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Abstract Large-scale habitat enhancement pro-

grams for birds are becoming more widespread,

however, most lack monitoring to resolve uncertain-

ties and enhance program impact over time.

Georgia’s Bobwhite Quail Initiative (BQI) is a

competitive, proposal-based system that provides

incentives to landowners to establish habitat for

northern bobwhites (Colinus virginianus). Using data

from monitoring conducted in the program’s first

years (1999–2001), we developed alternative

hierarchical models to predict bobwhite abundance

in response to program habitat modifications on local

and regional scales. Effects of habitat and habitat

management on bobwhite population response varied

among geographical scales, but high measurement

variability rendered the specific nature of these scaled

effects equivocal. Under some models, BQI had

positive impact at both local farm scales (1, 9 km2),

particularly when practice acres were clustered,

whereas other credible models indicated that bird
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response did not depend on spatial arrangement of

practices. Thus, uncertainty about landscape-level

effects of management presents a challenge to

program managers who must decide which proposals

to accept. We demonstrate that optimal selection

decisions can be made despite this uncertainty and

that uncertainty can be reduced over time, with

consequent improvement in management efficacy.

However, such an adaptive approach to BQI program

implementation would require the reestablishment of

monitoring of bobwhite abundance, an effort for

which funding was discontinued in 2002. For land-

scape-level conservation programs generally, our

approach demonstrates the value in assessing multi-

ple scales of impact of habitat modification programs,

and it reveals the utility of addressing management

uncertainty through multiple decision models and

system monitoring.

Keywords Adaptive management �
Colinus virginianus � Habitat � Hierarchical models �
Monitoring � Northern bobwhite � Uncertainty

Introduction

Early succession and grassland landscapes provide

important breeding and/or wintering habitat to many

bird species. However, much of this habitat in the

southeastern US has been lost to urbanization,

reforestation, and to changes in agricultural practices

(USDA 1995; Vesterby and Krupa 2001). In the latter

half of the twentieth century, the introduction of

‘‘clean farming’’ methods increased farm yields, but

degraded habitat for a number of bird species (Best

et al. 1995; Rodenhouse et al. 1995). Concurrently,

populations of a number of grassland birds declined

throughout the region since the mid-1960s (Sauer

et al. 2001); of these, several, including grasshopper

sparrow (Ammodramus savannarum), eastern mead-

owlark (Sturnella magna), and prairie warbler

(Dendroica discolor), have been identified as species

of management concern (Hunter et al. 1992; Trapp

1995). Establishment and management of eastern

shrub communities is a recommended priority man-

agement action as part of the North American

Landbird Conservation Plan (Rich et al. 2004).

Of particular interest throughout the southeastern

US, and especially in Georgia, is the plight of the

northern bobwhite (Colinus virginianus). The species

is recognized and valued by many Georgians, and

sport hunting for the bird generates much interest and

revenue. However, the Georgia bobwhite population

has decreased by 4.3% annually over the period

1966–2000 and by 5.3% annually within the period

1980–2000 (Sauer et al. 2001).

To reverse the northern bobwhite population trend,

in 1999 the Wildlife Resources Division (WRD) of

the Georgia Department of Natural Resources

launched a conservation incentive program for rural

private landowners. The initial target of the Bobwhite

Quail Initiative (BQI) (Thackston et al. 2008) was 17

Georgia counties of the Upper Coastal Plain physio-

graphic province. The goal of the program is to

improve habitat quality for the northern bobwhite and

for associated early succession-habitat songbirds for

the ultimate objective of increasing the distribution

and abundance of these species. Implicit assumptions

in this goal are that (1) northern bobwhites respond to

habitat modifications, and (2) habitat modifications

beneficial to northern bobwhite populations are also

beneficial to sympatric species, that is, the northern

bobwhite serves as a suitable ‘‘umbrella’’ species for

a suite of grassland and shrub-scrub birds.

Under BQI, habitat restoration across the land-

scape is effected principally through landowner

financial incentives. Landowners, through consulta-

tion with WRD biologists, propose specific habitat

modifications and activities to be pursued on each

parcel nominated for enrollment in the program. All

proposals are scored by the WRD on a set of

measureable, local field-scale attributes thought to

reflect quality of bobwhite habitat. Those meeting a

minimum score are competitively ranked, and the top

scoring proposals are enrolled in the program. Most

of the BQI practices incorporate field margin man-

agement around and across annual crop fields and

prescribed fire management in pine stands. Addition-

ally, BQI biologists provide technical assistance to

landowners regardless of their enrollment status, or

their desire to enroll for financial incentives.

In addition to site visits to evaluate cooperator

compliance, monitoring programs for bobwhite and

winter songbirds were an important component of the

program during the first few years. The University of

Georgia Warnell School of Forestry and Natural

Resources (WSFNR) cooperated with the WRD to

conduct these surveys for both enrolled (treatment)
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and non-enrolled (control) sites; however, monitoring

ceased in 2002 when state funding for monitoring

was terminated.

In its first 2 years of existence, the BQI demon-

strated increases in northern bobwhite calling activity

on treated sites relative to control sites (Hamrick

2002). Despite the apparent early success of the

program, fundamental questions about management

remain. For example, do the effects of management

depend on the scale at which they are applied? What

evidence is there that bobwhite response is due to

effects beyond management control?

Landscape-scale management, uncertainty, and

adaptive management

Several implications stem from the fact that the BQI

program involves the management of a large, agri-

cultural landscape, involving numerous ownerships

and complex ecological relationships. First, manage-

ment decisions potentially operate at numerous

spatial scales, from (at the broadest scale) statewide

incentive programs, to (at the local scale) the decision

of landowners to participate, and if so, specifically

how. Second, the ecological processes that drive

bobwhite and other bird populations are controlled by

many factors, themselves operating at multiple

scales, and only partially responsive to management

actions. This sets up a situation where the predicted

relationship between management actions and bird

response is both complex, and subject to great

uncertainty, a theme in common with other complex

systems (e.g., Conroy et al. 2003).

Adaptive resource management (ARM) explicitly

recognizes uncertainty in resource decision making;

seeks an optimal resource decision given the avail-

able decision alternatives; and seeks to reduce

uncertainty via prediction-based monitoring (Walters

1986; Johnson et al. 1997; Johnson and Williams

1999; Conroy et al. 2003). We approached the

problem of selecting lands for enrollment in the

BQI within the framework of ARM, and we devel-

oped a decision model based on hierarchical

modeling of available data as the first step in an

adaptive landscape approach to bobwhite/early suc-

cession bird restoration.

In this study, we develop the modeling tools

needed to bring a more adaptive focus to the BQI that

would deliver consequent conservation benefits in

terms of increasing northern bobwhite abundance to

this region of Georgia. Although the program now

has certain adaptive elements in place, it lacks

mechanisms to explore the effect of alternative

decision options, to exploit information feedback

from the system to better guide future decision

making, and to make optimal decisions under scien-

tific uncertainty (Walters and Hilborn 1978; Walters

1986; Williams 1996). In particular, we demonstrate

that the absence of a monitoring program makes

gains by the BQI difficult to assess and management

performance a challenge to improve.

Methods

Study area

The BQI program was initiated with three focus areas

that included 17 counties in the Upper Coastal Plain

of Georgia (Fig. 1). The focus areas were East

(Bulloch, Burke, Jenkins, and Screven Counties),

Central (Bleckley, Dodge, Emanuel, Houston, Lau-

rens, and Treutlen Counties), and Southwest regions

(Colquitt, Crisp, Dougherty, Lee, Mitchell, Sumter,

and Terrell Counties). This research was conducted

on sites in all counties except Colquitt, Crisp,

Houston, and Mitchell Counties.

Major land uses in all three regions consisted of

intensive row crop agriculture and timber/fiber pro-

duction. Agricultural row crop production was

dominated by cotton, peanuts, soybeans, corn, and

winter wheat. Center-pivot irrigation was commonly

used to irrigate crops in the Southwest and Central

regions, and was used less frequently to irrigate crops

in the East region. The agricultural fields in the study

area tended to be much larger than northern bobwhite

home ranges, but \50 ha, with little or inadequate

transition zones capable of providing suitable bob-

white habitat. Historically, fencerows or hedgerows

that were composed mainly of scattered trees and

shrubs with abundant grassy and weedy understory

separated two or more fields. Today, these important

transition zones have either undergone changes in

their vegetative structure that make them unsuitable

bobwhite habitat or been eliminated to create one

contiguous crop field out of two or more smaller

fields. Forest production in the study area was

dominated by plantations of loblolly (Pinus taeda)
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and slash pine (P. elliotti), although longleaf pine

(P. palustris) plantings were increasing in all regions.

In the first 3–5 years after pine plantations are

established, good bobwhite habitat often exists.

Thereafter, pine plantations become too dense to

allow adequate understory vegetation growth, and

bobwhite habitat is lost until thinning and prescribed

fire or other soil disturbance can be applied to

increase herbaceous understory (Rosene 1969). The

majority of pine stands in the study area had basal

area and understory vegetation characteristics that did

not constitute suitable bobwhite habitat.

Previous research in this physiographic region

suggested that northern bobwhites are distributed

widely, but generally at low densities (Hamrick

2002). Although not evenly distributed over this

landscape, we are assuming that when habitat is

improved in a location then bobwhites potentially

respond by occupying more of the landscape.

Field methods, data collection, and spatial data

organization

Covey-call-count indices were used to evaluate

bobwhite populations on sample BQI and non-BQI

sites over a broad regional scale (13 of 17 potential

counties). During covey-call-counts, observers listen

for the ‘‘koi-lee’’ covey-calls (Stoddard 1931) given

by bobwhite (almost always before sunrise) during

autumn. Before conducting call-count surveys,

Fig. 1 Georgia counties

enrolled in the Bobwhite

Quail Initiative (BQI) and

locations of winter call

counts on BQI counties in

Georgia surveyed from

1999 to 2001
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observers were trained by listening to recorded

covey-calls and by spending several mornings in

the field listening to calling coveys pointed out by

experienced observers.

Covey-call-count surveys were conducted from

mid-October to mid-December on a sample of fields

including those enrolled in the BQI program from

1999 to 2001. At least 500 m separated each survey

point to minimize duplicate observations between

surveys conducted in the same area. Survey points

were set up at least 1 day in advance of the survey to

ensure that observers could efficiently locate points

the morning of the survey. Observers were instructed

to minimize disturbance when traveling to survey

points on the morning of the survey. Surveys were

not conducted during periods of sustained rainfall.

Each survey utilized one of three potential covey call

techniques: quadrat surveys, point counts, or two-

observer surveys. We used several techniques in

order to assess modifications of the quadrat technique

for monitoring bobwhite abundance over much larger

geographical scales (Hamrick 2002). The response

variable for abundance estimation was bobwhite

covey density on the landscape.

Quadrat surveys

The quadrat technique utilizes a 0.25-km2 (25 ha,

500 9 500 m) quadrat to survey calling coveys. Four

observers are required, with one observer positioned

along the midpoint of each quadrat line (in 1999, a

fifth observer was positioned in the center of the

quadrat). Observers were instructed to arrive at

survey points at least 45 min before sunrise, and

surveys officially began 40 min before sunrise. On

standardized data sheets and field maps, observers

recorded compass bearings, estimated distances, and

approximate locations for each calling covey

detected. Once the first call was detected, calling

coveys were recorded for a 10-min interval in order

to minimize duplicate observations (as coveys often

begin to move and initiate their daily activities soon

after calling) and to standardize survey methods.

Once the survey period expired, observers met to

compare results in order to determine individual

covey locations. Each unique covey location was

plotted on a final field map. For each covey that was

detected by more than one observer, the intersection

of compass bearings to the covey was used to plot the

approximate location. If only one observer detected a

particular covey, the estimated distance to the covey

along the compass bearing was used to plot the

approximate location. Surveys were ended at the

official time of sunrise if no calls were detected by

this time.

Point count surveys

Point counts (single-observer call-counts) were used

to survey bobwhite populations on remaining sample

sites in 1999 and 2000, and all sample sites in 2001. It

was assumed that an observer could hear a calling

covey at a distance of up to 500 m (W. E. Palmer,

Tall Timbers Research Station, personal communi-

cation). A single observer was positioned where as

much of the area of interest as possible was covered

by the assumed maximum hearing distance. Survey

protocol for point counts was the same as for quadrat

surveys, and approximate locations of detected

coveys were determined by estimating distance to

the covey along the compass bearing.

Two-observer surveys

In 2000, two-observer call-count surveys were used

on a portion (about 13%) of the total number of call-

count surveys conducted. Going into the 2000 field

season, it was assumed that the 350-m two-observer

design would be a reasonably quantitative and less

labor-intensive survey method compared to the

quadrat method. Time constraints prohibited employ-

ment of many such surveys, and this technique was

discontinued by 2001. Observers were spaced

approximately 350 m apart. Survey protocol for

two-observer surveys was the same as for quadrat

surveys.

Spatial data organization

For each survey on BQI-enrolled and non-BQI sites,

we determined a centroid which would represent the

location of the survey in a geographic information

system (GIS; Fig. 1). A centroid was also determined

for all surveyed and unsurveyed fields which had

contracts with BQI during the study period (Fig. 2a).

We then created a nested grid of hierarchical

landscape levels based on biological and manage-

ment factors (Fig. 2b). The finest level consisted of a
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1-km2 grid considered to be the field level units

(‘‘Field’’, L1). This level represents the individual

BQI fields and the attendant factors. This field level

was then nested within a grid of 9-km2 polygons

(‘‘Complex’’, L2). We believe that this field complex

level encompasses the likely scale at which northern

bobwhite population dynamics are occurring. These

field complexes were then nested within a grid of

144-km2 cells (‘‘Aggregation’’, L3). This scale rep-

resents a grouping of BQI management practices and

their impacts. These management aggregates were

finally nested within a grid of 2,304-km2 cells

(‘‘Region’’, L4). These cells represented a manage-

ment region and are roughly the size of a BQI

Georgia county.

Model development

Each of our models integrated two components which

share a common parameter, k (covey density): a

component which modeled the response of birds to

habitat and management covariates, and a component

that accounted for imperfect detection of birds

through call-counts. Letting ki represent the true

density of bobwhite coveys in field i, we assumed that

the mean number detected by an observer is

E(ci) = pki, where p is an estimated detection rate

(discussed below). We also assumed that the actual

number detected, ci, was a Poisson random variable

centered on this mean. Through these assumptions,

our models used variation in call counts to make

Fig. 2 a Centroids for

fields enrolled in BQI from

1999 to 2001 in the study

counties. b Hierarchy of

spatially nested units used

for modeling responses of

northern bobwhite coveys

to habitat and BQI

management from 1999 to

2001
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inferences about habitat and management effects at

multiple scales while simultaneously accounting for

uncertainty in the estimation of detection rate and

stochasticity in the count itself.

Detection modeling

Data from the multi-observer quadrat surveys con-

ducted in 1999–2000 were used to estimate covey

detection rate. We assumed that the detection of

coveys by k of n total observers (n = 4 or 5,

depending on survey year) followed a binomial

distribution with outcome probabilities proportional

to pk(1-p)(n-k).

Landscape modeling

The landscape modeling has three inputs: field-level

counts of coveys (ci), the absence (control) or presence

(BQI contract) of management, and the habitat infor-

mation derived from the 1998 Georgia GAP landcover

map. Density and management practice inputs may

vary by location and year, while habitat value inputs

vary only by location. Thus, management is modeled

against a background of fixed habitat conditions, as

reflected through the landcover map.

Habitat and management relationships

In order to model the effect of habitat and management

at each spatial hierarchical level, we used a hierarchical

linear model (Wong and Mason 1985; Snijders and

Bosker 1999; Howell et al. 2008). Hierarchical mod-

eling has become increasingly common for dealing

with ecological processes that occur, and are observed,

at multiple scales of resolution (Royle and Dorazio

2008). Recent examples of hierarchical modeling in

ecology include estimation of population parameters

(Conroy et al. 2008; Kéry 2008; Royle 2008; Royle and

Young 2008), spatial modeling and resource selection

(Harper et al. 2008; Howell et al. 2008; Rivot et al.

2008; Wibster et al. 2008), and species richness and

community structure (Kéry and Royle 2008).

The model may be described by first considering a

single-level linear model:

log(kiÞ ¼ a0 þ a1X1i þ � � � þ aPXPi þ ri; ð1Þ

where ki is the density of coveys and X1i…XPi are the

P habitat and management variables measured in

field unit i, a0 is the intercept, a1…aP are the

corresponding coefficients, and ri is the error assumed

to be normally distributed with a mean of zero and

variance r1
2. Thus, ki follows a lognormal distribu-

tion. Next we assumed that observations that occur

within the same complex (3 9 3 grid of field units)

are more similar to each other than to observations

which occur outside of that complex. We modeled

this by assuming that the intercept in Eq. 1 varies

between field complex units based on a set of S

habitat and management variables W1j…WSj mea-

sured for each field complex j. The influence of these

variables was modeled by expressing the level-one

intercept (a0) as a linear function of these habitat and

management measures:

a0j ¼ b0 þ b1W1j þ � � � þ bSWSj þ l2j; ð2Þ

where b0…bS are coefficients for the level-two

habitat and management effects, and l2j is the

random effect of complex j. The random effect l2j

represents the spatial random group effect associated

with each level-two unit that is not explained by the

model, and we assumed it to be normally distributed

with mean zero and variance r2
2. The complete two-

level linear model can be expressed by substituting

Eq. 2 for a0j in Eq. 1:

log kij

� �
¼ b0 þ b1W1j þ � � � þ bSWSj þ l2j þ a1X1ij

þ � � � þ aPXPij þ rij:

ð3Þ
We performed similar substitutions for each addi-

tional hierarchical level, i.e.,

b0k ¼ v0 þ v1V1k þ � � � þ vRVRk þ l3k; and ð4aÞ
v0l ¼ d0 þ d1U1l þ � � � þ dCUCl þ l4l; ð4bÞ

with corresponding random effect terms l3k and l4l

distributed normally with zero mean and variances r3
2

and r4
2, respectively. In the first of these cases

(Eq. 4a), the level-two intercept (b0k) was modeled as

a linear function of habitat and management effects

occurring at the third, or aggregation, hierarchical

level. In the second case (Eq. 4b), the level-three

intercepts (v0l) were similarly modeled as a linear

function of habitat and management effects at the

fourth, or region, level.

When all algebraic substitutions are completed,

the full form of the model becomes
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log(kijklÞ ¼ d0 þ d1U1l þ � � � þ dCUCl þ l4l þ v1V1kl

þ � � � þ vRVRkl þ l3kl þ b1W1jkl þ � � �
þ bSWSjkl þ l2jkl þ a1X1ijkl þ � � �
þ aPXPijkl þ rijkl;

ð5Þ

where kijkl is the density of coveys in field i of

complex j of aggregation k of region l. We assumed

that the relationship between density and habitat or

management variables did not vary among spatial

units within a hierarchy, leading to a model in which

there were no interactions between variables at

different spatial scales.

Temporal action of management

In order to relate our management variables, which

varied over time, to densities of coveys, we devel-

oped two alternative model forms that used different

degrees of lag between management and the

subsequent population response. The first form of

the model related covey numbers in a given year as a

function of the management performed that year and

the habitat values. Expressed as

kijklt ¼ f ðDijklt; ZijklÞ;

where in field i of complex j of aggregation k of

region l, kijklt is the density of coveys in year t, Dijklt is

a vector of the management practices in year t, and

Zijkl is a vector of habitat attributes. The second form

of the model related numbers of coveys in a given

year as a function of management in the previous

year and the habitat values. Expressed as

kijkl;tþ1 ¼ f ðDijklt; ZijklÞ;

where in field i of complex j of aggregation k of

region l, kijkl,t?1 is the density of coveys in year

t ? 1, Dijklt is a vector of the management practices

in year t, and Zijkl is a vector of habitat attributes. We

did not undertake longer time-lag models because we

expected that management and other parameters

impact bobwhite density over short time periods.

Global model selection and construction of model set

Within each hierarchical level we measured habitat

attributes from the Georgia GAP landcover map and

aggregated BQI management practices. The landcov-

er map designates portions of the landscape into 44

classes based on land cover type. From these classes,

we selected specific variables for each hierarchical

level (land classes provided in Table 1). With

increasing spatial grain, we combined certain classes

to create a more general landcover type. We then

measured the total area at the appropriate hierarchical

level of each landcover type per cell.

Management variables were based on BQI prac-

tices on contract fields during the study period

(management variables and units of measurement

provided in Table 1). We assigned each field to one

of the Field-scale (1 km2) cells and to that cell’s

corresponding parent cells. We then summed the

extent (area or length) of each practice type over the

fields in each cell of each hierarchical level. In order

to test the impact of prolonged management, at the

field complex level (L2) we created an average

number of years under management weighted by the

total area of the member fields.

Based on combinations of these variables, we

developed a set of 36 models that considered bird

outcomes as a response to combinations of (a)

contemporary (M1), time-lagged (MT), or no (M0)

management inputs; (b) presence (H1) or absence

(H0) of habitat variables; and (c) random effects (RE)

occurring at one or more landscape scales (L1, L2, L3,

L4, L12, L1234). The specific management or habitat

variables appearing in a model depended on the

landscape scale(s) represented in the model. For

example, the L3M1H1 model contained random

effects occurring at the third (144-km2) scale and

the three management and three habitat variables

measured at that scale (Table 1). The L1234M1H1

model contained random effects occurring at all four

scales and management and habitat variables mea-

sured at all scales.

Statistical analysis

Each candidate model (and the integrated detection

submodel) was fit using Markov chain Monte Carlo

(MCMC) methods as implemented in WinBUGS

software, version 1.3 (Lunn 2003; Spiegelhalter et al.

2003). Program WinBUGS uses a ‘‘Metropolis-

within-Gibbs’’ algorithm to efficiently sample from

the posterior distributions of model parameters, under

mild assumptions of convergence to stationary Mar-

kov chains (Gelman et al. 2004). The program

contains built in diagnostics for evaluating
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convergence, and permits users to export model

output to other programs (e.g., the R statistical

package) for further evaluation. Spiegelhalter et al.

(2003) provide details for the use of WinBUGS,

Congdon (2001) provides numerous examples using

WinBUGS, and Link et al. (2002) provide an

excellent introduction to the use of MCMC and

WinBUGS in ecological modeling.

For the habitat and management relationship

variables, we assigned diffuse normal prior distribu-

tions (mean 0, variance 100) to reflect a lack of prior

knowledge about model parameters. Random effects

at each scale were assumed to arise from a zero-

centered normal distribution with a scale-specific

precision ‘‘hyperparameter’’ ss. In turn, the ss were

sampled from diffuse gamma distributions (mean 1,

variance 1,000). We assigned a diffuse beta prior

distribution (mean 0.5, variance 0.0833) for the

detection rate parameter. Each model was run in

three chains of 55,000 iterations each, with the first

4,000 iterations discarded as burn-in. To affirm

convergence of the sampler, we inspected plots of

the modified Gelman–Rubin statistic (Brooks and

Gelman 1998) for each model. We then ranked the

candidate models based on Akaike Information

Criterion (AIC; Burnham and Anderson 2002). We

did not use the Deviance Information Criterion (DIC)

proposed by Spiegelhalter et al. (2002) because of

Table 1 Management and habitat variables at four landscape scales related to northern bobwhite abundance derived from the 1998

Georgia GAP landcover map and Georgia Bobwhite Quail Initiative practices

Scale Management variables Habitat variables

(GAP landcover class index)

1. Field (1 km2) Field bordersa Row crop (83)

Hedgerowsb Pasture (80)

Utility (20)

Clearcut (31)

Open pined

2. Complex (9 km2) (including nine fields) Years enrolled Hardwoode

Field bordersa Wetlandf

Hedgerowsb Evergreeng

Pivot ? fallowc Transportation (18)

3. Aggregation (144 km2) (including

16 complexes and 144 fields)

Number of fields Evergreeng

Field bordersa Urbanh

Hedgerowsb Agriculturei

4. Region (2,304 km2) (including 16 aggregations,

256 complexes, and 2,304 fields)

Practice acres Urbanh

Agriculturei

Variables used in restricted-variable model set appear in bold
a Dry and irrigated field borders (km): total length of field borders (field scale) or cumulative length of borders (higher scales)
b Dry and irrigated hedgerows (km): total length of hedgerows (field scale) or cumulative length of hedgerows (higher scales)
c Total area (hectares) in pivot corners and fallow patches
d All open or sparse pine classes: Open Loblolly-Shortleaf (422), Sandhill (512), Longleaf Pine (620)
e All hardwood classes (excluding montane): Hardwood Forest (412), Xeric Hardwood (413), Liveoak (420), Mixed Pine Hardwood

(434), Bottomland Hardwood (900)
f All wetland classes: Cypress-Gum Swamp (890), Freshwater Marsh (930), Shrub Wetland (980), Evergreen Forested Wetland (990)
g All evergreen classes (excluding montane): Open Loblolly-Shortleaf (422), Loblolly-Shortleaf Pine (440), Loblolly-Slash Pine

(441), Sandhill (512), Longleaf Pine (620)
h All urban classes: Low Intensity Urban—Nonforested (22), High Intensity Urban (24), Parks Recreation (72), Golf Course (73),

Forested Urban—Deciduous (201), Forested Urban—Evergreen (202), Forested Urban—Mixed (203)
i All agricultural classes: Pasture, Hay (80) and Row Crop (83)
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well-known problems with proper estimation of the

‘‘effective number’’ of parameters under complex,

nonlinear models such as ours. We interpret our AIC

scores and corresponding model weights as relative,

rather than absolute, measures of model fit and

parsimony (Burnham and Anderson 2002).

Out of a concern that the models were all either

very small (those containing only random effects) or

very large (those also containing habitat and/or

management effects), we tried a strategy of condi-

tioning model selection on a subset of habitat and

management variables. We fit the global model

L1234M1H1 and noted which variables had sizeable

distribution mass to one side or the other of zero. We

then restricted the total set of available habitat and

management variables down to a smaller set (hence-

forth, the restricted-variable set) containing those

variables not centered at or near 0 (Table 1, boldface

type), and re-fit the 36 models as above.

Simulation of management under uncertainty

Because the models consider habitat and manage-

ment effects at various landscape scales, the efficacy

of management on any given field may be dependent

on circumstances in the larger landscape matrix.

Therefore, a proposal’s strength may lie not only in

the locally applied suite of treatments but also in the

forms of habitat and management that already

surround the focal field. However, different models

attribute different degrees of importance to these

landscape effects. Therefore, the problem for man-

agers is to rank competing proposals for BQI

enrollment while taking into account uncertainty in

choosing a single model.

To evaluate decision making under various

sources of uncertainty, including that induced by

model selection uncertainty, we simulated a process

that could be used to evaluate proposals from a

landscape matrix of candidate fields. We developed a

scenario based on a representative sample of 36

candidate fields in four complexes. We chose com-

plexes that offered contrasting values in levels of

management already in place within the complex

(more vs. fewer practices) and types of existing

habitat (more vs. less amount of suitable habitat). In

our simulation exercise, we assumed that a manager

was confronted with choosing two fields for BQI

enrollment from the slate of 36 candidate fields, with

the objective of achieving greatest bobwhite

response. Therefore, our alternative decisions con-

sisted of all possible combinations of two fields

selected from among the 36. For each random draw

of a pair of fields, we used the following process to

simulate the response (predicted number of bob-

whites) on each field in the pair:

1. Assign new management predictor variables in

each chosen field by augmenting the current level

of management by a fixed increment of addi-

tional practice.

2. Next, from the set of best predictive models

identified by AIC (see above), select one model

at random, depending on a prior model proba-

bility (ranging from 0 to 1).

3. For the given model, draw parameter values from

a normal distribution with the mean and standard

deviation estimated from the corresponding sta-

tistics of the posterior distribution for the

parameter from the indicated model.

4. Conditioned on the selected model, randomly

drawn parameter values, and predictor variables

for the selected field, generate a predicted mean

value for number of bobwhites.

5. Lastly, generate a random integer outcome from

a Poisson distribution with mean equal to the

above predicted value.

The total for two random outcomes was returned as a

sample objective value for the pair under the

indicated model.

We encoded the above steps in a Python program

(Python Software Foundation 2008), which randomly

took 315,000 samples from among the unordered field

combinations, sampling each of the
36

2

� �
combina-

tions approximately 500 times. We investigated

simulation outcomes under each of five model

weighting scenarios: model-averaged (weighted aver-

age over the AIC weights for all models in the model

set), and probability 1.0 weight on each alternative

model (i.e., certainty assumed for each model in turn).

Results and discussion

On control and treated fields during 1999–2002, we

conducted 410 covey counts under the point count

design (339), the quadrat design (55), and the two-

414 Landscape Ecol (2009) 24:405–418
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observer design (16). Using data from the quadrat

surveys, the estimated average per observer detection

probability was P = 0.33 (95% CI 0.23–0.45).

Posterior estimates for parameters associated with

the unrestricted set of habitat and management

variables varied by model, but were generally in line

with our expectations when an effect was present. All

BQI management variable associations were either

positive or centered about zero. These effects were

found at all of the spatial scales we investigated,

offering evidence of local as well as region-wide

positive effects from BQI on northern bobwhite

abundance. Under our models, even fields not

enrolled in BQI would experience positive effects

so long as they were within the BQI regions.

For both the restricted and unrestricted-variable

sets, the Complex-level, RE-only model (L2M0H0)

was the top-ranked model, taking C50% of the share

of model weight from the set (Table 2) and suggest-

ing that larger scale demographic processes may be

dominating habitat and management factors at this

scale. But more weight was distributed to the

remaining models (i.e., smaller values of DAIC) in

the restricted-variable model set than in the unre-

stricted-variable model set. This was expected, as the

pre-screening process excluded variables that were

unlikely to have appeared in any parsimonious

model.

Models were similarly ranked between the two

approaches, except for model L12M1H0 (Table 2). In

the unrestricted-variable model set, this model

received 1/150 of the weight for the top model and

about 1/10 of the weight for the L2M1H0 and L2M0H1

models. However, in the restricted-variable model

set, it received almost half the weight of the top

model and approximately 2.5 times the weight of the

L2M1H0 and L2M0H1 models. The increase in

parsimony for this model perhaps resulted from the

exclusion of two management variables at the two

smallest scales.

Two models containing only landscape-scale

random effects (L2M0H0 and L1234M0H0) received

substantial weight (C50 and C8%, respectively) and

low rank (1 and B4, respectively) under either

approach (Table 2). These models propose that quail

response is insensitive to both management and

habitat, suggesting that the flip of a (biased) coin

predicts bird occurrence on a field about as well as

any more sophisticated method. These models are of

management interest only for the reason that, if true,

they indicate that management practices are ineffec-

tive in increasing or decreasing quail abundance.

Better (more realistic) null models of management

are those that contain habitat effects, but no manage-

ment effects. When all RE-only models are excluded

from the set of unrestricted-variable models, five

Table 2 Top ten predictive models of northern bobwhite abundance and model weights for model sets including all management

and habitat variables in global model and restricted set of management and habitat variables

All variables in global model Restricted variable set

Modela Including RE-only Excluding RE-onlyb Modela Including RE-only Excluding RE-onlyb

DAIC Weight DAIC Weight DAIC Weight DAIC Weight

L2M0H0 0 0.765363 – – L2M0H0 0 0.496859 – –

L1234M0H0 3.70 0.120343 – – L12M1H0 1.69 0.213429 0 0.502168

L2M0H1 5.36 0.052476 0 0.459129 L2M1H0 3.28 0.096381 1.59 0.226769

L2M1H0 5.44 0.050418 0.08 0.441126 L1234M0H0 3.70 0.078125 – –

L12M1H0 10.10 0.004905 4.74 0.042920 L2M0H1 3.77 0.075438 2.08 0.177493

L2M1H1 10.55 0.003917 5.19 0.034272 L2M1H1 6.01 0.024614 4.32 0.057913

L2MTH0 11.68 0.002226 6.32 0.019479 L12MTH0 8.61 0.006708 6.92 0.015783

L12MTH0 16.77 0.000175 11.41 0.001529 L2MTH0 8.87 0.005890 7.18 0.013859

L2MTH1 17.81 0.000104 12.45 0.000909 L2MTH1 12.03 0.001213 10.34 0.002855

L12M0H1 19.15 5.31E–05 13.79 0.000465 L1234M1H0 12.61 0.000908 10.92 0.002136

a Model key: L{x}—landscape-level random effects at scale(s) {x}; Mm—management effects at scale(s) {x} either absent (m = 0),

contemporaneous (m = 1), or lagged (m = T); Hh—habitat effects at scale(s) {x} either absent (h = 0) or present (h = 1)
b Model weights determined by excluding models containing only landscape scale random effects (RE-only models)
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models receive AIC weight of C1%: L2M0H1 (46%),

L2M1H0 (44%), L12M1H0 (4%), L2M1H1 (3%), and

L2MTH0 (2%). For the restricted-variable set, six

models receive weight C1% when RE-only models

are excluded: L12M1H0 (50%), L2M1H0 (23%),

L2M0H1 (18%), L2M1H1 (6%), L12MTH0 (2%), and

L2MTH0 (1%). Models that proposed a 1-year lag

effect of management were consistently ranked

behind corresponding contemporary-effects models.

For our simulation exercise, we retained models

L12M1H0, L2M1H0, L2M0H1, and L2M1H1 from the

restricted-variable set, that is, we excluded RE-only

and lag effect models from consideration. The

simulation exercise (Table 3) illustrates how it is

possible to use these models to rank candidate fields

for selection. However, the closeness of the mean

objective values, and the high sensitivity of the

ranking to the underlying model (for example the

combination [19, 24] ranked third or fourth under two

models, and not in the top 20 under the other two),

both suggest that the manifest uncertainty in this

system could strongly influence decision making.

Therefore, reduction of this uncertainty, through

improved monitoring and adaptive management,

potentially has management value.

Conclusions and recommendations

We have successfully built, parameterized, and

evaluated alternative models that express the rela-

tionship between field and complex habitat

characteristics and management practices, and pre-

dicted number of bobwhite coveys. These models can

Table 3 Results of simulations (mean number of coveys in

field pair) to rank combinations of fields drawn two at a time

from four complexes of fields (nine fields/complex), taking into

account complex- and field-level predictors and stochastic

uncertainty in responses

Rank Model

1. Model-averageda 2. L2M1H1 3. L2M1H0 4. L2M0H1 5. L12M1H0

Pair Mean Pair Mean Pair Mean Pair Mean Pair Mean

1 (06, 19) 18.60 (00, 08) 26.48 (08, 25) 21.77 (01, 07) 9.97 (01, 26) 19.08

2 (03, 05) 18.49 (01, 08) 26.45 (19, 21) 21.76 (00, 07) 9.92 (06, 07) 19.02

3 (01, 03) 18.29 (06, 08) 25.71 (01, 08) 21.65 (03, 05) 9.87 (19, 24) 18.99

4 (01, 21) 18.19 (05, 08) 25.58 (19, 24) 21.59 (09, 11) 9.82 (01, 24) 18.96

5 (00, 01) 18.05 (01, 06) 25.46 (02, 06) 21.58 (01, 09) 9.82 (04, 22) 18.91

6 (05, 06) 18.03 (02, 08) 25.41 (22, 23) 21.50 (01, 08) 9.82 (20, 25) 18.91

7 (02, 05) 18.01 (01, 03) 25.36 (01, 23) 21.41 (15, 16) 9.81 (03, 06) 18.87

8 (00, 06) 18.01 (01, 07) 25.35 (02, 18) 21.41 (01, 02) 9.80 (24, 25) 18.86

9 (03, 21) 18.00 (03, 06) 25.17 (00, 20) 21.39 (05, 15) 9.77 (06, 24) 18.86

10 (00, 03) 17.95 (06, 07) 25.13 (08, 19) 21.38 (04, 10) 9.76 (20, 24) 18.84

11 (07, 08) 17.94 (02, 03) 25.11 (00, 24) 21.31 (01, 16) 9.75 (24, 26) 18.82

12 (01, 06) 17.88 (03, 08) 25.04 (05, 23) 21.27 (11, 17) 9.72 (06, 08) 18.76

13 (01, 07) 17.88 (05, 06) 25.02 (04, 21) 21.26 (10, 17) 9.71 (08, 19) 18.75

14 (04, 24) 17.88 (01, 02) 25.01 (00, 19) 21.26 (02, 07) 9.71 (01, 23) 18.75

15 (04, 21) 17.83 (00, 01) 24.97 (04, 25) 21.24 (07, 11) 9.71 (06, 21) 18.67

16 (18, 24) 17.78 (03, 05) 24.97 (00, 08) 21.23 (06, 13) 9.70 (01, 06) 18.65

17 (05, 08) 17.78 (01, 04) 24.89 (02, 24) 21.20 (09, 14) 9.68 (04, 26) 18.64

18 (01, 23) 17.75 (04, 07) 24.86 (02, 26) 21.20 (06, 09) 9.68 (06, 26) 18.62

19 (02, 19) 17.74 (02, 04) 24.82 (21, 26) 21.19 (01, 14) 9.67 (07, 20) 18.60

20 (05, 24) 17.65 (00, 04) 24.80 (20, 24) 21.19 (14, 16) 9.66 (01, 21) 18.60

Complex characteristics: better habitat/more management (fields 0–8), better habitat/less management (fields 9–17), poorer habitat/

more management (fields 18–26), poorer habitat/less management (fields 27–35)
a Model-averaged results reflect optimal selection decisions for the case of uncertainty among prediction models
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be used to evaluate alternative management practices,

and to rank candidate fields for inclusion in incentive

programs based on their predicted contribution to

covey production. These predictions, however, are

subject to a great deal of uncertainty, which degrades

the ability to make optimal choices for candidate

fields. Some of this uncertainty is largely beyond the

control of managers: for example, random fluctua-

tions in covey numbers because of weather

conditions. However, additional uncertainty was

manifested in the parameter estimates of the different

models from at least three sources: (1) inadequate

spatial and temporal replication of covey count and

habitat data used to build the alternative models, (2)

incomplete covey detection and spatial and temporal

heterogeneity in observer detection rates, (3) uncer-

tainty in discriminating between possible biological

processes as represented by the alternative models.

The first of these must be remedied by the collection

of additional spatial and temporal replicates over the

scope of the study area, to allow for better estimation

of parameters, and we recommend that these addi-

tional data be collected in designed studies. The

second requires further work on the calibration and

testing of covey call-count indices and we likewise

recommend further studies directed at this problem.

The last source of uncertainty, that due to the lack

of discrimination among alternative models, would

be helped by addressing (1) and (2), because more

precise predictions could then be made under each

alternative model. However, there are limits to how

much this source of uncertainty could be reduced by

this approach, and it likely could not be eliminated;

we would anticipate that even given very precise

models, there would still remain a great deal of

structural uncertainty. The remedy to this source of

uncertainty is to move forward with a limited set

of models under adaptive management. Adaptive

management requires, however, that a monitoring

program be in place, so that predictions under the

alternative models can be compared to monitored

state of the bobwhite system. Monitoring is also

needed, of course, to evaluate the actual (vs.

assumed) success of any management decisions

(i.e., choices of fields to be included in the program).

Restoration and continuance of a monitoring program

for BQI should be a top priority to resolve uncer-

tainties and increase program efficacy over time.
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Kéry M (2008) Estimating abundance from bird counts:

binomial mixture models uncover complex covariate

relationships. Auk 125:336–345
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