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Abstract.—We conducted dual-observer trials to estimate detection probabilities (probability that a group that is present and 
available is detected) for fixed-wing aerial surveys of wading birds in the Everglades system, Florida. Detection probability ranged from 
<0.2 to ~0.75 and varied according to species, group size, observer, and the observer’s position in the aircraft (front or rear seat). Aerial-
survey simulations indicated that incomplete detection can have a substantial effect on assessment of population trends, particularly 
over relatively short intervals (≤3 years) and small annual changes in population size (≤3%). We conclude that detection bias is an 
important consideration for interpreting observations from aerial surveys of wading birds, potentially limiting the use of these data 
for comparative purposes and trend analyses. We recommend that workers conducting aerial surveys for wading birds endeavor to 
reduce observer and other controllable sources of detection bias and account for uncontrollable sources through incorporation of 
dual-observer or other calibration methods as part of survey design (e.g., using double sampling). Received 6 August 2007, accepted 18 
February 2008.
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Fuentes de Variación en la Detección de Aves Vadeadoras mediante Censos desde el Aire en los 
Everglades de Florida

Resumen.—Realizamos ensayos con dos observadores para estimar las probabilidades de detección (la probabilidad de que un 
grupo que está presente y disponible sea detectado) para censos de aves vadeadoras realizados desde el aire utilizando aeronaves con 
alas fijas en el sistema de los Everglades, Florida. La probabilidad de detección estuvo en un rango de entre <0.2 y ~0.75 , y varió de acu-
erdo a la especie, al tamaño del grupo, al observador y a la posición del observador en la aeronave (en el asiento de adelante o en el de 
atrás). Las simulaciones de censos aéreos indicaron que la detección incompleta puede tener un efecto sustancial sobre la evaluación de 
las tendencias poblacionales, particularmente a lo largo de intervalos relativamente cortos (≤3 años) y en relación con cambios pequeños 
en el tamaño de las poblaciones (≤3%). Concluimos que los sesgos en la detección son una consideración importante para interpretar las 
observaciones realizadas a partir de censos de aves vadeadoras realizados desde el aire, que potencialmente limitan el uso de estos datos 
para propósitos comparativos y de análisis de tendencias. Recomendamos que los investigadores que realizan censos de aves vadeadoras 
desde el aire se propongan reducir los sesgos en la detección causados por el observador y por otras fuentes controlables. Además, reco-
mendamos que se consideren las fuentes no controlables mediante la realización de censos con dos observadores y la incorporación de 
otros métodos de calibración (e.g., el uso de muestreos dobles) como parte del diseño de los censos.
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Aerial counts of bird populations are typically incomplete be-
cause some fraction of the population is not detected during sur-
veys (Johnson et al. 1989, Bromley et al. 1995, Dodd and Murphy 
1995, Rodgers et al. 1995, Smith et al. 1995, Frederick et al. 1996, 

Kingsford 1999). Although the sources of undercounting are var-
ied, they can be roughly grouped into two categories: observer 
variability and visibility biases. Observers differ in their ability to 
detect and identify individuals, with differences often related to 
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observer experience (Kendall et al. 1996) or visual acuity (Sauer et 
al. 1994). Observer variability can be reduced through the use of 
well-trained and experienced observers; however, even the most 
experienced observers will be unable to detect all individuals be-
cause of imperfect visibility, so counts may still be biased low. 
“Visibility bias” is defined here as over- or undercounting of popu-
lations because of variation in the ability to detect and identify 
individuals. Survey-induced bias is a source of bias that is inher-
ent in the design of sampling protocols. For example, height and 
speed of the survey aircraft and transect width introduce certain 
biases (Pollock and Kendall 1987). Variability in detection rates 
can be reduced through the use of standardized survey protocols, 
but it is difficult to eliminate bias completely from this source. 

Detection can vary among bird species (Pollock and Kend-
all 1987). Body size or coloration may influence the ability to de-
tect birds. For example, larger and more colorful wading birds are 
generally more conspicuous and, therefore, are detected more 
frequently (Kingsford 1999). Species-specific behaviors, such as 
aggregative foraging behaviors, can also influence the ability to 
obtain accurate counts. Birds typically found in large (>5,000) or 
small (<10) aggregations are more difficult to count or detect, re-
spectively, which results in inaccurate counts for these species 
(Kingsford 1999, Frederick et al. 2003). The habitat characteristics 
of survey areas also can affect detection (Bibby and Buckland 1987, 
Smith et al. 1995); for example, physical structures, such as tall 
grasses and tree canopies, can impair visibility. 

Failure to account for incomplete detection results in biased 
estimators of abundance or other population parameters. Like-
wise, heterogeneous visibility induces variation in data that can 
confound inferences, such as comparisons between species or 
over time and space (Williams et al. 2002). Thus, our objectives in 
the present study were to (1) estimate detection rates for wading 
birds from aerial surveys of the Everglades system, (2) investigate 
sources of variation in detection rates among species and in rela-
tion to operational aspects of the surveys, and (3) examine the po-
tential influence of incomplete detection on the evaluation of bird 
population trends.

Methods

Our primary goals were to quantify the effects of various factors 
on detection of wading birds during aerial surveys and to evalu-
ate the influence of these factors on interpretation of population 
trends. Thus, our analysis consisted of two parts: (1) we developed 
empirical models relating wading-bird detection to habitat, spe-
cies, and observer effects; and (2) we used these models to evaluate 
the influence of incomplete detection on the detection and esti-
mation of trends in wading-bird abundance via simulation.

Study area.—The Everglades basin is one of the world’s largest 
wetland systems (11,640 km2; Fig. 1); the basin has undergone dra-
matic anthropogenic alterations, starting in the early 1900s. Con-
comitantly, there were large reductions in the number of wading 
birds using the system, though other factors, including changes 
external to the Everglades system, may have contributed to their 
declines (Walters et al. 1992). 

Systematic Reconnaissance Flights survey.—The Systematic 
Reconnaissance Flights (SRF) survey is intended to record the rela-
tive abundance, flock composition, and spatiotemporal distribution 

of foraging wading birds across the entire Everglades system 
(Hoffman et al. 1990, Bancroft and Sawicki 1995, Sawicki et al. 
1995, G. J. Russell and K. M. Portier unpubl. data). The surveys are 
conducted monthly during the historically drier part of the year 
(December–June), which includes the nesting season, but at least 
one survey is usually conducted in August, at the height of the 
wet season. The survey is also used to assess general surface-water 
conditions throughout the survey area and, in some survey areas, 
to assess vegetation conditions.

Aerial surveys were initiated in 1985, following a one-year pi-
lot study (Portier and Smith 1984). The survey area comprised the 
water conservation areas (WCA) of the northern and central Ever-
glades, Everglades National Park (ENP) and southern Big Cypress 
National Preserve (BCNP) in the south, and BCNP proper in the 
west. Surveys in the northern and central Everglades (hereafter 
“northern survey area”) were initially conducted by the National 
Audubon Society (NAS) through a contract with the South Florida 
Water Management District (SFWMD) (Hoffman et al. 1990, Ban-
croft and Sawicki 1995, Sawicki et al. 1995). Surveys in the BCNP 
(hereafter “western survey area”) were initially conducted by 
the Florida Fish and Wildlife Conservation Commission (FWC) 

Fig. 1.  Location of Everglades study areas and Systematic Reconnais-
sance Flights (SRF), with areas covered by the SRF indicated by cross-
hatching in the Everglades National Park (bold outline).
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(J. Schortemeyer, Florida Fish and Wildlife Conservation Com-
mission, pers. comm.). However, the U.S. Army Corps of Engi-
neers (USACE) now surveys both the northern and western survey 
areas (USACE, Vicksburg, Mississippi, unpubl. data), having as-
sumed survey responsibilities from the NAS in 1996 and from the 
FWC in 1998. The southern survey area has been continually sur-
veyed by ENP personnel since 1985 (G. J. Russell and K. M. Portier 
unpubl. data).

Transects oriented east–west were spaced 2 km apart 
throughout the surveyed region. For purposes of data organi-
zation and reporting, transects were subdivided longitudinally 
into 2-km segments. Georeferencing equipment (LORAN C or 
GPS) was used to assure consistency in line and segment location 
among surveys. A fixed-wing aircraft flying at 148 km h–1 ground 
speed follows the transects in alternating directions. Surveys are 
flown at a height of 61 m and strip width of 150 m per observer 
(left and right) for a total of 300 m. Aircraft altitude was variously 
identified as 45 m (D. M. Fleming et al. unpubl. data), 61 m (Hoff-
man et al. 1990, Bancroft and Sawicki 1995, Sawicki et al. 1995), 
and 90 m (G. J. Russell and K. M. Portier unpubl. data). 

Survey aircraft generally contained the pilot, two observers 
of wading birds, and a front-seat observer, whose responsibili-
ties were to record water surface conditions and other ancillary 
data and to monitor the location of the aircraft in relation to the 
transect. However, both the crew complement and individuals’ 
roles have varied through time and among survey areas. Observ-
ers recorded species, number, and location (longitude) of all wad-
ing birds sighted within the transect strips. Counts of Great Egret 
(Ardea alba), Great Blue Heron (A. herodias), White Ibis (Eudo-
cimus albus), Glossy Ibis (Plegadis falcinellus), and Wood Stork 
(Mycteria americana) were recorded. In the southern survey area, 
counts of Great White Heron (white morph of Great Blue Heron) 
and Roseate Spoonbill (Platalea ajaja) were also recorded. Indi-
viduals of smaller-bodied, dark-plumaged species were counted 
collectively in a “Small Dark Herons” class that included (depend-
ing on survey area) Tricolored Heron (Egretta tricolor), adult Lit-
tle Blue Heron (E. caerulea), Green Heron (Butorides virescens), 
Black-crowned Night-Heron (Nycticorax nycticorax), Yellow-
crowned Night-Heron (Nyctanassa violacea), and the dark phase 
of Reddish Egret (E. rufescens). Depending on the survey area, a 
class of “Small Light Herons” were counted that included Snowy 
Egret (E. thula), Cattle Egret (Bubulcus ibis), immature Little Blue 
Heron, and the light phase of Reddish Egret. During the surveys, 
observers also visually categorized the types of foraging habitats 
within the transect strips on the basis of estimated water depth 
and coverage. These surface water conditions were recorded in 
five categories—dry (DD), dry transitional (DT), wet–dry (WD), 
wet–transitional (WT), and wet (WW)—and used as covariates 
for modeling detection. 

Components of detection.—Before describing our dual-observer 
trials, we note that detection in the SRF (or other survey) has three 
components: (1) groups of birds are present in the sampling unit 
and available for detection, (2) present and available groups are 
detected by an observer, and (3) the number of birds present in 
each group detected is accurately counted. Let yi =� ���������������    ���������������   1 be the event 
that a group of birds present on sampling unit i is detected, yi = 0� 
be the complementary event that the group is missed, and pi = 
Prob(yi = 1������������������������������������������������������������           ) be the probability that the group is detected; as we will 

show, pi may depend on the number of birds actually present in the 
group, as well as other factors. Now, let Ci be the observed count 
of birds and Ni the number of birds actually present on the ith sam-
pling unit. Naive estimation of Ni using unadjusted counts Ci re-
quires the assumptions (1) that 100% of groups are detected (i.e., 
pi = 1) and (2) that groups detected are accurately counted (E(Ci) = 
Ni). We note that (assuming no species misidentification or mis-
assignment of species to class) the number of groups detected is 
some fraction of the available groups (pi ≤ 1����������������������������     ), but, in principle, it is 
possible to overcount (E(Ci) > Ni)������������������������      as well as undercount �(E(Ci) < Ni)� 
groups. Our study design was directed at the second of these com-
ponents (pi), group detection, but considers the group counts to 
the extent that the numbers of birds present in a group can poten-
tially influence group detection. We discuss the third component 
when we consider the implications of our findings, below. 

Dual-observer trials.—To evaluate visibility (detection) rates 
on the SRF, we designed dual-observer trials, which were flown 
by biologists from Everglades National Park during February and 
March 2004, in conjunction with the operational SRF (Fig. 1). 
We initially considered employing distance-sampling methods 
(Buckland et al. 2001) to estimate detection but rejected this ap-
proach as infeasible because of logistical difficulties of accurately 
classifying groups into more than two distance categories in 
flight. As with the SRF, 300-m (150 m per observer) fixed-width 
strip plots were flown; all flights were conducted at an altitude 
of 61 m. During these trials, one observer was seated in the right 
front seat (RF) and the other in the right rear seat (RR). Three ob-
servers (labeled observer E, L, or M) rotated between the front and 
back seat positions over the course of eight survey days. Training 
flights were conducted to familiarize the observers with survey 
protocol, species identification, and estimation of numbers. Ob-
servers independently recorded the number of birds detected by 
species via electronic recorders and did not communicate or oth-
erwise provide cues to one another. We matched observations of 
species groups between observers by synchronization of observa-
tion times, assuming that observations of the same species taken 
within 10 s (~400 m at aircraft speed) by two observers were of the 
same group of birds. Generally, observers agreed on the species 
identity for each group, but in cases where identity differed, we as-
sumed that the observers saw different groups. Most flocks were of 
a single species, but in cases where mixed flocks occurred, observ-
ers assigned identity to the predominant species, excluding groups 
that could not clearly be assigned to a species. Observers generally 
agreed closely on group size, especially for small (<10 individuals) 
groups, but in cases of major discrepancy (>25% disagreement in 
count), we assumed that different groups were detected. As noted 
below, group size was also used as a covariate to predict detection 
rates. The observations were used to construct group detection 
histories for nine species or species classes: Great Egrets (GREG), 
White Ibis (WHIB), Great Blue Herons (GBH), small dark herons 
(SDH), small white herons (SWH), Wood Storks (WS), Glossy Ibis 
(GI), Roseate Spoonbills (RS), and Great White Herons (GWH). A 
detection history contained an indicator digit for each observer-
position, “11” denoting detection by both observers, “10” by RF but 
not RR, and “01” by RR but not RF. A detection history of “00” oc-
curred if no groups for the species of interest were detected over 
a 10-s interval; however, as discussed below, these observations 
were not included in the analysis. 
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Statistical analyses.—Our statistical model is a special case 
of modeling detection via multiple independent observers (Wil-
liams et al. 2002). To model detection probability, we conditioned 
on detection by at least one observer. Thus, we modeled the effects 
of species, observer, and seat position via a conditional, single-trial 
multinomial, with event probabilities as
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where pi (j,k) is the probability of encounter of species i by ob-
servers j = o1, o2 in the front (k = 0) and rear (k = 1) seat positions, 
respectively, and

pi(·) = pi(o1,0)[1 - pi(o2,1���)] + ���[1 - pi(o1,0)] pi(o2,1) + pi(o1,0) pi(o2,1)�.

Additionally, we considered models in which probability of detec-
tion was influenced by group size and water conditions. Of course, 
we did not know actual group size Ni, but instead took as our co-
variate predictor observed size, Ci, as follows. First, we calculated 
Ci as the average of RF and RR observers’ counts when xi = 11������ , and 
as the count for the observer that detected the group otherwise. 
We then summarized the data by five group-size categories: Ci = 1��; 
1 < Ci ≤ 5������  ; ���� 5 < Ci ≤ 10�������  ; ����� 10 < Ci ≤ 50������ ; and Ci > 50����������������������    . Finally, we used re-
corded water conditions (five categories described earlier) as pre-
dictors potentially explaining variability in detection attributable 
to physical characteristics of the habitat. 

Our basic statistical model for detection probability was

logit( ), , , ,p Xspp obs pos group water = b

where
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-
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and where b is a vector of parameters to be estimated and X a de-
sign matrix representing main effects and interactions among 
factors considered. For example, the model “species + observer + 
position” specifying main effects of species identity, observer, and 
seat position would be expressed as 
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where b0 is an intercept, and b spp, b obs, b pos are the k – 1 coefficients 
corresponding to the k levels of each categorical variable. A fully 
interactive model for the above three factors (species*observer*
position) would be specified by the above model plus all second- 
and third-order interactions. Both water conditions and group 
counts were recorded in five categories, and we initially treated 
these factors as categorical variables in the models, as above. 

However, this treatment produced models with excessive num-
bers of parameters and poor convergence, and we therefore recast 
both factors as continuous variables, with water conditions on the 
original scale (1–5) and using the medians for each of the group-
size categories. We initially attempted to model these data using 
continuous counts but encountered problems with model conver-
gence and excessive computing time because of the large number 
of observations (>4,000 individual encounter histories vs. 411 his-
tories summarized by categories). We used this approach to con-
struct models incorporating each of these factors in combination 
with the categorical factors. For instance, a model incorporating 
fully interactive species*observer*position factors with an addi-
tive group-size effect would be 

logit(pspp,obs,pos) = logit(pspp,obs,pos) + bcount × count

where logit(pspp,obs,pos) is the fully interactive (main effects and 
all interactions) model described above and count is the median 
value for a group-size category. The global model was specified as 
the fully interactive model together with the main effects of group 
count and water conditions and the interactions of these two fac-
tors with all main effects and interactions of the species*observer*
position model.

The nature of our data precluded the use of existing capture–
recapture software (e.g., MARK) for fitting models relating bird 
detection to species and observation-specific characteristics (e.g., 
observer). Therefore, we fitted alternative models of wading-bird 
detection with Markov-chain Monte Carlo (MCMC; Gilks et al. 
1996), using information-theoretic criteria (Akaike 1973, Spiegel-
halter et al. 2002) to compare alternative models. Models were im-
plemented using PyMC, a module for the Python programming 
language (see Acknowledgments) that implements a random-walk 
Metropolis-Hastings sampler. Models were run for 20,000 itera-
tions and the initial 10,000 iterations were discarded as burn-in 
before analysis.

We used uniform prior distributions for all model parameters 
(Lambert et al. 2005, Gelman 2006). Because none of our models 
contained random effects, effective parameter size (Spiegelhalter 
et al. 2002) was not an issue. Therefore, for model selection, we 
used posterior mean deviances adjusted by the parameter count 
to compute Akaike’s information criterion (AIC) values and corre-
sponding model weights (Burnham and Anderson 2002). Akaike’s 
information criterion is an entropy-based measure used to com-
pare candidate models that describe the same data (Burnham and 
Anderson 2002), the best-fitting model having the lowest AIC. 

The goal of our modeling was to identify the most parsimoni-
ous predictive models, given our data. We began by constructing 
a global model based on previous investigations of bird detection 
(Bibby and Buckland 1987, Smith et al. 1995, Kendall et al. 1996, 
Kingsford 1999). We then fitted 12 candidate models (subsets of 
the global model) representing hypothesized effects of combina-
tions of factors on detection of wading birds. The relative plausi-
bility of each candidate model was assessed by calculating Akaike 
weights (w) as described in Burnham and Anderson (2002), the 
most plausible model having the greatest Akaike weight (range: 
0–1). Goodness-of-fit for the global model was evaluated using 
a Bayesian goodness-of-fit procedure proposed by Gelman et al. 
(1995). This measure computes the proportion of observations for 

Conroy_07-134.indd   734 7/22/08   12:27:00 PM



July 2008	 —  ���������������  ������� ���������Detection from Aerial Surveys��  —	 735

group size, and water conditions, using the best-fitting model es-
timated above. If a group was detected, we assumed that all mem-
bers were counted accurately. Abundance was then estimated as 
the sum of all birds detected by both observers. During the next 
time-step, the abundance changed, assuming a fixed population 
growth rate (λ) that varied with simulation scenario (Table 1). This 
population was then sampled using the same protocol with two 
randomly assigned observers. The process was repeated until the 
specified time-frame was reached (Table 1). We assume that trends 
in wading-bird populations through time are generally evaluated 
via linear (or similar) regression. Thus, the simulated actual and 
observed population trends were estimated by fitting a linear re-
gression model of the simulated actual and observed population 
size, respectively, versus survey year. The assessment of a trend 
was assumed when the P value for the regression slope was ≤0.10.

We evaluated the relative influence of population size, rate of 
population change, and number of years surveyed on the detec-
tion of population change by evaluating all possible combinations 
of three initial population sizes, nine population growth rates, 
and five survey durations (Table 1). For each scenario and species, 
we ran 1,000 replicate simulations and estimated (1) the trend as-
sessment rate, defined as correctly finding an actual positive or 
negative trend in population change; (2) the trend assessment 
error rate, defined as falsely finding a trend when none was pres-
ent or incorrectly determining the direction of an actual trend; 
and (3) the relative bias in the slope of the regression, which was 
estimated as the actual slope minus the observed slope.

Results

Detection estimation.—We successfully completed eight survey 
days with dual observers during February and March 2004. Sur-
veys generally commenced at ~0730 hours and were completed 
by ~1500 hours (EST). Front and back observers were paired 
throughout, rotating as previously described; however, in the first 
(morning) portion of the 3 March survey, data for the back seat 
were lost because of a recording error, and the front-seat observa-
tions were, therefore, excluded from analysis. We obtained 4,152 
detections (occasions where one or more birds were counted) by at 
least one observer, with frequencies of 1,373, 1,984, and 795 among 
the 01, 10, and 11 observer-position histories, respectively (Table 2). 
The most frequently detected species were Great Egret (2,424 de-
tections), and White Ibis (1,001), whereas the remaining seven 

which the deviance of the observed data exceeds the deviance of 
data simulated under the assumed model; under perfect model fit, 
this value is expected to be 0.5.

Because of the relative performance of the competing models 
(see below), we based all inferences and predictions on the model 
with the highest Akaike weight. The precision of each predictor 
was estimated by computing 95% credibility intervals, which are 
analogous to 95% confidence intervals. To facilitate interpreta-
tion of model parameters, we used the posterior distributions of 
parameter values from the best-fitting model to generate predic-
tions of wading-bird detection probabilities, as follows. First, for 
each combination of predictors (e.g., species, observer, position, 
group size, and water conditions), we drew parameter values from 
normal distributions, with mean and standard deviation specified 
by the posterior distribution of the parameter estimates. We then 
generated posterior predictions of wading-bird detection proba-
bilities for the best-fitting model by running an additional 10,000 
simulation iterations. 

Evaluation of effect of visibility bias on bird abundance 
trends.—We were concerned that incomplete and heterogeneous 
detection of birds during sampling might affect models of wading-
bird abundance and distribution and, hence, statistical inferences 
regarding population trends and bird distribution patterns. We 
evaluated the influence of incomplete detection by conducting 
relatively simple simulations of SRF sampling protocols using 
specified abundances and population growth rates for Great Egret 
and White Ibis. Each simulation began with a specified initial 
number of birds in the surveyed population, different for the two 
species. The simulated sampling crew consisted of two observers 
who counted during the entire sampling period, never changing 
from their randomly assigned rear seats with each observer count-
ing only birds on his side of the aircraft. The number of groups 
(flocks) of birds foraging during the survey was modeled as a func-
tion of the total number of birds in the population using an em-
pirical model parameterized using SRF survey data (Table 1). The 
number of birds per flock was randomly generated assuming (1) a 
negative binomial distribution with a mean equal to the popula-
tion size divided by the number of groups and (2) variance that 
was modeled as a function of the mean (Table 1). During sampling, 
individual groups of birds were randomly assigned to an observer. 
Then, detection of individual groups was randomly determined 
using a Bernoulli distribution with probability of success esti-
mated as a function of the observer, location (rear seat), species, 

Table 1.  Parameters used during simulation of SRF sampling protocols. The coefficients of determination (r2) values are for 
models fit to SRF data of observed bird counts and group sizes.

Simulation component Great Egret White Ibis

Initial population size 5,000, 7,000, 10,000 5,000, 10,000, 15,000
Population growth per year No change (λ = 1), increase or decrease 

  of 0.01, 0.03, 0.05, or 0.07
Number of years sampled 3, 5, 7, 9, 11
Number of groupsa 0.478 + 0.818*ln(population size),

r2 = 0.81
199.82 + 0.050*(population size),
r2 = 0.71

Variation in group sizeb 0.420 + 1.461*ln(mean group size),
r2 = 0.71

0.323 + 1.208*ln(mean group size),
r2 = 0.88

aEstimate for number of Great Egret groups required exponential transformation.
bVariation is expressed as a standard deviation and required exponential transformation for both species.

Conroy_07-134.indd   735 7/22/08   12:27:01 PM



736	 —  Conroy et al.��  —	A uk, Vol. 125

species or species groups accounted for 727 detections. Estimated 
size of detected groups ranged from 1 to 275, and average group 
sizes were greatest for Great Egret and Glossy Ibis. 

Examination of the MCMC goodness-of-fit measure in-
dicated that the global model adequately fit the data (Table 3). 
The top-ranked model of wading-bird detection included spe-
cies, observer, and seat-position interactive effects, with additive 
group-size effects (Table 3); this model accrued virtually 100% 
of the total AIC weight. We present the parameter estimates for 
the species × observer × position effects back-transformed to the 
original probability scale (Table 4); these estimates represent 
the intercept for the fully interactive model before the addition 
of the group-size effect (Table 4). Parameter estimates and pos-
terior predictions indicated substantial variation in detection 
among species, with Great Egret and White Ibis having higher 
predicted detection probabilities than other species (Fig. 2A). 
Detection probability also varied across observers and seemed 
to depend on position in the aircraft; detection of small flocks 
of Great Egrets was higher for observer M and in the front-seat 
position (Fig. 2B). Finally, predicted detection varied with group 
size, with increasing detection with increasing group sizes; 

however, we note that this analysis does not take counting inac-
curacies into account but, rather, assumes that observers per-
fectly counted a group if it was detected (Fig. 2C). 

Evaluation of effect of visibility bias on assessment of bird 
abundance trends.—Simulations of the effect of incomplete detec-
tion on the evaluation of wading-bird population trends indicated 
that the effects were similar among different initial population 
sizes and between species but differed depending on the rate of 
population change and numbers of years surveyed; correct as-
sessment of trends was positively related to the rate of population 
change and numbers of years surveyed (Fig. 3). Correct assessment 
rates were lowest for three survey years and were generally <60%, 
on average, across species and growth rates (Fig. 3). After seven 
years, correct assessment was 100% when population growth rates 
were relatively high (±5% and 7% per year), but ����������������� assessments������  were 
much lower for smaller growth rates. By contrast, false assessment 
rates were highest when population growth rate and number of 
survey years were low, and greatest under no population change 
(Fig. 4). The simulations suggest that false trend rates are as high 
as 10% even after 11 survey years for both species, under no popu-
lation change. 

Table 2.  Summarized detection histories by species for dual-observer detection trials.

Detection historya Group size

Species 01 10 11 Total detections Mean Standard error Range

Great Egret 745 1,093 586 2,424 1.77 2.34 1–75
White Ibis 348 485 168 1,001 6.88 18.87 1–275
Great Blue Heron 83 95 17 195 1.04 0.19 1–2
Small dark herons 40 49 5 94 1.57 1.08 1–6
Small white herons 77 145 2 224 1.49 1.50 1–15
Wood Stork 53 85 11 149 2.32 3.13 1–28
Glossy Ibis 12 13 2 27 4.24 5.05 1–20
Roseate Spoonbill 12 17 4 33 1.84 1.80 1–10
Great White Heron 3 2 0 5 1.00 0 1–1
Total 1,373 1,984 795 4,152

a01 = detected by second observer and not first; 10 = detected by first and not second; 11 = detected by both.

Table 3.  Akaike’s information criterion (AIC) values, AIC difference (ΔAICc), Akaike weights (wi), and number of parameters 
(K) for predicting wading-bird detection probabilities during Systematic Reconnaissance Flights (SRF) surveys. Akaike weights 
are interpreted as relative plausibility of each model (i).

Model AIC ΔAIC wi K

Species*observer*seat position + group size 8,366.63 0.00 >0.999 55
Species*observer*seat position 8,381.79 15.16 <0.001 54
Species + group size 8,408.54 41.91 <0.001 10
Species*observer*group size 8,414.77 48.15 <0.001 38
Species + observer + count + water + seat position 8,419.35 52.72 <0.001 17
Species*observer 8,423.61 56.98 <0.001 27
Species + observer + seat position 8,425.87 59.24 <0.001 12
Species*seat position*group size 8,453.94 87.32 <0.001 28
Species + observer 8,514.61 147.98 <0.001 11
Species 8,564.47 197.84 <0.001 9
Species*observer*seat position*group size 8,597.44 230.81 <0.001 109
Null (constant detection) 8,715.75 349.12 <0.001 1
Species*observer*group size*water*seat position a 10,931.95 2,565.32 <0.001 539

aGlobal model (Bayesian goodness-of-fit, P = 0.16).
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Table 4.  Parameter estimates (mean ± SE) and 95% credibility intervals (CI) for best-fitting model of wading-bird detection during Systematic Recon-
naissance Flights (SRF) surveys.

Parametera Species Observer Seat position Parameter estimateb, c 95% CI

Group size (β) 0.024 ± 0.006 0.012–0.036

P b Great  Egret E Front 0.407 ± 0.024 0.360–0.449
Rear 0.398 ± 0.019 0.361–0.436

L Front 0.384 ± 0.025 0.337–0.435
Rear 0.280 ± 0.017 0.246–0.311

M Front 0.465 ± 0.021 0.426–0.511
Rear 0.318 ± 0.022 0.272–0.358

White Ibis E Front 0.243 ± 0.032 0.177–0.301
Rear 0.244 ± 0.025 0.186–0.291

L Front 0.230 ± 0.027 0.171–0.274
Rear 0.176 ± 0.026 0.127–0.222

M Front 0.375 ± 0.036 0.294–0.442
Rear 0.278 ± 0.034 0.186–0.336

Great Blue Heron E Front 0.210 ± 0.064 0.106–0.338
Rear 0.201 ± 0.056 0.112–0.368

L Front 0.130 ± 0.059 0.035–0.254
Rear 0.230 ± 0.062 0.128–0.338

M Front 0.246 ± 0.052 0.137–0.329
Rear 0.093 ± 0.045 0.024–0.219

Small dark herons E Front 0.176 ± 0.070 0.066–0.321
Rear 0.139 ± 0.045 0.063–0.229

L Front 0.085 ± 0.056 0.013–0.219
Rear 0.362 ± 0.078 0.242–0.508

M Front 0.236 ± 0.070 0.095–0.358
Rear 0.110 ± 0.073 0.017–0.261

Small white herons E Front 0.082 ± 0.044 0.016–0.177
Rear 0.030 ± 0.011 0.013–0.054

L Front 0.027 ± 0.018 0.003–0.072
Rear 0.188 ± 0.076 0.041–0.321

M Front 0.284 ± 0.065 0.162–0.412
Rear 0.069 ± 0.044 0.009–0.180

Wood Stork E Front 0.143 ± 0.081 0.032–0.301
Rear 0.109 ± 0.035 0.054–0.185

L Front 0.178 ± 0.072 0.059–0.302
Rear 0.162 ± 0.082 0.043–0.304

M Front 0.270 ± 0.064 0.150–0.404
Rear 0.094 ± 0.036 0.031–0.163

Glossy Ibis E Front 0.405 ± 0.201 0.039–0.699
Rear 0.272 ± 0.083 0.153–0.436

L Front 0.084 ± 0.059 0.005–0.205
Rear 0.514 ± 0.115 0.342–0.707

M Front 0.521 ± 0.093 0.372–0.679
Rear 0.161 ± 0.068 0.030–0.326

Roseate Spoonbill E Front 0.526 ± 0.183 0.248–0.838
Rear 0.131 ± 0.049 0.028–0.246

L Front 0.459 ± 0.093 0.292–0.684
Rear 0.501 ± 0.060 0.398–0.636

M Front 0.190 ± 0.068 0.045–0.303
Rear 0.454 ± 0.201 0.138–0.699

Great White Heron E Front 0.448 ± 0.106 0.303–0.644
Rear 0.234 ± 0.123 0.029–0.441

L Front 0.116 ± 0.081 0.005–0.299
Rear 0.610 ± 0.162 0.335–0.808

M Front 0.583 ± 0.171 0.191–0.813
Rear 0.341 ± 0.123 0.135–0.541

aModel predicts detection as logit(p) = logit(pspp, obs, pos) + β × count, where count is median group size in each of five categories: C = 1; 1 < Cij ≤ 5; 5 < C ≤ 10; 10 < C ≤ 
50; and C > 50 and logit(pspp, obs, pos), a fully interactive species × observer × seat-position model. 
bParameter estimate is intercept of fully interactive (species × observer × position) model back-transformed to probability scale.
cMean, SE, and 0.025 and 0.975 quantiles of posterior distribution for each parameter. 
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An evaluation of the bias in the parameter estimates indi-
cated little variability with initial population size (<10%) and num-
ber of survey years (Fig. 5). Observed estimates of the magnitude 
of the population change (i.e., the slope) were always lower than 
the true change, and the magnitude of the bias varied with popu-
lation growth rate. When annual changes in population size were 
greatest (λ = 0.93 and 1.07), the observed slope underestimated the 
true rate of change, on average, by 0.035 and 0.021 for Great Egret 
and White Ibis, respectively. This represented 50% and 30% un-
derestimates of the true population trends, respectively. In addi-
tion, the bias in slope estimates tended to increase with increased 
number of simulation years under scenarios with large changes in 
population growth rate. 

Discussion

Our dual-observer trials indicated that detection probabilities for 
aerial surveys of wading birds that follow procedures similar to the 
SRF may be lower than previously suggested. Hoffman et al. (1990) 
estimated that detection rates for wading birds in the SRF were 

~0.85. However, Russell and Portier (unpubl. data) estimated de-
tection rates of 0.54 for “large dark birds” and 0.26 for “large white 
birds.” Our data indicate rates of 0.4–0.6, or even much lower, de-
pending on species and other factors, and are certainly more in 
agreement with the estimates of Russell and Portier (unpubl. data). 

With few exceptions, previous estimates of detection of birds 
from aerial surveys have been based on indirect evidence, such as 
comparison of aerial counts to other methods (e.g., ground ob-
servers) of unknown accuracy. Johnson et al. (1989) used indepen-
dent observer trials and distance sampling to estimate detection 
probabilities as low as 0.16 for surveys of Mottled Ducks (Anas 
fulvigula) from fixed-wing aircraft. Smith et al. (1995), using ex-
periments involving Mallard (A. platyrhynchos) decoys, inferred 
that detection probabilities varied from <0.3 to >0.7, principally 
because of differences in canopy cover. Bromley et al. (1995), Dodd 
and Murphy (1995), Rodgers et al. (1995), Kingsford (1995), and 
Frederick et al. (2003) used comparison of aerial to ground counts 
to infer detection probabilities ranging from 0.20 to 0.98, with 
wide variation attributable to species, group size, specific survey 
techniques, habitat, and bird behavior. However, Rodgers et al. 

Fig. 2.  Predicted detection probabilities (95% credibility intervals) in relation to selected combination of species, observer, position of observer in 
aircraft, and group size from dual-observer trials. (A) Detection in relation to species or species group, conditioned on observer M, front position t, 
and 1 < flock size ≤ 5. (B) Detection in relation to observer and position in aircraft, conditioned on species = Great Egret and 1 < flock size ≤ 5. 
(C) Detection in relation to group size for Great Egret and White Ibis, conditioned on observer M and front position. 
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Fig. 3.  Proportion of simulations that assessed the correct population trend by number of simulated sampling years, using linear regression and λ = 
0.10 for simulated positive (solid line and symbols) and negative (broken line, open symbols) changes in annual population growth of 0.07 (square), 
0.05 (diamond), 0.03 (circle), and 0.01 (triangle), and for no change (asterisk) and three initial population sizes for Great Egret (left) and White Ibis 
(right). Proportion based on 1,000 simulations of two randomly assigned rear observers during Systematic Reconnaissance Flights surveys.

Conroy_07-134.indd   739 7/22/08   12:27:12 PM



740	 —  Conroy et al.��  —	A uk, Vol. 125

Fig. 4.  Proportion of simulations that falsely assessed a population trend by number of simulated sampling years using linear regression and λ = 0.10 
for simulated positive (solid line and symbols) and negative (broken line, open symbols) changes in annual population growth of 0.07 (square), 0.05 
(diamond), 0.03 (circle), 0.01 (triangle), and no change (asterisk) and three initial population sizes for Great Egret (left) and White Ibis (right). Propor-
tion based on 1,000 simulations of two randomly assigned rear observers during Systematic Reconnaissance Flights surveys. False assessments were 
defined as determining a significant decrease in population size (a = 0.10) when there was a simulated increase and vice versa.
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(1995) and Kingsford (1999) found aerial-to-ground count ratios 
>1, suggesting that in some cases ground counts may be less ac-
curate than aerial counts. Our estimates, based on methods that 
do not depend on comparison to counts that are assumed to be ac-
curate, are generally consistent with these previous estimates and 
confirm that detection of birds from aircraft is influenced by mul-
tiple factors, many beyond investigator control. 

The dual-observer trials and accompanying statistical model 
required us to make several assumptions, violation of which could 
affect the validity of our results. First, the method requires the as-
sumption that all observations were correctly classified into de-
tection histories. At best, this was only approximately true, and 
classification errors could have arisen because of observer dis-
crepancies in recording times, species identification, or group 
size. Because we considered a detection history to be “11” only if 

these variables closely agreed for the two observers, it is possible 
that our analysis underestimates overall detection probability. We 
believe that errors in these factors would likely have only a small 
biasing effect and, in any case, we have no reason to suspect any 
systematic trends in errors; thus, inferences about factors influenc-
ing detection rate should be unaffected. Secondly, we must assume 
that the observers operated as independent detection trials, so that 
one observer’s detection did not influence the other’s. Because the 
observers were physically separated (front versus back seat), used 
separate recording devices, and were not in direct, voice commu-
nication during the trials, we believe that this assumption was met. 
Finally, we assumed that factors used as covariates to predict de-
tection, such as species, observer identity, seat position, water con-
ditions, and group size, were assessed and recorded accurately. Of 
these, the only factors for which non-negligible errors may have oc-
curred were species identity and group size. However, because we 
used only data for which there was close agreement in these factors, 
we believe that these potential errors were also minimal. 

We illustrate the effect of nondetection on naive estimation of 
abundance for White Ibis and Great Egret, using the mean poste-
rior baseline value for P from Table 4, the mean posterior estimate 
for βgroup, and two levels of group size: 7.3 birds per group (the aver-
age over the study for all species) and 50 birds per group (the median 
count in the highest group-size category) (Table 5). We assume that 
observers detect the 100 groups in the surveyed population at the 
predicted rate, and we apply the average group size to an estimate of 
abundance on the surveyed area. Naive estimation results in substan-
tial (25–80%) underestimation, depending on species, survey condi-
tions, and group size. A natural approach would be to obtain unbiased 
estimates of abundance; for example (Williams et al. 2002),

ˆ
ˆ

N
C
pi

i

i
=

provides an approximately unbiased estimate of abundance on the 
ith sampling unit, given an uncorrected count (Ci) and an estimate 
of detection ( p̂i). In practice, unbiased abundance estimation could 
be accomplished via direct incorporation of abundance as a poste-
rior prediction, after accounting for appropriate sources of varia-
tion in detection. 

Under-detection of birds from aerial surveys would be less of 
a concern if detection rates were constant (Williams et al. 2002). 
Unfortunately, our results strongly suggest that this assumption 
is invalid. We found that detection varied substantially among 
species, flock sizes, and observers. Use of aerial-survey data for 
comparative purposes and modeling must take into account 
that detection varies by species, in relation to group size (smaller 
groups tend to be missed more frequently) and operational issues 
(observer identity, position of observer in the aircraft). Many other 
controllable (e.g., aircraft altitude) and uncontrollable (e.g., year 
effects) factors that we were not able to examine may also affect 
detection rate. To the extent that these factors are unaccounted-
for, caution should be exercised in interpreting comparisons 
based on raw counts from aerial surveys. In particular, compar-
ing species with greatly different detection rates, combining data 
across species, and inferring habitat quality through comparisons 
of foraging-group size distributions are each likely to be biased by 
heterogeneous detection (Williams et al. 2002). Although, under 
certain conditions, uncorrected counts may be useful as indices 

Fig. 5.  Estimated bias in population trend (averages across initial popula-
tion sizes) using linear regression by number of simulated sampling years 
for simulated positive (solid line and symbols) and negative (broken line, 
open symbols) changes in annual population growth of 0.07 (square), 
0.05 (diamond), 0.03 (circle), and 0.01 (triangle) and for no change (as-
terisk) and three initial population sizes for Great Egret (top) and White 
Ibis (bottom). Bias is estimated as known parameter estimate (population 
growth rate) minus simulated observed estimate. Proportion based on 
1,000 simulations of two randomly assigned rear observers during Sys-
tematic Reconnaissance Flights surveys.
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(Williams et al. 2002), we suggest that those conditions are lim-
ited. For example, heterogeneity among species in detection rates 
might be unimportant in estimating trends for single species, if 
other sources of heterogeneity (e.g., those attributable to observer 
position and group size) could be controlled. However, managers 
are often interested in compositional variation in bird commu-
nities, in which case, heterogeneous detection among species, if 
uncorrected, would be totally confounded with even relative mea-
sures of species composition (Williams et al. 2002). Rather than 
imagining scenarios under which uncorrected counts could be 
valid indices, we prefer appropriate sampling and estimation pro-
cedures that avoid untestable assumptions.

Our simulation modeling also suggested that incomplete de-
tection can lead to large biases in model parameter estimates using 
data that have not been corrected for detection. This was apparent 
in even simple models of population trends; the effects would be 
even more profound in models designed to estimate and predict 
the influence of physical and biotic factors on wading-bird abun-
dance and distribution. Only under the most fortuitous circum-
stances would incomplete, heterogeneous detection have a neutral 
effect on model parameters and predictions. We can easily envis-
age situations in which detection rates could interact with physi-
cal or biotic predictors in a form of “demonic intrusion” (Hurlbert 
1984) that either masks true relationships or creates apparent (but 
nonexistent) ones.

Our simulations were simplifications of the sampling pro-
cess that did not include all the factors that are likely to affect 
population estimates. That is, our dual-observer experiments 
could address only factors that affect the detection of groups of 
birds and did not address the accuracy of counting for groups 
that are detected. Under- or over-counting of groups, obviously, 
would bias estimates of abundance, even if group detection were 
100%; therefore, our estimates of detection may, in fact, be op-
timistic assessments of the accuracy of aerial-survey counts 
as abundance measures. For example, we assumed that all the 
birds in a group were counted if a group of birds was detected, 
whereas previous studies suggest that counts of birds can be off 
by as much as 70% (Frederick et al. 2003). Nonetheless, the simu-
lations indicated that incomplete detection can have a substan-
tial effect on the detection of population trends, particularly at 

relatively short intervals (≤3 years) and small changes in popu-
lation size. Given the effect of sampling error (i.e., random vari-
ation) on detection of population trends (Thompson 2002), we 
expect that detection of actual trends with data similar to the 
SRF counts would require longer intervals and larger changes in 
actual population sizes. 

To minimize the influence of visibility bias on estimates of 
population change, methods for adjusting bird counts should be 
developed to ensure sound management decisions. One method 
of developing bias adjustments is through calibration of aerial sur-
veys. This can be accomplished by comparing aerial counts with 
presumably more accurate counts, such as ground counts (Fred-
erick et al. 1996, Kingsford 1999), boat counts (Conant et al. 1988), 
aerial photographs or videography (e.g., Dodd and Murphy 1995), 
and dual-observer sampling (present study) and through the use 
of known numbers of surrogates (e.g., duck decoys; Smith et al. 
1995). Evaluations should be conducted under a variety of sam-
pling conditions encountered in the study area and adjustments 
developed by relating the relative difference in counts to species 
traits and to sampling conditions such as water level. 

Finally, technical limitations on the dual-observer experi-
ments and data recording leave the possibility that some “detec-
tion histories” were misclassified, which, conceivably, could result 
in underestimation of detection. We doubt that such conditions 
were common enough to substantially influence our results, par-
ticularly our modeling of sources of variation in detection rates. 
Nevertheless, we suggest replication of these experiments, over a 
larger span of spatial and temporal conditions and with improved 
technology for classifying detection histories. Indeed, estimation 
of detection—by dual-observer experiments, ground calibration, 
or other means—could be incorporated into operational surveys 
via a double sampling design (Thompson 2002), in much the same 
way as is done for surveys of waterfowl (Pospahala et al. 1974, 
Smith 1995).
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Table 5.  Predicted effect of incomplete detection on naive estimation of abundance for Great Egrets and White Ibis. 
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L Front 43 313.9 67 3,350
Rear 32 233.6 56 2,800

M Front 51 372.3 74 3,700
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White Ibis E Front 28 204.4 51 2,550

Rear 28 204.4 51 2,550
L Front 26 189.8 49 2,450

Rear 20 146 41 2,050
M Front 42 306.6 66 3,300

    Rear 31 226.3 56 2,800

aDetected number of groups × average group size.
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