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Habitat relationship models (e.g., Verner et al.
1986b; henceforward habitat models) purport to
establish a quantitative relationship between measures
of the physical and vegetation characteristics of a
habitat (Morrison and Hall, Chapter 2), including
vegetation composition, structure, and spatial
arrangement of surrounding habitats, and the pres-
ence or absence, abundance, or persistence of one or
more species in a landscape (Morrison and Hall,
Chapter 2). With the rapid development of geographic
information systems (GIS) and associated computing
algorithms, it is now possible to encode mathematical
rules describing presumed habitat-population relation-
ships and to rapidly perform complex analyses of the
predicted impacts of various arrangements of land
cover and vegetation characteristics. For instance, pre-
sumed habitat-species occurrence relationships are a
crucial part of gap analysis (Scott et al. 1993), as well
as forest-planning tools such as FORPLAN (Johnson
et al. 1980).

In this chapter, we review some approaches used to
evaluate the accuracy and predictive ability of habirat
models. We suggest that standard model validation
approaches are ambiguous and that assessment of the
reliability of habitat models is most meaningful when
models are a part of formal optimization procedures
in which management actions are selected so as to

achieve a specific, quantitative objective. Decision the-

Wildlife Habitat Modeling in an Adaptive
Framework: The Role of Alternative Models

Michael ]. Conroy and Clinton I. Moore

oretical methods allow for the incorporation of
sources of uncertainty in this process, one of which is
model reliability. Finally, we think that most conserva-
tion decisions are based on a relatively small number
of assumptions about ecological pattern and process,
and that formal consideration of models based on al-
ternative assumptions is needed. Habitat models can
be thought of as tools for translating alternative as-
sumptions into testable predictions, and management
can be thought of as the means of providing the ex-
periment under which model predictions can be tested
and models and decisions adaptively improved.

Assessing Model Reliability

It is not our intent to provide an exhaustive review ei-
ther of model assessment in general or of habitat mod-
els in particular. Nonetheless, several commonly
agreed-upon principles will be relevant to the ensuing
discussion. Model parameterization, verification, and
calibration (Morrison and Hall, Chapter 2) are all
critical parts of model development (Conroy et al.
1995). In practice, each of these steps, even if taken,
may be inadequate to assure a model’s reliability. For
example, model verification demonstrates neither the
truth nor the usefulness of a model, only the model’s
internal consistency; thus, a verified model may
nonetheless be inadequate for management if it is
based upon faulty assumptions or logic. Likewise,
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statistical estimates of model parameters often cannot
be obtained, especially when key model states or pa-
rameters simply cannot be observed, as is frequently
the case for highly parameterized models (e.g., spa-
tially explicit population models; Conroy et al. 1995;
Dunning et al. 1995; Pulliam et al. 1992). One ap-
proach is to use values based on general knowledge or
assumptions about the animal’s life history, which are
then adjusted so as to provide overall model agree-
ment with observations. However, the resulting pa-
rameter values are not bona fide statistical estimates,
are likely not unique, and may not have biological
meaning. A more serious concern is the likelihood that
prediction beyond the range of data used to calibrate
the model, frequently necessary in management, may
prove unreliable.

Regardless of the method of model calibration,
there remains the issue of whether the model will in
fact be useful for making management decisions (Van
Horne, Chapter 4). Validation (Morrison and Hall,
Chapter 2) probes beyond whether the model appears
reasonable, and fits data; it also examines how well
the model might perform under conditions different
from those in which the model was constructed. How-
ever, validation can be difficult in practice, for several
reasons. First, statistical uncertainty in the data, im-
precision in model predictions, or both may result in
low power of statistical validation tests to discrimi-
nate between observations and predictions (Mayer
and Butler 1993). Thus, failure to reject the null hy-
pothesis that the model and data agree is weak sup-
port in favor of the model; in fact, it might simply be
an artifact of insufficient sampling effort. Second, field
measurements must be of appropriate resolution to
validate a habitat model. Consider an artificial
example of a species existing in a landscape containing
three habitat types, each with different predicted val-
ues (under a habitat model) for the species, depending
on the habitat quality (Morrison and Hall, Chapter
2): high (predicted number = 2/10 hectares), marginal
(predicted number = 1/10 hectares), and low (pre-
dicted number = 0/10 hectares) (Fig. 16.1a). Suppose
we are capable of exactly enumerating the population
in each 10-hectare block, and we observe one animal
in each block. Under this scenario, we would have ob-
tained a poor correspondence between the model pre-

dictions and observations, with the numbers agreeing
in only 44 percent (six of sixteen) of the comparisons.
We would probably conclude that this model was “in-
valid,” or in other words was a poor representation of
the relationship between habitat and abundance. Sup-
pose instead that we were only capable of counting
the total number of animals on each 40-hectare block
(but could do so without error) and were incapable of
assigning these counts to habitats other than the array
of habitats occurring in each 40-hectare block (Fig.
16.1b). Under this scenario, we would have 100-
percent agreement between the model predictions and
observations and might be inclined to consider this a
valid model.

The above artificial example, while highly con-
trived, illustrates the point that the selection of the
spatial scale is a subjective matter (Trani, Chapter 11)
but one that may strongly influence the outcome of
model validation (Laymon and Reid 1986; Elith and
Burgman, Chapter 24). Reliance upon presence/
absence statistics in lieu of counts is another form of
coarsening of the data that may result in apparent
concurrence between model and data when finer reso-
lution of the latter may have resulted in model rejec-
tion. At an even finer resolution, predictions based on
abundance or density alone will be inadequate for val-
idating source-sink or other models in which habitat
quality cannot be inferred from density, regardless of
spatial scale (Pulliam 1988; Van Horne 1983; Conroy
and Noon 1996; Maurer, Chapter 9).

Sensitivity analysis (Morrison and Hall, Chapter 2)
is often advocated as a practical alternative to true
validation. However, these arguments are frequently
not convincing, particularly if a model is to be used in
decision making. Rather than assuring decision mak-
ers of the robustness of the model and of GIS, insensi-
tivity to input errors should be a warning that the
model also may be insensitive with respect to making
predictions. For some applications, it may be sufficient
that the model is capable of ordering alternative man-
agement actions, with respect to their relative impact
on the resource objective (Hamilton and Moller
1995). However, we are less sanguine than Hamilton
and Moller (1995) about even this utility for models
and instead propose that unverified assumptions and
unreliable parameter values may render as unreliable
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Figure 16.1. Hypothetical comparison between predictions of a simple landscape model and observations under a null model of no
habitat affinity; cell values represent predicted and observed counts (a) by 10-hectare block, (b) by 40-hectare block.

even ordinal statements about the relative impacts of
various management alternatives; an example of how

this might occur follows.

The Role of Alternative Models

As seen in the previous section, validation of habitat
models presents serious methodological challenges.
However, validation alone cannot resolve whether the
model under consideration is superior to a plausible al-
ternative model, in particular, a model that may imply
a different course of management. We address this
issue in a more appropriate decision-making context.
Assume that we have a model (M) and an alternative

model (M’), and that both models are plausible, that
is, at least some theoretical or empirical support exists
for each (e.g., Pascual et al. 1997). It may be that we
have performed model validation tests and both mod-
els are valid (i.e., neither model is rejected in compari-
son to the data available). A natural question for a de-
cision maker is: what difference will it make to my
decision if I place full faith in model M versus if I place
full faith in model M"?

A simple illustration can be used to make this point
by returning to the artificial example in Figure 16.1.
Suppose that M corresponds to the model predicting
that the species has specific affinities, as predicted by
the map in Figure 16.1a (“Predicted”) and that model
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M’ corresponds to the situation in Figure 16.1a (“Ob-
served”) in which the species is distributed perfectly
evenly among the sixteen 10-hectare blocks. Clearly,
belief in one or the other of these models will make a
difference in how habitats should be managed. Under
the M scenario, management presumably would be di-
rected toward certain habitats—in other words those
that are preferred by the species, assuming a goal of
conserving this species. Under the M’ scenario, man-
agement favoring these habitats would appear to be
unwarranted, particularly given that such manage-
ment would no doubt have inherent costs (e.g., trade-
offs with other objectives). Clearly, from the stand-
point of decision making, injudicious choice of the
spatial scale for model prediction might potentially re-
sult in a critical loss of information.

Note that, depending on the scale at which obser-
vations are made, the models are both valid and
therefore equally plausible (Fig. 16.1b), or one model
appears to have more empirical support than the
other (Fig. 16.1a). Thus, the usual approach for
validation—of comparing predictions with independ-
ent observations—may be indeterminate, depending
on the scale chosen. Also, note that sensitivity analy-
sis contributes little to the resolution of model uncer-
tainty. The fact that either model, or both, depending
on the spatial scale, is relatively more or less sensi-
tive to changes in parameter values sheds no light
upon the question of which (if either) model will bet-
ter inform decision making.

Decision Making under Uncertainty

If habitat or other models are to be useful to man-
agers, they must be capable of making predictions
about the consequences of management decisions that
are better than the educated guesses that managers
would make on their own in the absence of models.
The fact that mathematical algorithms can join to-
gether hundreds or thousands of habitat models and
rapidly display the results using GIS should be small
comfort if critical model components are poorly sub-
stantiated by evidence (Van Horne, Chapter 4). Even
in those cases where models seem to do a reasonable
job of prediction, our earlier discussion should con-
vince readers of the risks of blind application of valid
models to decision-making problems.

On the other hand, we recognize that decisions
must be made and that imperfect models, validated at
inappropriate scales of resolution, or perhaps not at
all, may be all that are available. Even under ideal cir-
cumstances, assumptions about biological mechanisms
will not be perfectly understood, and thus it will not
be possible to make unambiguous predictions about
the impacts of management decisions whether or not
models are used to make these predictions. Obviously,
biological systems, even if well understood, are subject
to intrinsic variability, but of special concern here is
what we term structural uncertainty. That is, more
than one mechanism (or model) might plausibly ex-
plain and predict the potential response of the system
to management, and we are uncertain as to which is
better for a given management goal. Formally, we are
faced with making a decision or action, a, from a set
» Aul.
Any decision we make will result in an outcome that

of possible or feasible decisions a € {ay, a3, . . .

will have a value to us, which we will denote as #(a).
This value may be in terms of species conservation,
economic gain, or perhaps a tradeoff between one or
more goals (e.g., species conservation versus economic
gain). Assuming that such an objective value can be
ascertained or agreed upon, a rational decision maker
(Lindley 1985) will seek to select that decision that
will result in the greatest value for the objective. How-
ever, uncertainty exists as to what the actual objective
value or utility will be for any decision. First, consider
uncertainty induced by environmental or demographic
variability. Let E[u(al0)] represent the average or ex-
pected value or utility of decision a, assuming that a
particular model or parameter value (represented by
0) is known to be true. This value is obtained by aver-
aging over the statistical distribution of uncertain out-
comes x resulting from each possible decision a

Elu(al®)] = !r;(alr; 0) f(xl0)dx

fora € {ay, a3, ...,a,)

where u(alx; 0) is the value of decision a given out-
come x under model 6 and f(x10) is a statistical distri-
bution of these outcomes, where 8 is assumed known.

Until this point, we have assumed that the model
(as expressed by f(x10)) is correctly specified, and that
any deviations of model predictions from outcomes
must be due to environmental or demographic factors.
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Here we switch our focus to structural (model) uncer-
tainty. Let p(6;) represent a probability distribution re-
flecting our uncertainty in 8, which takes on values
On i 15 s
This uncertainty may include statistical error, but

, m under each of m alternative models.

more generally includes bias due to incorrect model
assumptions. The average value of the decision is now

Elu(a))= Y. [u(alx:0,) p(0,)f(0,)dx o

fora€ {a;, a,, ...,q,}

Z p(6) = 15 when 6 is continuous, the summation op-
erator changes to integration over 6. By definition,
the optimal decision satisfies

max Elula))

and must be found by averaging over the uncertain en-
vironmental and demographic conditions (i.e., values
of x) and structural uncertainty (i.e., values of 8). Ig-
noring either source of uncertainty will result in sub-
optimal decision making. Conversely, reduction of ei-
ther source of uncertainty will improve decision
making. Obviously, there is little that can be done
about environmental and demographic uncertainty,
beyond including components of each in the decision-
making model.

On the other hand, structural uncertainty can be re-
duced, theoretically to zero, if additional information
(data) can be obtained that places higher probability
on certain model structures (values of 0) than on oth-
ers. We describe below how this source of uncertainty
can be reduced via adaptive management. For now,
we focus on the impact of structural uncertainty on
decision making. Consider a case where an optimal
decision a is sought, and consider only the average re-
sponse across environmental and demographic condi-
tions, assuming that a given model of ecological
processes is true. Suppose that there are two alterna-
tive models of this process, which we shall label 8,
and 0,, and that our degree of belief in each model is
p(0y) and p(6,) = 1 - p(6;), respectively. The expected
value of any candidate decision a, taking into account
only structural uncertainty, is

E[u(a)] = ulal®y)p(8;) + u(ald;)p(6;).

Clearly, structural uncertainty exists any time that
0 < p(6;) < 1. However, notice that this uncertainty is
only important in the decision-making process to the
extent that the values of the resulting decisions would
be different, or in other words

u(alfy) # u(ald;).

Conversely, if the models predict the same outcome
for any given decision, or if that outcome is equally
valued to the decision maker, then uncertainty about
the ecological process is not relevant to the decision
process. This can be illustrated by a simple numerical
example. Suppose that for each of the above two
model structures we obtain values for decision a of
u(al®;) = 4 and u(alB;) = 7. Suppose that there is a
competing decision, a’, for which the corresponding
values are #(a’18;) = 6 and u(a’10;) = 4. If there is com-
plete uncertainty about which model correctly de-
scribes the process, then p(68;) = p(6;) = 0.5 and the
values for each decision are given by

E[u(a)] = 4(0.5) + 7(0.5) = 5.5
and
E[u(a’)] = 6(0.5) + 4(0.5) = 5.

Therefore, the optimal decision is a. Suppose how-
ever that additional knowledge accumulates (e.g.,
from a monitoring program carried out on the man-
aged system) so as to place more faith in model 1,
such that p(8;) = 0.8. Now the decision values are

E[u{a)] = 4(0.8) + 7(0.2) = 4.6
and
E[u(a’)] = 6(0.8) + 4(0.2) = 5.6

and the optimal decision is now a’. This approach
thus places the issue of model reliability (and its reso-
lution) squarely in the context of optimal decision
making. That is, we are no longer comparing a single
model to an arbitrary measure of accuracy but instead
are asking which decision should we make given two
or more plausible models and an assessment of rela-
tive belief in each model. In some cases (e.g., where
theory or data provide justification), we may be justi-
fied in giving one model more weight; in others (e.g.,
either model is theoretically justifiable, and both seem
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valid given current data), we may not. In either in-
stance, we have an objective means for making a deci-
sion, taking into account model uncertainty.

Adaptive Management

As shown above, model uncertainty must be consid-
ered, along with other sources of uncertainty, in mak-
ing optimal conservation decisions. Because our
knowledge of systems will always be imperfect, and
parameters will always be estimated with error, model
uncertainty can never be eliminated. However, model
uncertainty can and should be reduced. One method
to reduce model uncertainty is adaptive optimization,
as incorporated as a part of adaptive resource man-
agement (Walters 1986). The basic steps of adaptive
optimization are

1. Define a resource objective (e.g., species conserva-

“ tion, as above)

2. Delineate a set of feasible management alternatives
[a‘[, A2y o vy a,,}

3. Develop models 8 € (6,0 ,, 63, . . ., 6,,} that pre-
dict the impact of the decision on the objective

4. Identify and quantify the relevant sources of uncer-
tainty in (3)

5. Implement the decision that appears to be optimal
given (4)

6. Compare predictions under each model to data (x)
collected following management

7. Compute a likelihood L(x10) for each model given
these data; these likelithoods reflect the relative
agreement of the observed data to the predictions
of each model

8. Update the model probabilities from Bayes’ Theo-

rem

p(6,)L(xl0,)
p':B;LI] :ZP(B;)L(EIBJ}‘ Bj € [eh 929 Ty 9»:’}: {IGZJ
I=1

where p(6, | x) is the posterior probability of 6,
conditioned on having observed the data x

9. Incorporate these new model weights in prediction
and decision making at the next decision opportu-
nity

Thus, adaptive resource management provides a
mechanism for feedback of information following

management, which in turn reduces model uncertainty
and promotes further understanding of system
processes. Because of the long-term nature of many
conservation problems, that feedback may be slow or
may not occur at all at a given location (e.g., once a
reserve is built, there will likely be little interest in re-
visiting the decision). However, knowledge gained
through monitoring one system should inform future
decision making in similar systems. In other conserva-
tion problems, for instance those involving forest cut-
ting practices, decisions may be regularly revisited and
the information gained from one decision cycle will
provide direct feedback for future decision cycles.

Case Study: Habitat Management for
Population Persistence under Uncertainty

We illustrate the above principles with an example of
landscape management in which the objective is the
maintenance of populations of two forest species. The
two species have resource needs that pose a potential
conflict for management in the sense that provision of
resources for one species may remove resources for the
other. This example, although hypothetical, is similar to
a problem we are currently investigating involving for-
est management in the Piedmont National Wildlife
Refuge (PNWR) in central Georgia. At PNWR, a pri-
mary management emphasis is that of maintaining vi-
able populations of the endangered red-cockaded
woodpecker (Picoides borealis, henceforth woodpeck-
ers), with the long-term goal of tripling the 1998 refuge
population (Richardson et al. 1998). However, concern
exists that aggressive management favoring woodpeck-
ers, including maintenance of low densities of under-
story and midstory vegetation via prescribed burning,
may adversely affect species of birds and other organ-
isms that depend on these vegetative strata for shelter,
foraging, or nesting. Previous research (Powell et al.
2000) has addressed the specific concern that wood-
pecker habitat management reduces fitness of the wood
thrush (Hylocichla mustelina, henceforth thrushes) as
measured by adult and juvenile survival and reproduc-
tion rates. Results to date suggest that woodpecker
management, at least as currently practiced at PNWR,
has minimal if any impact on thrush fitness. How-
ever, this system exhibits great spatial and temporal
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variability in demographic parameters, which together
with estimation error induces uncertainty in these con-
clusions. Further, there is no assurance that results ob-
served by Powell et al. (2000) would extend to a more
aggressive management regime than that which oc-
curred during the study. Current understanding of the
effects of woodpecker management (e.g., Richardson et
al. 1998) may be inadequate to accurately predict
whether such management would enhance the long-
term viability of woodpeckers—the primary goal of its
management. These factors, taken together, suggest that
forest management at PNWR and similar systems, in
addition to being influenced by system uncertainty and
statistical error, may be relatively sensitive to structural
assumptions in models used to predict the impact of
management decisions on objective values that include
both a woodpecker component and a component re-
flecting other resource goals.

We describe a simplified, artificial system that
nonetheless captures some of the essential elements of
managerﬁcnt at PNWR. Here we reduce the resource
management objective to a tradeoff between a species
favored by understory vegetation reduction (repre-
sented by woodpeckers) and another favored by its re-
tention (represented by thrushes). However, the state-
ments that “woodpeckers are favored by burning”
and “thrushes are favored by exclusion of burning”
result from assumptions in the models underpinning
the decision analysis. We thus formulated explicit al-
ternatives to these assumptions to mimic extremes in
the relationship between population response and
management that might be consistent with real field
data. Specifically, we considered alternatives that pro-
pose that populations do not respond to management
actions. We incorporated these different hypotheses in
eight alternative models, as described below.

System Features and General Assumptions

The landscape was represented as a 10x10 square
grid. Any cell in the grid could be occupied by a
woodpecker, a thrush, or by both species. From an ini-
tial distribution of woodpeckers within the landscape,
models predict a resulting distribution of woodpeckers
following a single 10-year time step. These models al-
ternatively suggest that woodpecker population
growth is, or is not, dependent on distance to nearest-

neighbor source sites, and is, or is not, dependent on
woodpecker response to habitat management through
controlled burning. In contrast, we model thrush oc-
cupancy only in a habitat-suitability context and do
not consider an initial distribution of thrush. That is,
following management a thrush occurs in a cell with
probability that does, or does not, depend on the
burning status of that cell. Generally, we want to max-
imize population growth of woodpeckers and density
of thrushes through appropriate selection of one of a
few decision alternatives. Our aim is to look at every
alternative for each combination of models and for
certain initial distributions of woodpeckers.

Habitat-occupancy Models

For the woodpecker, we modeled single-time-step cell
occupation probabilities conditional on current cell
occupation status, habitat treatment, and distance to
nearest occupied cell. That is, we built expressions for
the conditional probabilities

Pr(X(1) = x11X,(0) = xo, d{0) = do, H, = by},

where X,(t) is a random variable indicating occupation
status of landscape cell 7 at time ¢, x, = 0 (unoccupied)
or 1 (occupied), d,(0) is the decision variable for cell 7,
dg is the decision value (1 = burned, 0 = not burned),
H; is a random variable, and b; is a distance value.

Given that landscape cell 7 is currently occupied by
a woodpecker (i.e., X,(0) = 1), we used the following
expression as the model of cell occupancy probability
at time 1:

Pr{X,(1)=11X,(0)=1.d,(0)=d,} = ﬂ;;‘-’ﬂi
Po+dy =0

(16.3)

where po and pgo’ are user-selected probabilities. Be-
cause x; = 0 or 1, Pr{X,(1) = 0 1 X{0) = 1, di(0) = dy} =
1 - Pr{X;(1) = 1| X,(0) = 1, d{0) = dp }. Thus, the
probability of woodpecker persistence is sensitive to
the management decision, where the degree of sensi-
tivity is reflected in the difference po — po’.

Given that landscape cell i is not currently occupied
by a woodpecker, we expressed the probability of cell
i being colonized at time 1 as a function of distance b;
to the nearest occupied cell and burning status for
cell 1
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Pr{X,(1)=1]X,0)=0.d,(0)=d,, H, = h)

_JeMt, 4y =1
= e_h‘flIﬂ, d0=0

where o and B are user-controlled parameters. Thus,

(16.4)

woodpecker colonization probability is partially de-
pendent on the spatial distribution of woodpeckers.
We proposed an alternative model in which coloniza-
tion probability was not sensitive to b;:

Pr{X,(1)=11X,(0)=0,d,(0) = d,}

Bl-e*®)/a, d,=1
af(l-e“*®y/a, d,=0

(16.5)

where a is a user-controlled parameter. We derived this
model by integrating the functions in equation 16.4
over the interval 0 to  and then dividing the result by
the length of the interval to obtain a uniform proba-
bility mass over 0 to a.

For both the woodpecker persistence and the colo-
nization models, we considered forms in which occu-
pation probabilities were not dependent on the habi-
tat decision. For the persistence model, we used the
expression

Pr{X{(1) = 11 X(0) = 1} = (po + po')2.  (16.6)

For the spatially dependent colonization model, we
used the expression

Pr(Xi(1) = 11 X,(0) = 0, H; = by} = (e 4B + ebilaB)2 (16.7)
and for the non-spatially dependent model, we used

Pr(X{(1) = 11 X,0) = 0}

= [B(1 - e9®) + af(1 - e9/aB)|2a.  (16.8)

Combinations of these model structures provided
four alternative models for the woodpecker response
to management and woodpecker spatial distribution:

1. model Wps—decision-sensitive and spatially sensi-
tive; equations 16.3 and 16.4.

2. model Wp.—decision-sensitive and spatially insen-
sitive; equations 16.3 and 16.5.

3. model W.s—decision-insensitive and spatially sen-
sitive; equations 16.6 and 16.7.

4. model W..—decision-insensitive and spatially in-
sensitive; equations 16.6 and 16.8.

Unlike probability in the woodpecker models, the
thrush occupation probability of cell i at time 1 was
considered to be solely dependent on habitat treat-
ment in one model alternative (Tp)

dos do =

Pr(Y(1)=11d,(0)=d,} =
f[ ,'[) (0) o} qﬂ,‘ d0=0

(16.9)

where Y; is the thrush occupation status (either 0 or 1)
of cell i at time 1, and g¢ and gy’ are probabilities set
by the user. An alternative model (T.) to reflect deci-
sion-insensitivity for thrushes is

Pr{Y(1) = 1} = (g0 + q0")/2 .

Thus, the four woodpecker model alternatives in com-
bination with each of the two thrush model alterna-
tives yielded eight alternative system models.

Landscape Simulation

We simulated effects of decisions under each of the
species models over a range of initial woodpecker
conditions. We considered four types of initial condi-
tion: (1) low woodpecker occurrence (# = S cells oc-
cupied), highly clumped; (2) low occurrence, highly
dispersed; (3) high occurrence (n = 20), highly
clumped; and (4) high occurrence, highly dispersed.
We used a rejection procedure to generate clumped
and dispersed distributions. We calculated an index
of clumping K (Krishna Iyer 1949; Pielou 1977) for
each randomly generated candidate distribution of #
occupied cells, and we assumed that the index fol-
lowed a normal distribution under random mingling
of cells. We accepted the distribution as a clumped
distribution if K > 1.282 (normal critical value at
90th percentile) and as a dispersed distribution if K <
-1.282. We continued this process until we had gen-
erated one hundred distributions of each type on the
landscape grid.

For each initial distribution of woodpecker occu-
pancy, we simulated a set of management decisions
under each of the alternative models. The burning sta-
tus for cell 7, d,(0), was a random outcome of the deci-
sion variables d(1), the proportion of woodpecker-
vacant habitat burned, and d2), the proportion of
woodpecker-occupied habitat burned. For a fixed



16. Wildlife Habitat Modeling in an Adaptive Framework 213

selection of d(1) and d(2), (100 — n)dV) cells were ran-
domly chosen for burning from the set of woodpecker-
vacant cells, and nd?) cells were chosen at random
from the set of woodpecker-occupied cells. We consid-
ered four settings of d(!) and d2):

. (dW, ) = (0.2, 0.2)
. {dM, d2)) = (0.2, 0.8)
. {d), d2) = {0.8, 0.2
. {d, d2)} = {0.8, 0.8)

S

Given an initial distribution of woodpecker and
values of d(1) and d(2), we drew one hundred random
arrangements of the d;(0). Thus, each of the sixteen
combinations of initial conditions and decision vari-
ables provided ten thousand random distributions of
woodpecker occupancy and burning activity.

All simulations were conducted over a single ten-
year time step. Values 0.904 and 0.665 for pg and py’,
respectively, correspond to annual persistence rates of
0.99 and 0.96; in other words, annual risk of extirpa-
tion is four times as likely for an unburned cell than
for a burned cell. We chose values of 0.8 and 0.25 for
B and «a, respectively, which render colonization un-
likely in any burned cell not adjacent to an occupied
cell. For unburned cells, colonization is extremely un-
likely for any nearest-neighbor distance. We chose val-
ues of 0.1 and 0.6 for the thrush occupation probabil-
ities go and gqq’, respectively.

For each of the decision simulations, we recorded
the woodpecker population growth as A = ZX,(1)/n,
and we calculated w = ZY;(1)/100, the proportion of
habitat occupied by thrushes. We combined these
quantities in the objective function

J = [max(0, A - 1)}* w?,

where # and v were set to the values 1.0 and 0.2, re-
spectively. These values imply that woodpecker popu-
lation growth i1s rewarded approximately linearly as
long as thrushes occupy a minimum threshold (about
20 percent) of the landscape. Rewards are minimal if
the decision grows one species at the expense of the
other. We obtained means and variances of ten thou-
sand objective function evaluations for each of 128
initial condition x model alternative x decision alter-
native combinations.

Simulation Results

Because initial conditions, the decision action, and
population responses were all realizations of stochas-
tic processes, values of the objective function were
also stochastic. Therefore, for any given population
model, each decision was superior to the others in
least one simulation simply by chance (Tables 16.1,
16.2). However, the large number of simulations
clearly indicated that certain decisions provided the
greatest expected value of the objective function and
that others were consistently inferior.

The optimal decision depended on accurate identifi-
cation of the underlying management response model
(Tables 16.1, 16.2; Fig. 16.2). For example, given that
initial woodpecker population size is 20, then the deci-
sion to burn 20 percent of both woodpecker-vacant
and woodpecker-occupied landscape cells is the best
decision only if one correctly presumes that thrushes
respond negatively to fire and that woodpeckers do
not respond at all (Fig. 16.2d-f). However, this same
decision is the worst that can be made if, in fact,
woodpeckers respond positively to fire (Fig. 16.2d-f).
The four decisions were equally adequate only in the
special case in which neither species responded to fire
management.

The parameter values that we chose for the objec-
tive function heavily rewarded management directed
toward woodpeckers, and this was reflected in how
the decision patterns varied among management re-
sponse models. For the four model types in which
woodpeckers were not assumed to respond to fire
management (models W..T., W..Tp, W.T., W.Tp),
models W..T. and W.sT. provided no trend in mean
objective value as extent of burning increased in the
landscape, whereas the thrush response models
(W..Tp and W.sTp) provided a negative trend as
more of the landscape was burned (Fig. 16.2). How-
ever, all woodpecker response models provided a
positive trend in mean objective value, though the
rate of increase was slower when the thrush response
was considered (Fig. 16.2, models Wp.Tp and
WpsTp) than when it was not (Fig. 16.2, models
Wp.T. and WpsT.). As objective value parameters
are altered to bring management desires for the two
species into greater conflict, we would expect the
trend in objective value over the decisions under the



TABLE 16.1.

Mean and approximate 99% confidence interval for objective value (J) and frequency of optimality (ngg) for four decisions under
eight alternative system models and two types of spatial arrangements of woodpeckers (dispersed versus clumped), given an
initial population of five woodpeckers.

Decision?
di1l) = 0.2, di2) = 0.2 d1)=0.2,d2 =08 d1) = 0.8, d2 =0.2 di1) = 0.8, d?2 = 0.8
Model® J 99% Cl  ngy J 99% CI Nopt J 99% ClI Nogt J 99% Cl  ngpe
Initial woodpecker population size = 5, highly dispersed
W..T. 0.384 (0.376- 2440 0.385 (0.378- 2400 0.386 (0.378- 2537 0.388 (0.381- 2469
0.392) 0.393) 0.394) 0.396)
W..Tp 0.412 (0.404- 2941 0.414 (0.406- 2868 0.347 (0.340- 2095 0.345 (0.338- 2005
0.420) 0.422) 0.354) 0.352)
Wp.T. 0.175 (0.169- 438 0.254 (0.248- 809 0.521 (0.512- 3518 0.631 (0.622- 5124
0.180) 0.260) 0.530) 0.640)
Wp.Tp  0.187 (0.182- 713 0.267 (0.261- 1154 0.471 (0.462- 3395 0.559 (0.551- 4664
0.193) 0.274) 0.479) 0.567)
W.sT. 0.632 (0.622- 2529 0.626 (0.616- 2423 0.631 (0.621- 2436 0.633 (0.623- 2501
0.641) 0.635) 0.640) 0.642)
W.sTp 0.674 (0.664- 3059 0.674 (0.664- 3056 0.576 (0.567- 1994 0.557 (0.548- 1825
0.684) 0.684) 0.584) 0.565)
WpsT. 0.161 (0.156- 25 0.237 (0.231- 45 1.045 (1.033- 4254 1.158 (1.147- 5622
0.167) 0.242) 1.056) 1.169)
WpsTp 0.174 (0.168- 59 0.256 (0.250- 107 0.939 (0.929- 4269 1.031 (1.020- 5488
0.179) 0.262) 0.950) 1.041)
Initial woodpecker population size = 5, highly clumped
W..T. 0.385 (0.377- 2447 0.386 (0.378- 2483 0.388 (0.380- 2441 0.388 (0.380- 2487
0.393) 0.393) 0.396) 0.396)
W..Tp 0.414 (0.406- 2972 0.409 (0.401- 2881 0.346 (0.339- 2060 0.341 (0.335- 2013
0.423) 0.418) 0.353) 0.348)
Wp.T. 0.178 (0.173- 512 0.252 (0.246- 812 0.515 (0.506- 3500 0.625 (0.616- 5050
0.184) 0.258) 0.524) 0.634)
Wp.Tp 0.189 (0.183- 728 0.270 (0.263- 1141 0.471 (0.462- 3392 0.559 (0.551- 4670
0.195) 0.276) 0.479) 0.567)
W.sT. 0.474 (0.465- 2468 0.475 (0.466- 2447 0.475 (0.466- 2467 0.476 (0.468- 2494
0.482) 0.483) 0.483) 0.485)
W.sTp 0.506 (0.497- 2971 0.505 (0.496- 2934 0.433 (0.426- 2046 0.428 (0.420- 1977
0.515) 0.514) 0.441) 0.436)
WpsT. 0.115 (0.111- 56 0.182 (0.177- 107 0.784 (0.773- 4000 0.903 (0.892- 5761
0.119) 0.187) 0.794) 0.913)
WpsTp 0.122  (0.117- 97 0.192 (0.187- 191 0.707 (0.698- 4080 0.799 (0.790- 5548
0.127) 0.198) 0.717) 0.808)

aExpressed as proportion of ninety-five woodpecker-vacant cells (d{1)) and proportion of five woodpecker-occupied cells (d?)) burned. Each decision
was simulated one hundred times under one hundred random woodpecker occupancy distributions.

bModel expressed as a character triplet W;T,, where i indicates woodpecker colonization and persistence probabilities are (i = D) or are not (i = .)
sensitive to burning, j indicates woodpecker colonization probability is (j = S) or is not (j = .) sensitive to distance from a nearest-neighbor source
cell, and k indicates thrush occurrence probability is (k = D) or is not (k = .) sensitive to burning.



TABLE 16.2.
Mean and approximate 99% confidence interval for objective value (J) and frequency of optimality (nog) for four decisions under
eight alternative system models and two types of spatial arrangements of woodpeckers (dispersed versus clumped), given an
initial population of twenty woodpeckers.
Decision?
d = 0.2, d@ = 0.2 dm = 0.2, d? = 0.8 d) = 0.8, d(® = 0.2 4 = 0.8, d(2) = 0.8
Model® J 99% Cl  nopt J 99% Cl Nopt J 99% ClI Nopt J 99% Cl  nggt
Initial woodpecker population size = 20, highly dispersed
W..T. 0.016 (0.015- 1441 0.016 (0.015- 1517 0.016 (0.015- 1499 0.015 (0.014- 1429
0.017) 0.017) 0.017) 0.0186)
W..Tp 0.018 (0.017- 1614 0.017 (0.016- 1554 0.016 (0.015- 1417 0.015 (0.014- 1365
0.019) 0.018) 0.017) 0.015)
: Wp.T. 0.002 (0.001- 124 0.015 (0.014- 1179 0.016 (0.015~ 1151 0.060 (0.058- 4837
f 0.002) 0.016) 0.017) 0.061)
' Wp.Tp  0.002 (0.002- 175 0.015 (0.014- 1285 0.015 (0.014- 1169 0.056 (0.054- 4725
0.002) 0.015) 0.016) 0.057)
W.gT. 0.208 (0.205- 2557 0.205 (0.202- 2409 0.207 (0.203- 2525 0.205 (0.202- 2430
0.212) 0.209) 0.210) 0.209)
W.sTp 0.224 (0.220- 3146 0.218 (0.215- 2867 0.194 (0.191- 2122 0.185 (0.182- 1845
0.227) 0.222) 0.197) 0.188)
WpsT- 0.015 (0.014- 1 0.061 (0.059- 8 0.363 (0.359- 2964 0.478 (0.475- 6993
0.0186) 0.063) 0.367) 0.482)
WpsTp  0.017 (0.016- 3 0.066 (0.064- 19 0.344 (0.340- 3374 0.427 (0.424- 6576
0.018) 0.068) 0.348) 0.430)
Initial woodpecker population size = 20, highly clumped
W..T. 0.016 (0.015- 1478 0.017 (0.016- 1515 0.016 (0.015- 1498 0.017 (0.016- 1463
0.017) 0.018) 0.017) 0.018)
W..Tp 0.018 (0.,017- 1595 0.018 (0.017- 1631 0.016 (0.015- 1441 0.015 (0.014- 1392
0.019) 0.019) 0.017) 0.016)
Wo.T. 0.002 (0.002- 137 0.015 (0.014- 1156 0.016 (0.015- 1086 0.061 (0.059- 4872
0.002) 0.016) 0.017) 0.063)
Wp.Tp 0.002 (0.002- 169 0.015 (0.014- 1299 0.015 (0.014- 1173 0.055 (0.053- 4702
0.002) 0.016) 0.016) 0.056)
W.sT. 0.149 (0.146- 2473 0.151 (0.148- 2505 0.150 (0.147- 2502 0.148 (0.145- 2426
0.152) 0.154) 0.153) 0.151)
W.sTp 0.160 (0.157- 2970 0.157 (0.154- 2765 0.141 (0.138- 2261 0.133 (0.130- 1964
? 0.164) 0.160) 0.144) 0.136)
WpsT. 0.009 (0.008- 3 0.045 (0.043- 37 0.270 (0.266- 2844 0.383 (0.379- 7071
0.010) 0.0486) 0.274) 0.386)
| WpsTp  0.010 (0.009- 6 0.046 (0.045- 56 0.251 (0.248- 3070 0.342 (0.339- 6836
5 0.010) 0.048) 0.255) 0.345)
aExpressed as proportion of eighty woodpecker-vacant cells (d) and proportion of twenty woodpecker-occupied cells (d(2)) burned. Each decision
was simulated one hundred times under one hundred random woodpecker occupancy distributions.
bModel expressed as a character triplet W;T,, where i indicates woodpecker colonization and persistence probabilities are (i = D) or are not (i = .)
sensitive to burning, j indicates woodpecker colonization probability is (J = S) or is not (j = .) sensitive to distance from a nearest-neighbor source
cell, and k indicates thrush occurrence probability is (k = D) or is not (k = .) sensitive to burning.
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Figure 16.2. Mean objective values for four landscape burning decisions under alternative models of red-cockaded woodpecker (Pi-
coides borealis) and wood thrush (Hylocichla mustelina) population dynamics. Decisions are expressed in the form {d(1), d(2)},
where d'! represents proportion of woodpecker-vacant habitat burned, and d(2 represents proportion of woodpecker-occupied habi-
tat burned. Shading of decision bars increases from light to dark as extent of landscape burning increases. In each plot, decision
results are provided for four models of species response to burning: no response by either woodpeckers or thrushes (model W, T.),
response by thrushes only (model W.Tp ), response by woodpecker only (model Wp,T.), and response by both woodpecker and
thrushes (model Wp,Tp), where subscript i indicates whether woodpecker colonization probability is (i = S, plots b, ¢, e, f) or is not
(i=., plots a, d) sensitive to distance to nearest source neighbor. Decision outcomes vary according to two initial states of the sys-
tem: initial population size (plots &, b, c for n = 5 and plots d, e, ffor n = 20), and initial distribution of woodpeckers (plots b and
e for dispersed distributions and plots ¢ and f for clumped distributions).

joint woodpecker-thrush response model to become
quite flat, almost resembling that for the null re-
sponse model.

We found that making the optimal decision was not
dependent on correctly identifying the appropriate dis-
tance-sensitivity mechanism for woodpecker coloniza-
tion (contrast Fig. 16.2a with Fig. 16.2b— and Fig.
16.2d with Fig. 16.2e~f), the initial abundance of
woodpeckers (contrast Fig. 16.2a—c with Fig.
16.2d-f), or the initial distribution of woodpeckers
(contrast Fig. 16.2b with Fig. 16.2c and Fig. 16.2e

with Fig. 16.2f). With regard to this latter result, how-
ever, we point out that our simulated decisions were
carried out by selecting habitat cells completely at ran-
dom with regard to woodpecker location. Had our de-
cision set also included the selection of cells under
some alternative sampling scheme (e.g., probability of
selection of woodpecker-vacant cells inversely propor-
tional to distance from woodpecker-occupied cells),
we would then expect to find that the optimal decision
does depend on correct identification of the initial dis-
tribution of woodpeckers.
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Discussion

This hypothetical example demonstrates the impor-
tance of correct model identification in decision mak-
ing, or at least the importance of considering a set of
reasonable model alternatives. Furthermore, the rela-
tive performance of decisions across the model set will
vary according to form and parameterization of the
objective function.

In our example, we were omniscient observers of
the system and could easily understand the implica-
tions of each decision under each version of nature. In
real systems, however, we are uncertain about the true
version of nature, and our observations are incom-
plete and imprecise, yet we still are faced with making
an optimal decision for a management objective. Our
real need, therefore, is twofold: to find the decision
that maximizes some physical attribute of the system,
and to apply the results of the decision action toward
the reduction of uncertainty and toward better deci-
sion making in the future.

Suppose that we are managing a system that is de-
scribed by one of the eight models above, but that we
are completely uncertain about which model is cor-
rect. We will also assume that the initial population of
woodpeckers is five and that woodpeckers occur in a
dispersed pattern. Then we may apply equation 16.1
to find the optimal decision under uncertainty, using
values of ] (Table 16.1) for the Ju(alx;ﬂ,-}f(xlﬂ;}dx and
p(6;) = 0.125. The maximum value of E(a) is 0.663,
which occurs for decision {d1), d?)} = {0.8, 0.8].

Following the decision action, the system may be
observed for a number of years until the time of the
next management action. We assume that data are col-
lected according to some design that yields observa-
tions at temporal, spatial, and demographic resolu-
tions that are consistent with model predictions.
Suppose that data from the field, collected ten years
following the decision action, provided a set of values
L(x10), the statistical measures of agreement between
the data and each model @ (e.g., a sum of squared dif-
ferences between observations and model predictions
scaled by a variance measure). Furthermore, suppose
that these values redistributed (through equation 16.2)
model weight from the equal allocation of 0.125 for
each model to the allocation of 0.79 to the model

W.sTp (woodpecker management-insensitivity, wood-
pecker distance-sensitivity, thrush management-
sensitivity) and 0.03 to the other seven models. Now,
if we are again required to choose a management ac-
tion for the next ten years, and again starting from an
initial condition of five dispersed woodpeckers, then
reapplication of equation 16.1 under these new
weights results in a maximum value of 0.606 for E(a),
which occurs for decision (d(1), d2)} = {0.2, 0.8}. Thus,
at both decision periods we not only made optimal de-
cisions under system uncertainty, we also exploited
our decision action and our monitoring data to reduce
uncertainty between decision episodes. Note also in
this approach that statistical measures of model-to-
data agreement are not used to make dichotomous,
absolute assignments of model validity or invalidity
based on arbitrary criteria. Rather, they are used in a
way that allocates more or less credibility to a model
over time without ever completely dismissing a con-
tender from the model set.

Summary

We make several observations regarding the use of
habitat models in a conservation decision context.
First, the assessment of model accuracy (model vali-
dation) must be based on observable phenomena so
that model predictions can be directly compared to
observations. “Suitability,” meaning the potential of
a habitat to provide a portion of the needs of a pop-
ulation, cannot itself be objectively measured, and
models dependent on “suitability” as the output
cannot be validated (but see Hill and Binford [Chap-
ter 7] for another perspective). Second, even when
presence, absence, or numerical abundance can be
observed and appear to conform to model predic-
tions, this agreement may constitute weak valida-
tion, that is, not exclude competing explanatory or
even null habitat models. Weak validation occurs
for several reasons, including (1) possible existence
of source-sink and other demographic phenomena
tending to obscure functional relationships between
habitat and populations; (2) weak evidence based on
qualitative (e.g., present or absent) versus quantita-
tive comparisons; (3) lack of statistical power; and
(4) injudicious choice of spatial scale. Third, arbi-
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trary conventions of accuracy (map or attribute) or
precision are irrelevant to decision making and tend
to distract from the proper consideration of uncer-
tainty in decision making, which will always be
made under uncertainty. The key is to provide ten-
able alternative models that make different predic-
tions about the relationship between management

actions and the objective. Finally, optimal decisions
can be made based on current information about the
tenability of alternative models (expressed as model
weights). Adaptation occurs when uncertainty is re-
duced (changing model weights) by information
feedback obtained in the course of management and
monitoring.
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