale dynamics
among them exist in the context of a whole-forest matrix of
age and type classes whose dynamics play out over decades
and centuries of management. We believed that no formal
approach that simultaneously accommodated all of these
processes at their disparate scales, even if one existed,
would provide decisions of perceptibly higher quality than
would an informal approach that decomposed the problem
into hierarchical, conditionally independent pieces; Boston
and Bettinger (2001) made such a conclusion in their as-
sessment of a two-stage approach to forest harvest sched-
uling with spatial habitat constraints for the red-cockaded
woodpecker. Therefore, we separated both the management
objectives and the modeling and optimization tasks along
these lines of scale to find best forest management strate-
gies, under uncertainty, for woodpecker conservation goals.
The purpose of our dynamic optimization model described
above was to provide annual decisions on total cutting amounts
that lead to best old-growth outcomes at the whole-forest level
over a very long time frame. A subsequent step (Moore 2002)
uses a spatially explicit model of woodpecker clusters and
forest growth to allocate those cutting amounts and prescribed
fire quotas into specific patches, where the allocations are
constrained by fixed selection and adjacency rules, to maxi-
mize number of woodpecker clusters over a 100-year time
frame. Thus, fine-scale, spatially explicit decisions intended to
increase woodpecker population size are predicated on harvest
decisions chosen to meet objectives at the aggregated, whole-
forest scale over a multirotation time horizon; Bettinger and
Sessions (2003) distinguished these as “tactical” and “stra-
tegic” planning activities, respectively.

Current Regeneration Approaches

Under our stage dynamics model, the optimal amount of
total harvest was dependent on the age class composition of
the forest, and amounts harvested were generally unequal
among age classes. This contrasts with the approach pre-
scribed by the area control method, which calls for a con-
stant rate of harvest through time, with harvests taken in
equal proportion from all age classes. In light of our simu-
lation results, we suggest that the area control method, the
regeneration method recommended for even-aged and two-
aged systems on federal refuges (US Fish and Wildlife

Service 1998), is suboptimal for the generation of wood-
pecker old-growth forest habitat.

Of course, this claim depends on how well our forest
model represents growth dynamics of the Refuge forest. The
structure of this model was simple and integrates generally
understood forest succession processes in a straightforward
way. Whereas we believe our model structure is a reason-
able one, one could (and should) question our choice of
parameter values used in the model, as these quantities are
highly uncertain. By proposing two alternatives to our base-
line model, we acknowledged this uncertainty and were able
to carry out a crude sensitivity analysis with respect to the
optimal decision policy. These alternative parameterizations
represented fairly extreme departures from the baseline
model. Yet in each case, we found the area control method
was inferior to other regeneration strategies for increasing
and maintaining old-growth habitat. There may exist a
model of forest growth and a set of forest states for which
the area control method is optimal, but in our view the
requisite assumptions and applicable situations have not
been explicitly spelled out.

One consequence of model differences was disagreement
in optimal amount of total forest area to regenerate for the
estimated forest conditions that occurred on the Refuge in
2000: 0 ha under model F2 versus 1,056 ha under models F0
or F1. The average amount (53.6 ha) actually harvested each
year during the preceding decade more closely corre-
sponded to the optimal harvest amount called for under
model F2 than under the other models. In other words,
recent harvest practice on the Refuge was consistent with an
optimal harvest practice corresponding to a relatively opti-
mistic view of old-growth forest generation and persistence.
However, to carry out such actions when a more appropriate
model of dynamics is operative can be extremely subopti-
mal, leading to rapid depletion of the old-growth component
and loss of future opportunities for its regeneration.
Whether the recent practices are in fact optimal ones re-
quires assessing the relative quality of each of these models
(or any other competing model) in predicting forest re-
sponse to management actions and to the stochastic envi-
ronment. A program of regular monitoring is therefore
essential in making informed decisions about forest
management.

Structural Uncertainty and Decision-Making

The optimal policy was highly sensitive to the choice of
forest model. Managers’ decisions about what and how
much to harvest are based not only on current forest state
but also on the model thought to best approximate the
system. This is true in all forest decision problems, whether
the model is written as a formal mathematical construct or
exists only conceptually in the manager’s mind. Thus struc-
tural uncertainty, if unresolved, poses a significant chal-
lenge to forest managers. Indeed, we have demonstrated that
the recovery goal of 388.5 ha of habitat may not even be
achievable under particular assumptions, with strategic im-
plications for rangewide species recovery and for objectives
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of the National Wildlife Refuge system. For example, is
recovery of the woodpecker in the Piedmont physiographic
province a priority if doing so requires forest management
to become more species-oriented than ecosystem oriented?

EVPI provides an estimate of the management cost of
structural uncertainty, measured in units of the resource.
Our estimate of EVPI (averaged over all forest states) was
0.016, or approximately 200 ha of P4 habitat. In other
words, if uncertainty among these three models is never
resolved, the expected sacrifice of woodpecker nesting hab-
itat is about 200 ha, over half of the habitat goal. This result
should help convince managers that direct fiscal savings
achieved by not implementing measures that would reduce
uncertainty (e.g., monitoring programs, model development
and analysis) may be offset by “opportunity” costs in spe-
cies conservation (Moore and Kendall 2004).

Computing an optimal harvest policy with respect to all
candidate models, with models weighted by their relative
degree of credibility, appears to be a reasonable way to
proceed under uncertainty. There are two general ap-
proaches to policy computation, and they differ in how
future information from the system is expected to be used in
assessing credibility of each model. Passive adaptive opti-
mization ignores the return of such information and pro-
ceeds as if model credibility weights will remain fixed
through time (Johnson and Williams 1999, Williams et al.
2002). Of course, this does not have to be the case in
practice, and a new passive policy can be computed when-
ever model credibility weights are updated (Williams et al.
2002). Our optimization of model-averaged returns for the
computation of EVPI was an example of passive adaptive
optimization.

In contrast, we used active adaptive optimization (John-
son and Williams 1999, Williams et al. 2002). Relative to
passive optimization, it is a forward-looking approach that
exploits the fact that learning usually occurs as decisions are
made through time. In a circumstance where two alternative
decision actions are expected to provide about the same
short-term resource return (e.g., similar amounts of old-
growth forest habitat expected under either cutting deci-
sion), an actively adaptive procedure will favor the option
that produces the most divergent system response with
respect to all the candidate models. Thus, when outcomes of
the decision are then compared to outcomes predicted by
each model, chances have been increased that one or more
models will be distinguished from the others in terms of
predictive credibility. In other words, the decision process is
used fruitfully, and with little sacrifice of returns over the
short term, to gain knowledge for making better decisions
over the long term. A comparison of optimal decisions
under certainty and uncertainty for a forest in a mostly
mature state (Table 2, initial state S3) is evidence of an
opportunity in which information can be more aggressively
pursued for relatively little short-term management sacrifice
(for comparison, the optimal decision for this state under
passive optimization was 0.0 total harvest, exactly as found
for each of the alternative models). Whereas passive opti-
mization seeks to maximize the long-term resource return

with respect to an unvarying state of uncertainty, active
optimization anticipates that uncertainty will change
through time.

Adaptive Management

Improvements in management occur only when uncer-
tainties about responses to management are reduced, and
reductions in uncertainty only come about when system
responses are compared to predicted outcomes. System
monitoring and informative updating of prediction models
are requisite components of adaptive management (Nichols
et al. 1995, Williams 1997, Moore et al., in press). Despite
the ubiquity of the term “adaptive management” throughout
the natural resources literature, we suspect that few systems
are truly managed adaptively, as these two critical elements
are rarely both in place.

At the Piedmont National Wildlife Refuge, a systematic
(spatially and temporally) assessment of forest cover types
would serve the purpose of updating our models. Our sim-
ulations suggest that uncertainty can be resolved quickly
under such a monitoring system. Unfortunately, none has
been established, and consequently there is no means of
resolving uncertainty about system management or evalu-
ating decision-making.

Four general forms of uncertainty hamper decision-mak-
ing in natural resource management: stochastic uncertainty,
structural uncertainty, partial controllability, and partial ob-
servability (Nichols et al. 1995, Williams 1997). Many
researchers have previously addressed the topic of stochas-
tic uncertainty in decision-making for dynamic forest sys-
tems (Lembersky and Johnson 1975, Reed and Errico 1986,
Gassmann 1989, van Kooten et al. 1992, Teeter et al. 1993),
but none to our knowledge has formally addressed the
problem of dynamic optimization under structural uncer-
tainty, such as the kind we have described. Under partial
controllability, the action carried out is not the decision
intended. For example, the width of fire lines (breaks de-
signed to control the spread of fire past designated limits) is
a decision variable for controlling probability of holding a
wildfire, but additional uncertainty in wildfire outcome is
introduced because constructed fire lines generally do not
match their targeted width (Mees and Strauss 1992).

Our simulations also explored the influence of partial
observability, in which the true state of the system is not
observable and therefore not fully informative either for
decision-making or for updating system models. For exam-
ple, Eid (2000) noted that ignored sampling errors and
biases from forest inventories translated into lost timber
revenues. In our analyses, failing to account for errors in
measuring forest composition affected the inferences made
on competing models and in turn distorted the course of
optimal decision-making. Observational errors caused sys-
tem dynamics under any model to resemble those under
model F1, and optimal decisions were then driven according
to that model. We did not simulate another common exam-
ple of partial observability in which forest composition is
measured precisely each time but at measurement intervals
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longer than decision intervals. Optimal adaptive policies
under partial observability may be found, but the computa-
tional requirements may be considerable (Williams
1996a,b). Monitoring programs should be designed to re-
duce observation error as much as practicable, and we
suggest the use of simulation to assess the sensitivity of
decision-making to expected degrees of observation error.
Not all of the above forms of uncertainty may bear on a
given decision problem (Kangas and Kangas 2004), but
they deserve greater attention as the focus of forest man-
agement on public lands continues to broaden beyond the
traditional scope of commodity production.

We recommend an adaptive program of decision-making
whenever uncertainty accompanies the management of
wildlife habitats. That is, models should be used to forecast
outcomes of decisions, and those models should be evalu-
ated on the basis of information gathered through system
monitoring. We especially advise this approach whenever
managers must maintain continuous streams of an ephem-
eral habitat for the sustenance of an endangered species
population. As the recovery of the red-cockaded wood-
pecker population is focused almost entirely on federal
lands (US Department of Defense, US Forest Service, US
Fish and Wildlife Service, National Park Service, US De-
partment of Energy), federal management agencies should
receive the resources and administrative commitment
needed to start and sustain such efforts.

Literature Cited
ANDERSON, D.R. 1975. Optimal exploitation strategies for an

animal population in a Markovian environment: A theory and
an example. Ecology 56:1281–1297.

AZEVEDO, J.C.M., S.B. JACK, R.N. COULSON, AND D.F. WUNNE-
BURGER. 2000. Functional heterogeneity of forest landscapes
and the distribution and abundance of the red-cockaded wood-
pecker. For. Ecol. Manage. 127:271–283.

BECHTOLD, W.A., G.A. RUARK, AND F.T. LLOYD. 1991. Changing
stand structure and regional growth reductions in Georgia’s
natural pine stands. For. Sci. 37:703–717.

BELLMAN, R. 1957. Dynamic programming. Princeton University
Press, Princeton, NJ. 342 p.

BETTINGER, P., D. GRAETZ, K. BOSTON, J. SESSIONS, AND W.
CHUNG. 2002. Eight heuristic planning techniques applied to
three increasingly difficult wildlife planning problems. Silva
Fennica 36:561–584.

BETTINGER, P., AND J. SESSIONS. 2003. Spatial forest planning: To
adopt, or not to adopt? J. For. 101(2):24–29.

BETTINGER, P., J. SESSIONS, AND K. BOSTON. 1997. Using Tabu
search to schedule timber harvests subject to spatial wildlife
goals for big game. Ecol. Model. 94:111–123.

BOSTON, K., AND P. BETTINGER. 2001. Development of spatially
feasible forest plans: A comparison of two modeling ap-
proaches. Silva Fennica 35:425–435.

BULTE, E., D.P. VAN SOEST, G.C. VAN KOOTEN, AND R.A. SCHIP-
PER. 2002. Forest conservation in Costa Rica when nonuse

benefits are uncertain but rising. Am. J. Agric. Econ.
84:150–160.

CASWELL, H. 2001. Matrix population models, 2nd ed. Sinauer
Associates, Sunderland, MA. 722 p.

CONNER, R.N., A.E. SNOW, AND K.A. O’HALLORAN. 1991. Red-
cockaded woodpecker use of seed-tree/shelterwood cuts in
eastern Texas. Wildl. Soc. Bull. 19:67–73.

CONROY, M.J., AND C.T. MOORE. 2001. Simulation models and
optimal decision making in natural resource management. P.
91–104 in Modeling in natural resource management: Devel-
opment, interpretation, and application, Shenk, T.M., and A.B.
Franklin (eds.). Island Press, Washington, DC.

CONROY, M.J., AND C.T. MOORE. 2002. Wildlife habitat modeling
in an adaptive framework: The role of alternative models. P.
205–218 in Predicting species occurrences: Issues of accuracy
and scale. Scott, J.M., P.J. Heglund, M.L. Morrison, J.B. Hauf-
ler, M.G. Raphael, W.A. Wall, and F.B. Samson (eds.). Island
Press, Covelo, CA.

CZUHAI, E., AND C.T. CUSHWA. 1968. A resume of prescribed
burnings on the Piedmont National Wildlife Refuge. USDA
For. Serv. Res. Note SE-86. 4 p.

DREYFUS, S.E., AND A.M. LAW. 1977. The art and theory of
dynamic programming. Academic Press, New York. 284 p.

DUCEY, M.J. 2001. Representing uncertainty in silvicultural deci-
sions: An application of the Dempster-Shafer theory of evi-
dence. For. Ecol. Manage. 150:199–211.

EID, T. 2000. Use of uncertain inventory data in forestry scenario
models and consequential incorrect harvest decisions. Silva
Fennica 34:89–100.

FRANKLIN, J.F. 1997. Ecosystem management: An overview. P.
21–53 in Ecosystem management, Boyce, M.S., and A. Haney
(eds.). Yale University Press, New Haven, CT.

GABRIELSON, I.N. 1943. Wildlife refuges. Macmillan, New York.
257 p.

GASSMANN, H.I. 1989. Optimal harvest of a forest in the presence
of uncertainty. Can. J. For. Res. 19:1267–1274.

GLUSS, B. 1972. An elementary introduction to dynamic program-
ming. Allyn and Bacon, Boston, MA. 402 p.

HOOPER, R.G., AND C.J. MCADIE. 1995. Hurricanes and the long-
term management of the red-cockaded woodpecker. P.
148–166 in Red-cockaded woodpecker: Recovery, ecology and
management, Kulhavy, D.L., R.G. Hooper, and R. Costa (eds).
Center for Applied Studies in Forestry, Stephen F. Austin State
University, Nacogdoches, TX.

JACKSON, J.A. 1994. Red-cockaded woodpecker (Picoides borea-
lis). P. 1–20 in Birds of North America (No. 85), Poole, A., and
F. Gill (eds.). Acad. Natur. Sci., Philadelphia, PA, and Am.
Ornithol. Union, Washington, DC.

JOHNSON, F., AND K. WILLIAMS. 1999. Protocol and practice in the
adaptive management of waterfowl harvests. Conserv. Ecol.
3(1):8 [online URL: http://www.consecol.org/vol3/iss1/art8].

KANGAS, A.S., AND J. KANGAS. 2004. Probability, possibility and
evidence: Approaches to consider risk and uncertainty in for-
estry decision analysis. For. Policy Econ. 6:169–188.

Forest Science 52(2) 2006 171



LEMBERSKY, M.R., AND K.N. JOHNSON. 1975. Optimal policies for
managed stands: An infinite horizon Markov decision process
approach. For. Sci. 21:109–122.

LETCHER, B.H., J.A. PRIDDY, J.R. WALTERS, AND L.B. CROWDER.
1998. An individual-based, spatially-explicit simulation model
of the population dynamics of the endangered red-cockaded
woodpecker, Picoides borealis. Biol. Cons. 86:1–14.

LIGON, J.D., P.B. STACEY, R.N. CONNER, C.E. BOCK, AND C.S.
ADKISSON. 1986. Report of the American Ornithologists’
Union Committee for the Conservation of the Red-Cockaded
Woodpecker. Auk 103:848–855.

LINDLEY, D.V. 1985. Making decisions, 2nd ed. John Wiley and
Sons, London, UK. 207 p.

LOEB, S.C., W.D. PEPPER, AND A.T. DOYLE. 1992. Habitat char-
acteristics of active and abandoned red-cockaded woodpecker
colonies. South. J. Appl. For. 16:120–125.

LUBOW, B.C. 1995. SDP: Generalized software for solving sto-
chastic dynamic optimization problems. Wildl. Soc. Bull.
23:738–742.

LUBOW, B.C. 1997. Adaptive stochastic dynamic programming
(ASDP): Supplement to SDP user’s guide, version 2.0. Colo.
Coop. Fish and Wildlife Res. Unit, Colo. State Univ., Fort
Collins, CO.

MCCARTHY, M.A., H.P. POSSINGHAM, AND A.M. GILL. 2001.
Using stochastic dynamic programming to determine optimal
fire management for Banksia ornata. J. Appl. Ecol.
38:585–592.

MEES, R., AND D. STRAUSS. 1992. Allocating resources to large
wildland fires—A model with stochastic production-rates. For.
Sci. 38:842–853.

MOORE, C.T. 2002. Forest decision making under uncertainty:
Adaptive management for the conservation of bird populations
on a national wildlife refuge. PhD dissertation, University of
Georgia, Athens, GA. 333 p.

MOORE, C.T., M.J. CONROY, AND K. BOSTON. 2000. Forest man-
agement decisions for wildlife objectives: System resolution
and optimality. Comput. Electron. in Agric. 27:25–39.

MOORE, C.T., AND W.L. KENDALL. 2004. Costs of detection bias
in index-based population monitoring. Anim. Biodivers. Con-
serv. 27(1):287–296.

MOORE, C.T., W.T. PLUMMER, AND M.J. CONROY. 2005. Forest
management under uncertainty for multiple bird population
objectives. Bird Conservation Implementation and Integration
in the Americas: Proc. of the Third International Partners in
Flight Conference 2002, Ralph, C.J., and T.D. Rich (eds.) (two
volumes). USDA For. Serv., PSW-GTR-191.

NEMHAUSER, G.L. 1966. Introduction to dynamic programming.
John Wiley and Sons, New York. 256 p.

NICHOLS, J.D., F.A. JOHNSON, AND B.K. WILLIAMS. 1995. Man-

aging North American waterfowl in the face of uncertainty.
Annu. Rev. Ecol. Syst. 26:177–199.

PETERSON, C.J. 2000. Catastrophic wind damage to North Amer-
ican forests and the potential impact of climate change. Sci.
Total Environ. 262:287–311.

PUTERMAN, M.L. 1994. Markov decision processes. John Wiley
and Sons, New York. 649 p.

REED, W.J., AND D. ERRICO. 1986. Optimal harvest scheduling at
the forest level in the presence of the risk of fire. Can. J. For.
Res. 16:266–278.

ROSE, S.K., AND D. CHAPMAN. 2003. Timber harvest adjacency
economies, hunting, species protection, and old growth value:
Seeking the dynamic optimum. Ecol. Econ. 44:325–344.

SMITH, D.M. 1962. The practice of silviculture, 7th ed. John Wiley
and Sons, New York. 578 p.

TEETER, L., G. SOMERS, AND J. SULLIVAN. 1993. Optimal forest
harvest decisions: A stochastic dynamic programming ap-
proach. Agric. Syst. 42:73–84.

THOMAS, J.W. 1997. Foreword. P. ix-xii in Creating a forestry for
the 21st century, Kohm, K.A., and J.F. Franklin (eds.). Island
Press, Washington, DC.

US FISH AND WILDLIFE SERVICE. 1998. Strategy and guidelines for
the recovery and management of the red-cockaded woodpecker
and its habitats on national wildlife refuges. US Dept. Interior,
Fish and Wildl. Serv., Atlanta, GA. 51 p.

US FISH AND WILDLIFE SERVICE. 2003. Recovery plan for the
red-cockaded woodpecker (Picoides borealis), 2nd revision.
US Dept. Interior, Fish and Wildl. Serv., Atlanta, GA. 296 p.

VAN KOOTEN, G.C., R.E. VAN KOOTEN, AND G.L. BROWN. 1992.
Modeling the effect of uncertainty on timber harvest: A sug-
gested approach and empirical example. J. Agric. Res. Econ.
17:162–172.

WALTERS, C.J. 1986. Adaptive management of renewable re-
sources. MacMillan, New York. 374 p.

WALTERS, C.J., AND R. HILBORN. 1978. Ecological optimization
and adaptive management. Annu. Rev. Ecol. Syst. 9:157–188.

WALTERS, J.R. 1991. Application of ecological principles to the
management of endangered species: The case of the red-
cockaded woodpecker. Annu. Rev. Ecol. Syst. 22:505–523.

WILLIAMS, B.K. 1996a. Adaptive optimization and the harvest of
biological populations. Math. Biosci. 136:1–20.

WILLIAMS, B.K. 1996b. Adaptive optimization of renewable nat-
ural resources: Solution algorithms and a computer program.
Ecol. Model. 93:101–111.

WILLIAMS, B.K. 1997. Approaches to the management of water-
fowl under uncertainty. Wildl. Soc. Bull. 25:714–720.

WILLIAMS, B.K., J.D. NICHOLS, AND M.J. CONROY. 2002. Analysis
and management of animal populations. Academic Press, San
Diego, CA. 817 p.

172 Forest Science 52(2) 2006


