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Abstract:  Much of the native prairie managed by the U.S. Fish 
and Wildlife Service (Service) in the Prairie Pothole Region 
(PPR) of the northern Great Plains is extensively invaded by 
the introduced cool-season grasses smooth brome (Bromus 
inermis) and Kentucky bluegrass (Poa pratensis).  Manage-
ment to suppress these invasive plants has had poor to incon-
sistent success.  The central challenge to managers is selecting 
appropriate management actions in the face of biological and 
environmental uncertainties.  In partnership with the Service, 
the U.S. Geological Survey is developing an adaptive decision 
support framework to assist managers in selecting manage-
ment actions under uncertainty and maximizing learning 
from management outcomes.  The framework is built around 
practical constraints faced by refuge managers and includes 
identification of the management objective and strategies, 
analysis of uncertainty and construction of competing deci-
sion models, monitoring, and mechanisms for model feed-
back and decision selection. Nineteen Service field stations, 
spanning four states of the PPR, are participating in the proj-
ect.  They share a common management objective, available 
management strategies, and biological uncertainties.  While 
the scope is broad, the project interfaces with individual 
land managers who provide refuge-specific information and 
receive updated decision guidance that incorporates under-
standing gained from the collective experience of all coopera-
tors.  We describe the technical components of this approach, 
how the components integrate and inform each other, how 
data feedback from individual cooperators serves to reduce 
uncertainty across the whole region, and how a successful 
adaptive management project is coordinated and maintained 
on a large scale.
Key Words/Search Terms:  smooth brome, Bromus inermis, 
Kentucky bluegrass, Poa pratensis, native prairie, adaptive 
management, decision support, uncertainty, utility, learning, 
National Wildlife Refuge System, Prairie Pothole Region 

AN ADAP TIV E APPROACH TO IN VASIV E PL AN T M ANAGEMEN T ON U.S.  F ISH A ND
W IL DL IFE SERV ICE-OW NED NATIV E PR A IRIES IN THE PR A IRIE POTHOL E REGION: 
DECISION SUPPOR T UNDER UNCER TA IN T Y

INTRODUCTION
The extent of native prairie in North America has greatly 

declined from presettlement conditions.  Native mixed-grass 
prairie has declined 30%–99% and native tallgrass prairie has 
declined more than 95% (Samson et al. 2004), primarily due 
to agricultural conversion.  In the fragments of native prairie 
that remain, historic disturbances, such as grazing by native 
ungulates and frequent fire, have largely been excluded (Mur-
phy and Grant 2005). 

More than 100,000 ha of native prairie remnants are found 
in the Prairie Pothole Region (PPR) within the collection of 
National Wildlife Refuge System (NWRS) lands of the U.S. 
Fish and Wildlife Service (Service), which is charged with 
managing this large public land base.  Given the decline of 
this ecosystem throughout the PPR, these refuge lands have 
become increasingly important conservation reservoirs for 
native prairie.  Unfortunately, recent surveys of Service prai-
ries revealed that these remaining fragments of native prairie 
are afflicted by a widespread invasion of two exotic cool-sea-
son grasses, smooth brome (Bromus inermis) and Kentucky 
bluegrass (Poa pratensis) (Grant et al. 2009).  These invasions 
of Service-owned prairies are believed to stem in part from a 
common management history (circa 1935-85) of long-term rest 
and little or no defoliation by natural processes (e.g. grazing 
or fire) that historically shaped native vegetation communi-
ties (Grant et al. 2009).  

Refuges are presently attempting to manage for native prai-
rie and against these invasive grasses by reintroducing vari-
ous forms of disturbance, including prescribed fire, grazing, 
and haying; however, results to date have been poor to in-
consistent.  Prairies differ by geographic location, tract size, 
degree of invasion, soils, etc., making their management an 
inherently complex undertaking.  Managers face considerable 
uncertainties and operational constraints as they make deci-
sions about the lands under their care (Smiley 2008).  Success 
can be further hindered by a lack of coordinated effort among 
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refuges in addressing prairie management.  Refuges enjoy a 
high degree of autonomy, which can be an inducement for 
each station to act on its own, using different tactics to meet 
different objectives (Moore et al. 2011).  Additionally, while 
monitoring has a long tradition in the NWRS, it has been less 
common for monitoring to be focused in a way that informs 
managers about the resource consequences of specific actions 
they take (Nichols and Williams 2006, Moore et al. 2011).  A 
traditional go-it-alone approach to prairie management can 
therefore make it difficult to make sense of piecemeal out-
comes that may be anecdotal, inconclusive, or contradictory. 

To tackle this problem, scientists from the U.S. Geologi-
cal Survey Northern Prairie and Patuxent Wildlife Research 
Centers are partnering with Service biologists and manag-
ers to develop an adaptive management-based system for 
making decisions about prairie management.  This system 
will coordinate local efforts, recognize uncertainties that 
make management difficult, assist managers with making 
transparent and scientifically based management decisions 
given these uncertainties, and maximize the learning poten-
tial from management outcomes to reduce these uncertain-
ties, thereby improving decision making and management 
through time.  The framework of the adaptive management 
decision support system is built around the practical con-
straints of the refuges.  The project interfaces with indi-
vidual land managers who provide refuge-specific informa-
tion and receive annual decision guidance that incorporates 
understanding gained from the collective experience of all 
cooperators.  That is, individual cooperators learn from the 
dispersed efforts of all cooperators, as information feedback 
from each serves to reduce uncertainty across the whole 
region.

STUDY AREA
This project focuses on Service NWRS lands within the 

PPR of the northern Great Plains (Figure 1; Appendix A).  
Within the PPR, 19 refuge complexes and wetland manage-
ment districts (hereafter referred to as refuges, stations, or co-
operators) contributed 120 management units to the project.  
Management units are parcels that receive a single manage-
ment treatment at any one time over its entire extent; average 
unit size was 35 hectares (range 3.5-241 ha).  These units span 
the boundaries of two Service regions (3 and 6) and four states 
(North Dakota, South Dakota, Minnesota, and Montana).

ADAPTIVE MANAGEMENT-BASED DECISION SUPPORT 
SYSTEM

Adaptive management is an approach to recurrent deci-
sion making laid upon a foundation of predictive modeling, 
monitoring, and knowledge updating.  Management deci-
sions are chosen to pursue specifically identified manage-
ment objectives, with the choice of best decision conditional 
on the present state of the managed system, and what is cur-
rently understood about behavior of the system.  Adaptive 
management provides a formal framework for the improve-
ment of management performance through the incremen-
tal reduction of uncertainty, an outcome achieved through 
repeated assessment of decision models against observed 
system response (Williams 1997, Kendall 2001, Moore and 
Conroy 2006, McCarthy and Possingham 2007).

The adaptive management framework consists of two 
stages: a setup phase, which is carried out only once or at in-
frequent intervals, and an iterative phase, which constitutes 
the recurrent steps of the annual decision-making process 
(Williams et al. 2007; Figure 2).  

Figure 1.  The project is focused on U.S. Fish and Wildlife Service 
National Wildlife Refuge System lands within the Prairie Pothole Region 
of the northern Great Plains.  Service cooperators from nineteen different 
stations have enrolled in the project, resulting in 120 management units 
that span the boundaries of two Service regions (3 & 6) and four states 
(North Dakota, South Dakota, Minnesota, and Montana).

Figure 2.  The adaptive management framework consists of two stages: 
the setup phase consists of six components and is carried out only once, 
while the iterative phase consists of four components and constitutes the 
recurrent steps of the annual decision-making process.

Management Objective •
Management Actions •
Alternative Models •
Utility Function •
Optimization •
Monitor •

SETUP PHASE

ITERATIVE PHASE

Optimal Policy •
Management Decision •
Monitor •
Update •
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During the initial workshop, we elicited ideas from the 
participants about treatment options, identified constraints 
in their use, and narrowed the management alternatives to 
a manageable number to facilitate learning.  The coopera-
tors outlined five alternative management actions:  rest, hay, 
graze, burn, and burn/graze combination.  Each of the five 
management alternatives was generally defined with broad 
sideboards for timing, repetition, and intensity of applica-
tion; within these sideboards, specific implementation of 
the action was left to the discretion of the manager.  In each 
management year (defined as September 1-August 31), for 
each management unit, a manager selects one management 
action from this menu to apply to the unit.

uncertainty and alternative modelS
deScriBinG the SyStem

We define the state of the biological system on each man-
agement unit at a particular time by two characteristics:  the 
amount of cover of native grasses and forbs and the type of 
invasive grass that is dominant.  We recognize five discrete 
states of native prairie cover:  greater than 95%, 80%-95%, 
50%-80%, 20%-50%, and less than 20%.  Within each of the 
latter four states of native prairie cover, where some degree 
of invasion occurs, we recognize the dominant invasive as 
smooth brome, Kentucky bluegrass, or something other 
than either of these two invasive grasses.  We also recognize 
smooth brome/Kentucky bluegrass codominance when na-
tive prairie cover is less than 80%.  The five states of native 
prairie cover in combination with the dominant invasive re-
sults in 16 discrete possible states of the system (Figure 3).

Figure 3.  The composition of each management unit is categorized into 
one of 16 discrete states, depending on its amount of native grasses and 
forbs (>95%, 80%-95%, 50%-80%, 20%-50%, < 20%) and its dominant 
invasive (smooth brome [SB], smooth brome/Kentucky bluegrass co-
dominant [SB|KB], Kentucky bluegrass [KB], and other [OT]).  We do 
not recognize codominant invasion status when native prairie cover is 
greater than 80%, and we do not recognize the dominant invasive when 
native prairie cover is greater than 95%.  We define dominance as follows:  
smooth brome dominant if SB/(SB + KB) >= 0.67; Kentucky bluegrass 
dominant if KB/(SB + KB) >= 0.67; and other dominant if OT/(SB + 
KB + OT) >= 0.67.   If none of these conditions are met, then a unit is 
categorized as codominant smooth brome and Kentucky bluegrass.
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> 95% 1

80 - 95% 4

50 - 80% 5 6 7 8
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There are six components of the setup phase: (1) define the 
management objective, (2) establish the potential manage-
ment actions, (3) identify uncertainties and develop alterna-
tive models, (4) determine the utility function, (5) compute 
the optimal decision table, and (6) develop and implement 
a monitoring protocol.  The iterative phase consists of four 
components:  (1) identify the optimal policy, (2) make and 
implement a management decision, (3) monitor the outcome, 
and (4) assess the outcome relative to model predictions and 
update model weights.  The focus of this paper is to describe 
our decision-support system within the structure of these 
adaptive management framework elements; the framework 
we describe here is a work in progress.

adaptive manaGement framework: 
Setup phaSe
manaGement oBjective

Under adaptive management, the selection of decisions 
is driven by an explicit, measurable management objective 
(Williams et al. 2002).  The objective statement must (1) be 
quantifiable and measureable in the field, (2) define a quan-
tity that can be generated as output from a decision model, 
and (3) balance tradeoffs among multiple objectives.  One 
of our first tasks was to hold an initial, facilitated problem-
scoping workshop to define the management objective.  The 
workshop was held in July 2008 and was attended by 25 Ser-
vice personnel (managers, biologists, project leaders) repre-
senting 19 different refuges from across the PPR of Service 
regions 3 and 6.  During the workshop, participants consid-
ered various management goals and constraints and devel-
oped a consensus management-objective statement:  increase 
the composition of native grasses and forbs on native sod while 
minimizing cost.

manaGement alternativeS
We next defined the menu of admissible decision alter-

natives that managers can use to pursue the management 
objective.  Management decisions are supplied as input to de-
cision models, and different decisions should yield different 
expected outcomes under the models.  Management of grass-
lands is characterized by considerable uncontrolled natural 
variability; thus, it is important that differences in outcome 
among management alternatives be large and distinct if 
management is to be informative.  A decision set containing 
a few, coarse-grained alternatives is more likely to provide 
rapid gains in learning than one containing a large number 
of subtly distinguished options.  Therefore, construction of 
the set of decision alternatives was guided by actions likely to 
generate the greatest diversity in outcomes, and by logistical 
and political feasibility.
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State tranSition proBaBility model
We use a state transition probability model to describe 

how we think the biological system behaves in response to 
management (Figure 4).  A 16 x 16 transition matrix describes 
the probability of transitioning from state x at time t to state 
y at time t+1, given a particular management action.  Because 
management actions are likely to influence transition prob-
abilities from one state to another, a complete model consists 
of five matrices, one for each alternative management action.  
Given the current state of the unit and the management ac-
tion applied, the model provides a probabilistic prediction of 
the state of the unit after applying the management action.  

Work is ongoing to estimate baseline transition probabili-
ties for each matrix via a meta-analysis of data from several 
long-term studies.  We estimated average transition prob-
abilities across studies, and we placed vague prior probability 
distributions on the transition matrices to provide inference 
support for the many parameters where we had sparse data.  
To complete a prototype of our decision framework, we es-
timated provisional transition probabilities for mixed-grass 
prairies and tallgrass prairies separately, resulting in two 
empirically derived models; final estimates will be a focus of 
forthcoming work.

Figure 4.  A 16 x 16 transition matrix describes the probability of a unit transitioning from any of the 16 resource 
states at time t (vertical axis) into some other state at time t + 1 (horizontal axis), after a particular management 
action is applied.  For example, the matrix depicted represents transition probabilities (provisional; subject to 
further analysis) under the management action Rest.  Probabilities within each of these 256 cells describe how likely 
each of the transitions is to occur under the management Rest.  For example, a management unit starting in state 3 
(80%-95% NP, KB dominant), has a 16% chance of degrading to the lower state 7 (50%-80% NP, KB dominant) under 
rest management.  A unit starting in state 6 (50%-80% NP, SB|KB codominant) has a 3% chance of improving to 
state 2 (80%-95% NP, SB dominant), while a unit starting in state 10 (20%-50% NP, SB|KB codominant) has a 68% 
chance of remaining in that state.  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0.61 0.05 0.16 0.16 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 0.08 0.47 0.11 0.08 0.14 0.07 0.02 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00

3 0.05 0.06 0.46 0.06 0.12 0.09 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 0.06 0.02 0.14 0.47 0.04 0.01 0.22 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 0.00 0.07 0.00 0.02 0.60 0.13 0.03 0.03 0.09 0.01 0.01 0.00 0.00 0.00 0.01 0.00

6 0.02 0.03 0.00 0.01 0.06 0.60 0.10 0.03 0.02 0.06 0.03 0.01 0.00 0.02 0.00 0.00

7 0.01 0.00 0.04 0.01 0.00 0.02 0.84 0.02 0.00 0.00 0.04 0.00 0.00 0.00 0.01 0.00

8 0.01 0.01 0.01 0.03 0.03 0.10 0.20 0.50 0.01 0.01 0.01 0.04 0.01 0.01 0.00 0.01

9 0.01 0.02 0.01 0.00 0.05 0.03 0.02 0.00 0.67 0.08 0.03 0.00 0.07 0.01 0.00 0.01

10 0.00 0.01 0.00 0.00 0.00 0.04 0.01 0.01 0.06 0.68 0.07 0.03 0.01 0.07 0.02 0.00

11 0.01 0.00 0.01 0.01 0.01 0.02 0.11 0.01 0.02 0.08 0.66 0.00 0.00 0.02 0.00 0.02

12 0.01 0.01 0.01 0.02 0.01 0.03 0.01 0.05 0.13 0.09 0.24 0.26 0.01 0.02 0.03 0.07

13 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.11 0.05 0.00 0.02 0.68 0.07 0.03 0.03

14 0.01 0.00 0.00 0.00 0.01 0.04 0.00 0.00 0.05 0.04 0.03 0.00 0.02 0.73 0.06 0.00

15 0.00 0.00 0.01 0.00 0.00 0.01 0.01 0.01 0.02 0.04 0.04 0.04 0.04 0.12 0.59 0.06

16 0.00 0.00 0.01 0.01 0.01 0.02 0.01 0.03 0.01 0.02 0.04 0.03 0.11 0.18 0.18 0.34
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The mere existence of multiple models speaks to our 
uncertainty about the behavior of the system; however, we 
further quantify this uncertainty by assigning a weight to 
each model that connotes our current belief in each model 
as the best representation of system behavior.  Model weights 
are an important element of adaptive management because 
they are a quantitative expression of current understanding 
about the system (also referred to as the belief state).  Model 
weights determine the influence of each model on the deci-
sion at each point; models with greater weight exert more 
influence on the selection of a management action.  However, 
model weights continually change through time in response 
to decisions made, as feedback from the monitoring data in-
forms us about how well or how poorly each model performs 
as a predictor of management effect.  The influence of each 
model changes through time as our understanding about the 
system changes.  At the outset of decision making, where 
uncertainty is greatest, it may be reasonable to assign each 
model equal initial weight.  Thus, we assigned equal initial 
weights of 0.25 to each of our four competing models.

irreduciBle formS of uncertainty
The sources of uncertainty described above, around which 

our alternative models were created, are considered structural 
uncertainty—the type of uncertainty that adaptive manage-
ment is intended to address and reduce.  Three other sources 
of uncertainty exist, however, and include: (1) environmental 
stochasticity, unexpected outcomes brought about by chance 
events (e.g., unanticipated differences in treatment efficacy 
due to temporal and spatial variation in precipitation), 
(2) partial controllability, the inability to carry out 
an action as intended (e.g., an incomplete burn), and 
(3) partial observability, the inability to see or measure the 
system accurately (e.g., sampling variability in monitoring) 
(Nichols et al. 1995, Williams 1997).  These sources of uncer-
tainty are themselves irreducible; nevertheless, because they 
can have an impact upon decision making, they must be ad-
dressed and implicitly or explicitly accounted for in the pre-
dictive models.  In our decision framework, environmental 
stochasticity is reflected through the probabilities contained 
in the state transition models; that is, because of the effects 
of the random environment, the transition from a given state 
into the same or some other state is not known with cer-
tainty, but only probabilistically.  Partial controllability will 
be accounted for in a model component that makes a proba-
bilistic determination of which action is carried out given 
which action was indicated as “best”; we will elicit from our 
cooperators information that will help parameterize this 
model component.  Finally, we plan to account for partial 
observability in the updating step of our framework; inac-
curacy in measuring the resource should result in reduced 
learning from management actions.

repreSentinG uncertainty throuGh alternative 
modelS

Sole reliance on any one particular model implies that the 
behavior of the system is well understood and that responses 
to management decisions are predictable with a degree of accu-
racy.  This is not the case in prairie management, where the wide 
range of site characteristics, current conditions, and variability 
in treatment execution makes the outcome of any treatment 
difficult to predict.  Under adaptive management, uncertain-
ties about response to management actions are cast in the form 
of plausible, competing decision models.  Each model in the 
set represents an alternative hypothesis about how the system 
behaves.  

Building alternative models proceeded from an initial synthe-
sis of information about grassland restoration efforts, including 
expert opinions elicited from participants at the initial scoping 
workshop.  By asking “What makes decision making difficult 
in grassland management?”, we were able to identify and clas-
sify different areas of uncertainty in decision making.  More 
targeted inquiry of the Service biologists serving on the project’s 
Science Team allowed us to identify general areas of agreement 
about the behavior of the system, as well as to distinguish four 
major sources of uncertainty:  (1) the effect of haying on native 
prairie, smooth brome, and Kentucky bluegrass, (2) the effec-
tiveness of burning in suppressing smooth brome, (3) the effec-
tiveness of grazing in suppressing Kentucky bluegrass, and (4) 
the existence of a threshold of native prairie composition, below 
which there is no benefit gained by active management.  

We constructed four alternative models—four different no-
tions of how we think the system may behave—to represent the 
four major sources of uncertainty.  We formulated these four 
models by directed modification of the baseline, empirically 
derived transition probabilities.  Model 1 serves as a reference 
point, expressing several baseline statements about system be-
havior, as follows: natural mimics of disturbance (i.e., graze, 
burn, and burn/graze combination) are equally effective at in-
creasing native prairie, haying is equivalent to rest, and graze 
and burn are differentially effective against specific invasive 
species—grazing is more effective than burning against smooth 
brome and burning is more effective than grazing against Ken-
tucky bluegrass.  Models 2-4 differ from Model 1 in ways that 
isolate identified areas of uncertainty.  Model 2 focuses on the 
first uncertainty, and states that while haying is less effective 
than the natural mimics of disturbance at increasing native 
prairie, it is more effective than rest.  Model 3 targets the second 
and third uncertainties, and proposes that burning is not effec-
tive against smooth brome and grazing is not effective against 
Kentucky bluegrass.  Model 4 aims at the fourth uncertainty 
and introduces the existence of a threshold (< 20% native prairie 
cover) below which active management is no better than rest.  
We have two sets of these four alternative models—one set for 
mixed-grass prairies and one set for tallgrass prairies—based 
on the same four concepts but derived from different initial 
transition probabilities, depending on the prairie type.  
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state resulting from an action, (2) the starting native prairie 
state before applying an action (comparison between elements 
1 and 2 allow us to distinguish between improvements and 
degradations in prairie state), and (3) the management action 
that was taken to prompt the transition between the starting 
and future states.  Because subjective preferences are hard to 
draw out and evaluate, and because different stakeholders will 
have different perspectives of how they value these three ele-
ments, quantifying the utility function will require expertise 
to elicit and resolve these values.  While the actual quantifica-
tion of the values may vary, the utility function will follow the 
structure outlined above (Figure 5).

optimization
Optimization is the search for best management actions 

through a process that integrates the model, which describes 
how we think the system works, and the utility function, 
which describes our values.  Dynamic programming is a form 
of optimization for decisions and the resulting rewards (util-
ity values) that occur through time (Dreyfus and Law 1977).  
We use adaptive stochastic dynamic programming (ASDP; 
Lubow 1995, 1997), which accounts for current and future ex-
pected rewards, future dynamics of system state and knowl-
edge gain, and the degree of management control (partial 
controllability).  The procedure determines the trajectory of 
decisions through time that will maximize expected cumula-
tive utility, thereby achieving the management objective.  The 
end product of the optimization is a large table that contains 
every possible combination of resource state (i.e., 1-16) and 
belief state (i.e., weights assigned to the four alternative mod-
els), and identifies the optimal management decision for each 
combination (Table 1).  

The optimal decision table generated by ASDP provides a 
best decision for the current condition of the resource and for 
the degree of confidence (model weights) we currently place 
on each of the four alternative models.  The current condition 
of the resource is management-unit specific and ascertained 
annually via a standardized monitoring program (see “Moni-
toring” below).  The current understanding of the system, 
indicated by the weights assigned to each model, is specific 
to prairie type (i.e., mixed or tall) and is determined annu-
ally via an updating procedure (see “Compare and Update” 
below).  Because we have two sets of alternative models, one 
for mixed-grass prairies and one for tallgrass prairies, we ob-
tain two optimal decision tables, one for each prairie type.

monitorinG
The monitoring protocol is designed to provide data for 

three purposes: (1) determining current system state (i.e., 
prairie composition) on each management unit, (2) evaluat-
ing progress toward the management objective, and (3) as-
sessing predictive performance of the alternative models.  We 
adopted a protocol that employs a modified belt-transect sam-
pling method (Grant et al. 2004) and was familiar to many 

utility function
The utility function describes what we want from the system 

through management.  It combines both the resource and cost 
aspects of the management objective by balancing the value of 
having native prairie with the cost of achieving it.  The utility 
function is a subjective expression of the value system (i.e., 
importance of having native prairie, undesirability of invasive 
species, willingness to direct resources to address either) of 
the cooperators.  As such, parameterizing the utility function 
is a process that stands completely apart from the process that 
expresses our beliefs about the science of the system (i.e., con-
struction of the model set).  Utility is the annual measure of 
what the manager receives from the system in return for what 
he/she invests; therefore, it is reasonable to describe sound 
management as the sequence of decisions over many years 
that makes accumulated utility as large as possible. 

We distinguish three main characteristics that coopera-
tors value: (1) high cover of native prairie, (2) increasing the 
amount of native prairie cover, and (3) gaining more native 
prairie cover for less investment.  We have constructed the 
utility function to recognize these three values by accounting 
for three corresponding elements:  (1) the future native prairie 
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> 95% 80 - 95% 50 - 80% 20 - 50% < 20%

> 95% 1.0 0.40 0.03 0.006 0.001

80 - 95% 1.0 0.80 0.13 0.009 0.003

50 - 80% 1.0 0.90 0.35 0.02 0.006

20 - 50% 1.0 0.95 0.58 0.10 0.008

< 20% 1.0 0.98 0.74 0.23 0.01

Figure 5.  This is an example of how we quantify the values cooperators 
place on having high cover of native prairie (NP) and gaining more 
NP.  These values are expressed in a two-dimensional utility matrix 
indexed by the NP cover before (starting state) and after (future state) 
a management action.  We assign values of utility to each possible 
transition between the starting and future states, where utility is 
expressed with a value ranging between 0 and 1.  These values represent 
cooperator satisfaction with each outcome (0 is the least and 1 is the most 
satisfied).  Values along the diagonal represent cooperator satisfaction 
with staying in a given state; satisfaction is greatest with the highest 
NP cover and declines with lower NP cover.  Cooperators also value 
making improvements from a lower to a higher NP state and disfavor 
degrading from a higher to a lower NP state.  Values in the matrix 
beneath and above the diagonal represent transitions where NP was 
gained and lost, respectively.  Given a future NP state of 80%-95% (bolded 
values), satisfaction is relatively high (0.8) when that condition was 
maintained from its starting state, is greater (0.90) when that condition 
was an improvement from a lower state of 50%-80% NP, and is greatly 
reduced (0.4) when that condition resulted from a degradation from 
>95% NP.  The third element of the utility function, cost, is not shown 
here.  The complete utility function, encompassing all three aspects 
of the cooperators’ value system, consists of five utility matrices like 
the one depicted here—one for each management action; each matrix 
contains the same internal relationship among values, but the utilities are 
discounted according to the relative cost of management actions, which 
are ranked from most expensive (burn/graze) to least expensive (rest).  
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Table 1.  Excerpt from an optimal decision table produced from the 
adaptive stochastic dynamic optimization.  The full table contains all 
possible combinations of native prairie state (i.e., 1-16) and belief state 
(i.e., weights assigned to the four alternative models), and identifies the 
optimal management decision for each combination.  We discretized 
model weights by 0.125, making 165 possible combinations of the four 
model weights (three of which are shown in the excerpted portion of the 
table).  Combining 165 belief states with 16 resource states results in 2,640 
possible combinations.  As an example, if our current understanding 
of system behavior is perfect, with 100% of confidence on Model 1, then 
the optimal decision for a management unit in state 3 would be to Burn. 
However, if our current understanding of system behavior is imperfect, 
with 37.5 % of confidence in Model 1, 37.5% in Model 2, 0% in Model 3, 
and 25% in Model 4, then the optimal decision for the same resource 
conditions would be to Burn/Graze.

STATE MODEL 1 MODEL 2 MODEL 3 MODEL 4 OPTIMAL 
DECISION

1 1 0 0 0 Hay

2 1 0 0 0 Graze

3 1 0 0 0 Burn

4 1 0 0 0 Graze

16 1 0 0 0 Graze

1 0.625 0.125 0.125 0.125 Rest

2 0.625 0.125 0.125 0.125 Graze

3 0.625 0.125 0.125 0.125 Burn

4 0.625 0.125 0.125 0.125 Burn/Graze

16 0.625 0.125 0.125 0.125 Graze

1 0.375 0.375 0 0.25 Rest

2 0.375 0.375 0 0.25 Graze

3 0.375 0.375 0 0.25 Burn/Graze

4 0.375 0.375 0 0.25 Burn/Graze

16 0.375 0.375 0 0.25 Graze

of the refuges across the Dakotas.  A primary consideration 
when deciding upon the monitoring effort was that it be sus-
tainable by the refuge personnel who are charged with carry-
ing it out each year.  For this reason, only necessary attributes 
that inform the models are measured.  In addition to being 
sustainable, the monitoring protocol reliably conveys prairie 
composition, is flexible for use in both mixed- and tallgrass 
prairie, is quick and efficient, and is robust to multiple ob-
servers.  Along with monitoring prairie composition, refuge 
managers are responsible for keeping detailed descriptions of 
the management activities they carry out on each manage-
ment unit each year (e.g., burn intensity, stocking rate, timing 

of application, etc.) so that over time a fuller picture of man-
agement practices emerges, facilitating future study of native 
prairie response to management.   

A centralized database was developed to standardize, or-
ganize, and maintain the vegetation monitoring data and the 
management activity data collected by project cooperators.  
Vegetation monitoring occurs annually during the growing 
season (between June and August).  

ADAPTIVE MANAGEMENT FRAMEWORK: 
ITERATIVE PHASE
look up the optimal deciSion policy

Given the current state of the system and the current 
understanding of the system, identifying the current best 
management decision is a matter of looking up the combi-
nation (i.e., system state and belief state) in the appropriate 
(i.e., mixed- or tallgrass prairie) optimal decision table (e.g., 
Table 1).  Given complete uncertainty at the outset of decision 
making, 0.25 is a reasonable initial assignment of weight to 
each model.  The decisions in the optimal decision table that 
correspond to this current level of understanding constitute 
the current optimal decision policy (Figure 6).  Following 
monitoring, which informs cooperators about the current 
composition of native prairie on their sites, we identify the 
recommended management actions for each unit with re-
spect to its system state and its prairie type (mixed or tall) 
by consulting the current optimal decision policy.  By 31 Au-
gust of each year, we provide individual cooperators with a 
recommended management action for each of their manage-
ment units for the upcoming management year (September 
1-August 31).  

In future iterations of the decision cycle, the current state 
of the system will be ascertained by the annual monitoring 
program (see “Monitor” below) and the current understand-
ing of the system (i.e. weights on each alternative model) will 
be determined by the annual updating procedure (see “Com-
pare and Update” below).

make and implement a manaGement deciSion
Upon receiving the management recommendations for 

their units, managers consider the recommendation, along 
with other relevant information (e.g., funding constraints; 
access to a burn crew, cattle, or haying cooperator; fuel load; 
weather conditions), and decide what management action to 
implement on each unit that year.  The management action 
is carried out at some point during the management year 
(September 1-August 31).    

monitor
During the period of the growing season when both cool-

season and warm-season grasses are visible (June-August), 
refuge personnel carry out the annual monitoring proto-
col. Cooperators individually enter their vegetation and
management data in the standardized database and trans-
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next cycle of the iterative phase.

the iterative cycle: puttinG it all toGether
With the updated model weights in hand, we return to 

the first step of the iterative cycle and look up the new de-
cision policy corresponding to the newly realized model 
weights.  Because the optimal decision policy is influenced 
by the model weights, for the next decision cycle, those mod-
els that have garnered more weight will assert more influ-
ence on the resulting policy and thus on the next decision 
recommendation.  

We repeat the cycle of deciding on a management action, 
predicting the response, monitoring the outcome, compar-
ing the predicted and observed outcomes, and updating the 
model weights (Figure 7).  Through time we hope to see an 
accumulation of weight on one of the models, thus distin-
guishing it as a better model.  The shift in model weights that 
occurs through this iterative cycle embodies our learning and 
reduction in uncertainty about system behavior.  The change 
in the optimal decision policy that results from the adjusted 
relative influence of the decision models exemplifies how our 
management adapts based on this learning.  It is this change 
in understanding of how the system works and this updat-
ing of model influence on subsequent decisions that makes 
the management adaptive.  Because decisions are based on 
improved understanding of the system, the result is manage-
ment decisions of better quality than when we started.  

FUTURE WORK
We have presented in this paper the framework for the na-

tive prairie adaptive management project.  We completed this 
first prototype of the framework in August 2010, at which 
time we successfully completed our first full implementa-
tion of the adaptive management cycle.  While the general 
framework will remain the same, we will be revisiting the 
specifics of several of the components (e.g., representation of 
the system state, estimation of the baseline model transition 
probabilities, construction of alternative models, elicitation 
of values for the utility function, consideration of partial con-
trollability, and evaluation of the updating method).  The final 
framework will be complete by August 2011, at which time the 
Service will assume operational control of the iterative steps 
of the framework.  

BENEFITS AND TRADEOFFS
We see some clear benefits from applying this adaptive 

framework.  First, refuge managers maintain flexibility of 
management at the scale of the individual field station.  The 
management practices and associated implementation tasks 
are familiar to managers, and managers are not locked into 
carrying out specific actions; in other words, the framework 
provides decision support, not decision mandates.  Second, 
because multiple individual stations are coordinating annu-
ally under this framework, learning is enhanced through spa-

mit them to a centralized site for integration by 25 August of 
each year, a deadline necessitated by the management deci-
sion cycle.

compare and update
Prediction and monitoring are the keys to reducing uncer-

tainty.  After managers select their management decisions, 
we use the models to make predictions about the outcome 
(i.e., prairie composition state) of the chosen management 
action on each management unit.  After the management ac-
tion is carried out and the resulting prairie state is observed 
through the annual monitoring program, we compare the 
predicted outcomes of our models to the observed outcome.  
By computing the likelihood of the observed response under 
each alternative model and applying Bayes’ rule, we update 
our model weights (Johnson and Williams 1999).  The com-
parison of each model’s prediction to the actual outcome al-
lows us to distinguish models that are better representations 
of system behavior than others.  To the extent that one mod-
el’s prediction makes a better match to the observation than 
does another model, that model will inherit a greater share 
of the weight at the expense of the other models; in other 
words, we are reducing uncertainty among models.  With 
this updating of knowledge, the iterative cycle is complete, 
and the new model weights become the starting point for the 

Figure 6.  Optimal decision policies for (a) mixed- and (b) tallgrass 
management units resulting from the adaptive stochastic dynamic 
optimization.  These policies are identified by extracting from the large 
optimal decision tables the optimal actions for each state that pertain to 
complete uncertainty among the four alternative models (i.e., 0.25 weight 
on each model).  These two policies are used to generate the recommended 
management actions per unit with respect to its system state (i.e., 1-16) and 
its prairie type (i.e., mixed or tall).
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actions with the understanding that the inherent complexity 
of the system had to be simplified to make the problem man-
ageable, and that the desire to represent the complexity had 
to be balanced with the need to be parsimonious.  

ATTRIBUTES OF SUCCESSFUL IMPLEMENTATION
We agree with Moore et al. (2011) that there are three el-

ements at the heart of a successful, integrated, large-scale 
adaptive management effort:  components, collaboration, 
and commitment.  The first, components, has been the focus 
of this paper and includes all the steps of the setup and it-
erative phases of the adaptive management framework (i.e., 
management objective, management action alternatives, al-
ternative models, utility function, optimization, monitoring 
program, decision selection, and assessing and updating).  
The second is collaboration that is well-structured and broad.  
Team members should include people who are knowledge-
able about management issues, operational procedures, and 
refuge capabilities and constraints; skilled in coordination, 
communication, organization, elicitation, and facilitation; 
and have expertise in decision structuring and modeling.  
Regular communication among members of the project 
team and between the team and cooperators, as well as a 
common understanding of roles and responsibilities among 
team members, are requisite for successful collaboration.  
Adaptive management is a challenging undertaking, espe-
cially in environments that operate in short-term budgetary 
and priority-setting horizons; thus, long-term commitment
to the process at the station, coordinator, and administrative 
levels is vital to project success.  All three elements are essen-
tial to successfully develop, implement, and reap the benefits 
of a large-scale adaptive management project. 
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Figure 7.  After initial monitoring of all management units during the 
setup phase, we know the current state of each of the management units 
and move into the iterative cycle of the adaptive management framework.  
Here we enter into an annual cycle that includes (1) identifying the optimal 
policy and generating recommended management actions for each unit 
with respect to its current state (August 31); (2) selecting a management 
action for each unit and then applying that action (September 1-August 
31); (3) monitoring the units for their new state after management has been 
applied (July-August), and entering and transmitting the data (August 25); 
and (4) comparing the predicted outcomes of each alternative model to the 
observed outcomes from the monitoring data and updating the confidence 
weights on each model.  With the updated model weights in hand, we 
return to the first step of the iterative cycle and look up the new decision 
policy that corresponds to the newly realized model weights.  Because 
the optimal decision policy is influenced by the model weights, when 
it comes to making the next decision, models that have garnered more 
weight will assert more influence on the resulting policy and thus on the 
recommended next decision.  
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tial and temporal replication.  Third, the gain in knowledge 
is directed back to improve management at both the local 
and the system-wide scales.  Each station benefits from the 
collective gain in understanding achieved by all stations.

As in any effort over a large and heterogeneous system, 
there are tradeoffs.  The flexibility exercised by individual 
stations and the large geographic scale make for a noisy sys-
tem, which means that learning is slower compared with a 
controlled experiment that has strict protocols and dictated 
actions.  But, if the framework is adhered to, learning will 
occur.  

It is beyond the scope of this paper to address the pro-
cess of consultation and negotiation with cooperators on the 
many difficult aspects of this problem.  Discussions concern-
ing the choice of the annual time step, the state structure, the 
date which demarcates successive management years, and the 
model set were thoughtfully considered and negotiated.  The 
science team and resource managers conducted these inter-
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COMPLEx
NO. OF 

UNITS

GRASS 

TYPE
STATE

USFWS 

REGION

Arrowwood NWR 
Complex

16 Mixed ND 6

Audubon NWR 
Complex

11 Mixed ND 6

Benton Lake WMD 2 Mixed MT 6

Big Stone NWR 1 Tall MN 3

Detroit Lakes WMD 3 Tall MN 3

Devils Lake WMD
2
1

Mixed
Tall

ND 6

Huron WMD 10 Mixed SD 6

Kulm WMD 10 Mixed ND 6

Lake Andes NWR 3 Mixed SD 6

Long Lake WMD 5 Mixed ND 6

Lostwood NWR 
Complex

3 Mixed ND 6

Madison WMD 3 Tall SD 6

Medicine Lake NWR 6 Mixed MT 6

Morris WMD 9 Tall MN 3

Sand Lake NWR 
Complex

3
2

Mixed
Tall

SD 6

Souris River Basin NWR 
Complex

10 Mixed ND 6

Tewaukon WMD 7 Tall ND 6

Waubay NWR Complex 11 Tall SD 6

Windom WMD 2 Tall MN 3

Appendix A.  List of U.S. Fish and Wildlife Service project 
cooperators.  National Wildlife Refuge (NWR). Wetland 
Management District (WMD).




