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Simulation Models and Optimal
Decision Making in Natural

Resource Management

Michael J. Conroy and Clinton T. Moore

Renewable resource management typically involves, at its core, an opti-
mization problem of intrinsically dynamic systems. Viewed this way, man-
agement involves three elements: quantifying an objective, often involving
multiple resources and inherent tradeoffs; defining system dynamics, includ-
ing components of uncertainty and detail such as spatial resolution; and
specifying a decision, including possible dynamic and spatial aspects.
Williams (1989) has compared the major features of optimization and sim-
ulation, and Conroy and Noon (1996) have discussed them in relation to
spatially explicit models.

THE OpTiIMAL CONTROL PROBLEM

Much, if not all, of natural resource management can be described as the for-
mulation of a set of management actions that are expected to result in the
achievement of a desired objective. An objective function is simply a mathe-
matical statement that describes, in terms of measurable system attributes or
system states (such as population abundance), values ascribed to possible out-
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comes following a decision. Optimal control is the problem of finding a set of
actions that maximize or minimize the objective function. The resulting set
of actions through time is known as an optimal policy—frequently termed an
optimal strategy when the system is stochastic (Dreyfus and Law 1977; Lubow
1995). In most cases, natural resource managers must consider not only the
immediate consequences of a decision (such as this year’s harvest) but also
the decision’s impact on the future condition of the resource and its value
(future harvest opportunities). Given this long-term view, the objective
function must now explicitly incorporate the value of future system states,
which of course are not presently observable. To do this we must have a
mathematical model for system dynamics that describes the relationship
between certain management actions and these future system states given
the current system state and assumptions about system behavior. Our model
may be deterministi—that is, each combination of management actions leads
to the same trajectory of the system through tme—or, more realistically, sto-
chastic, in which case intervening random events (such as environmental
variation or demographic processes) cause the system to deviate from a com-
pletely predictable path. Often decisions are made and resource systems are
monitored at discrete points in time—for example, once a year—and thus it
may be appropriate to model system dynamics in discrete time as

X(t+ 1) =X + X, Z(), U, 1) [6.1]

where X(1) is a vector describing the system state (abundance of several
species, habitat conditions) at time f, Z(f) is a vector of random variables,
and U(r) is a vector of management actions taken at time t. The variable ¢
may denote any discrete unit of time. In this discussion we refer to the
interval (¢, t + 1) as a time step. A general form for the objective function 1s

J=Z VKO U@, )+ V,X(T) (6.2

where V 1s a function describing the value or return from management
actions U(f) and system state X(f) and where V, is a value given by the sys-
tem state X(7T) at some “terminal time” T, usually taken as the distant future
(100 years, for example, or even T = o). The long-term nature of the deci-
sion problem is made explicit in that the objective value is obtained by
summing from the present decision time (¢ = ¢,) to this distant future time.
The optimization problem can be then mathematically formulated as
maximize J
{U}eU
subject to

X(t+ 1) = X() + X0, Z(), U, ) [63]
X() = X,
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where for stochastic systems
T
J=E|  VEXO.U0, t+ V;X(T) (6.4]

that is, the objective is now over the average of the random outcomes influ-
enced by Z(1).

A number of mathematical approaches may be taken to solve the opti-
mal control problem and are reviewed by Williams (1989). Here we focus
on applying two methods—dynamic programming (DP) and forward sim-
ulation-optimization (FSO)—to finding optimal solutions for a simple nat-
ural resource decision problem. Briefly, optimization approaches such as DP
have the advantage of guaranteeing that the resulting decision will be opti-
mal with respect to the objective function. Dynamic programming (Bell-
man 1957; Dreyfus and Law 1977; Mangel and Clark 1988) works by appli-
cation of the “principle of optimality,” which states that “an optimal policy
has the property that, whatever the initial state and decision are, the remain-
ing decisions must constitute an optimal policy with regard to the state
resulting from the first decision” (Bellman 1957). The objective form
described earlier lends itself to this principle because the objective function
is composed of two parts: an “immediate reward” part that starts at , and
moves to , and a subsequent part that starts at f, and moves to the termi-
nal time T. The optimality principle says that in order for the overall strat-
egy to be optimal (given initial system conditions X(ty)), the strategy over
this second portion must be optimal as well. Dynamic programming then
appliés the principle to finding the optimal strategy at #, by working back-
ward from T once we arrive at t,, the overall strategy must now be opti-
mal by definition. The same approach can be extended to stochastic systems
by invoking the stochastic form of the state dynamics and objective func-
tion (Dreyfus and Law 1977; Lubow 1995).

Dynamic programming is an extremely powerful means of finding opti-
mal solutions for dynamic systems. Indeed, it is guaranteed to provide opti-
mal decisions given the assumptions of the method. It is nearly impossible,
however, to include much complexity in the model of system dynamics—
particularly if this involves spatial or individual animal components. And
although dynamic programming allows for dynamic and stochastic systems
typical of natural resource management, this method works only for systems
in which there are just a few state variables and decisions. By contrast, sim-
ulation models (such as FSO) allow for virtually unlimited modeling of the
details of systems, including spatial resolution and individual animal behav-
ior. These methods may be used to seek optimal solutions, but they provide
no guarantee that a solution is optimal. Moreover, complex simulation
models are often of dubious reliability because of limited validation and dif-
ficulties in parameter estimation (Conroy et al. 1995).
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In summary, optimization methods such as DP are known to give opti-
mal solutions for problems, but only for simple systems where everything
can be specified. Thus these methods are limited in terms of the detail of
the systems that can be modeled. Simulation methods such as FSO can
accommodate much more detail, but they are not guaranteed to find an
optimal solution. Thus a natural question arises for resource managers: To
what degree are the approaches comparable in terms of the optimal deci-
sion for a given system state and the value of the objective function given
the optimal strategy?

A COMPARISON OF METHODS

We approached this question by constructing a simple dynamic problem for
which we could specify the parameters but which nonetheless contained
the essential elements of dynamic decision making and a tradeoff in natural
resource objectives. For this problem we applied both a backward-iteration,
stochastic optimization approach (Bellman 1957) and a forward-simulation
model with optimal one-time-step decision making (FSO). We then com-
pared the optimal decision and resulting objective function—in this case
involving the abundance trajectories of two vertebrate species of interest—
in each approach.

An Example System

Although it was simple, we used a model system that was motivated by nat-
ural resource management problems encountered in forestlands of the
southeastern United States—in particular our experiences at the Piedmont
National Wildlife Refuge in Georgia. Our model system contained a 1000~
hectare landscape of forest composed of two successional stages: early (0—40
years) and late (40-120 years). These stages might correspond to early suc-
cession following clear-cutting and regeneration of loblolly pine (Pinus
taeda) and older stands following thinning to remove understory and mid-
story vegetation. Figure 6.1a illustrates the habitat dynamics of this system
between the two successional stages (that is, habitat states); the proportions
indicate the 5-year rates of transition between early and late successional
stages. In all of our models, habitat dynamics were completely determinis-
tic. Habitat state dynamics can thus be represented by the expression

Xe1 = 1, (6.5]

+

where

]

X (r)J

x,(1)
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is a column vector describing the system habitat state, with x(f) represent-
ing the number of hectares in forest stage i at time step f and

_l0.875 0.0625
~ 10.125 0.9375

defining the rate of transition between stages. The values in L are purely a
function of the length of time spent in each stage (40 and 80 years, respec-
tively) and the length of a time step (5 years). Thus every 5 years 5/40 =
0.125 of the early stage moves to late with 35/40 = 0.875 remaining in the
early successional stage. Likewise 1/16 = 0.0625 of the late successional
stage reverts to early succession with 15/16 = 0.9375 remaining behind.
The columns always sum to 1 because of area conservation (that is, the total
acreage of 1000 hectares does not change through time). The acreage in
each stage after each 5-year transition is the total of the acreage remaining
in that stage from the previous time step plus the acreage moving into the
stage. For example, given a distribution of acreage at time t = 4 of

_ [750
%~ |250

the state at time t = 5 (that is, in 5 years) will be

0.875(750) + 0.0625(250)
0.125(750) + 0.9375(250)

_ [671.875
328.125

250

x;= Lx, =10.875 0.0625] _ |750| _
0.125 0.9375

with 671.875 + 328.125 = 1000.

The single decision to be made, every 5 years, is what proportion of the
late successional stage to harvest in five evenly spaced levels from 0 to 1;
there was no harvest in the early stage. The effect of harvest on habitat
dynamics is to immediately transfer the indicated proportion of late-stage
habitat to the early stage with succession rates continuing as before (Figure
6.1b). Thus the system of equations representing succession dynamics is
modified to include harvest

x.r+l 7 L(err)

where

L}

1 h
0 (1-h,)

and h_ is the proportion of the later stage that is harvested, again with no
harvest occurring in the early stage. For example, if &, = 0.50 and the ini-
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9375

a. Succession only

b. Succession plus harvest 0.0625

Figure 6.1. Schematic of habitat dynamics for a simple forest management problem.
(a) Model incorporating succession only. (b) Model incorporating succession plus
harvest of older stage. .

tial stage is defined as in the previous example, the distribution of acreage
at t'=:5 45

x, = L(H, x,)=[0.875 0.0625|[1 0.5 |[750
0.125 0.9375[|0 0.5 [|250
=[0.875 0.0625] [750 + 0.5(250)
0.125 0.9375|| 0.5(250)
=[0.875 0.0625|[875
0.125 0.9375) |125
=[773.4375
226.5625

We represented population response for the two hypothetical species by
species-specific source/sink models (Pulliam 1988; Conroy and Noon
1996). For species 1, early forest was source habitat; for species 2, late forest
was source. Upper limits in the source and sink habitats were 0.1 ani-
mal/hectare and 0.5 animal/hectare, respectively. Species that could be asso-
ciated with these respective source and sink habitats for a southeastern pine
system might include Carolina wren (Thryothorus ludovicianus) for early suc-
cessional stage and red-cockaded woodpecker (Picoides borealis) for late suc-
cessional stage. The population abundance for each species is determined
both by the amount of suitable habitat (that is, acreage in each successional
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Figure 6.2. Schematic model of source/sink population dynamics. Each species
increases at the rate of A = 1.05 in its source habitat (defined as early forest stage for
species 1, late stage for species 2) with a ceiling density specified as 0.1 animal/hectare
of source. When density reaches this ceiling, all surplus animals are assumed to emigrate
to the sink habitat—up to the ceiling density in the sink of 0.5 animal/hectare of sink
(defined as late forest stage for species 1, early stage for species 2). Species decrease at
the rate of A = 0.95 for species 1 and A = 0.99 for species 2 in sink habitats.

stage) present and by the ability of each species to export excess animals
from source habitats to sink habitats. For a single species (assuming no den-
sity limitation in the sink habitat), population abundance in the source and
sink habitats at time t + 1 depends on whether the size of the source pop-
ulation, N_ (1), 1s expected to exceed the saturation abundance N* Sar
time ¢ + 1 given the finite rate of growth of the source population, A .
If A, N )< N*

WAL L ource (future population does not exceed saturation
abundance), then N (t+ 1) =A_ N _ () and N (¢t + 1) = A

source” source s sink
N, (6, where ?Liink and. N, l.w.vc analogous meanings to A . and
N, ,ce- Otherwise (future population exceeds saturation abundance), then

Nsoun:e (I + 1) o j\rsoun:: and I\Isiﬂk(r 2% 1) 5 1'sinkj\rsinlsc([) o ksouchsoume(f) o
wource- However, because we also enforce a destiny limit in the sink habi-
tats (0.5 animal/hectare), N, (t + 1) can never exceed a saturation abun-
dance N*,.We assume that each species’ growth rates (A) are uniform
within the source or sink habitats. For both species under consideration we
set A = 1.05, A, = 0.95 for species 1 (affinity for early forest stages),
and A, = 0.99 for species 2 (later forest stages), resulting in greater source-
to-sink dispersal rates for the latter species than the former (Figure 6.2).
We introduced random variation into this model by using a discrete log-

normal distribution to model variation in A, as
A, =A0+zCY [6.6]

where A, is a value of A (as in source habitats),i. is the mean (1.05) of the
distribution from which l:. is taken, z, is a standard normal deviate, and CV
is the coefficient of variation on the logarithmic scale. We took discrete val-
ues of z; as {-2.367,-1.15, 0, 1.15, 2.367} corresponding to approximate
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1,25, 50, 75, and 99 percent quantiles of the standard normal distribution,
and CV = 0.10 for all runs.Values of z; were not different between species
for source or sink growth. That is, a value of z; drawn for species 1 source
growth was also used as source growth for species 2, and a different z, drawn
for sink growth was applied to both species.

Optimization

We defined the objective for optimization as the 100-year abundances for
each species, weighted by a value for each species, and penalized for quasi-
extinction of either species:

Jr= T(v+2;,T) ("'ITNW)} [6.7]

where T is the terminal time period under investigation, v, and v, are rel-
ative values for each species, and N,™" and N,™" are quasi-extinction lev-
els for each species. In our analyses we set the values equal for both species
(v, = v, = 1.0) and set quasi-extinction levels to 10 (NI““"‘ = NZ“’i“ = 10).
Given Equation (6.7), if either species declined to extinction the resulting
objective value is zero. We evaluated the objective function (Equation 6.7)
at T = 20 five-year time steps—that is, after 100 years.

For both optimization approaches, we evaluated the expected value of the
objective for each state with expectations taken across the random A, out-
comes. The optimal decision was the one that maximized this expected value.
With DP, the optimal decision was obtained by backward iteration from the
optimal terminal value to the present—that 1s, 20 iterations or 100 years. Five
state variables described the status of the modeled system at any point in time:
amount of early forest habitat (amount of late forest is known by subtraction)
and abundances of both species in respective source and sink habitats. We dis-
cretized each of the state variables into 11 levels; thus the strategy yielded a
decision for each of the 11° state combinations. We used Program ASDP, a
successor to SDP (Lubow 1995) to perform these computations.

To illustrate the backward-iteration procedure, start with the terminal
state of the system. In our case, this is the terminal distribution of habitats
between successional stages and the abundance of animals of each species
in the sources and sinks. The objective function is then evaluated for each
combination of the random A—in this case illustrated (Figure 6.3) by the
five possible values for the source A.The expected value for each decision
is evaluated and the optimal decision selected. This process is repeated for
the previous time step and continued until the present time is reached—
resulting in an optimal state-specific and time-specific decision strategy

(Figure 6.3).
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Figure 6.3. Schematic representation of decision making under dynamic program-
ming (DP). The return (J) on the objective function is evaluated from the state at
time ¢ = T (the terminal state, 100 years in the example) for each combination of ran-
dom outcomes (in this case illustrated by five possible A, for a source population). The
optimal state-specific decision is taken as the decision that maximizes the expected
value of the objective. Conditioned on this decision, the process is repeated at the pre-
vious time step for all possible combinations of states and decisions. The resulting
decisions at each previous time, including the current time (t = 0), are optimal with
respect to the state dynamics and objective function.

With FSO, we began at the present time with a given combination of
initial habitat and population states. We evaluated the expected value of the
decision for all possible decisions and selected the decision resulting in the
optimum for one time step—that is, the best value of the objective over the
next 5 years. We then selected random values of A for the source and sink
populations and, implementing the optimal decision, used forward simula-
tion to move to the next time. Figure 6.4 illustrates the basic steps in the
FSO algorithm. Given an initial state, then: the objective values for each
possible decision are averaged across the random A; the optimal decision is
selected, resulting in the highest expected value of the objective function;
random A are selected to move the system forward one time step; and
the process is repeated at the next time step. We used a stochastic forward-
optimization procedure written in SAS PROC IML (SAS Institute 1990)
to perform these computations.

Simulation of Strategies

We compared the FSO and DP strategies by simulation starting from a
range of initial state conditions (243 combinations of habitat and initial
population size for each species in each habitat). For each initial state com-




100 PART Il. DEVELOPING AND INTERPRETING MODELS

Next
Initial . cohe
State i

Optimal o Random,
Decision As

Figure 6.4. Schematic representation of decision making under forward simulation-
optimization (FSO). Beginning at an initial state, the objective function return (J) is
evaluated for each combination of random outcomes (again illustrated by five possible
A, for a source population) and the decision that is optimal (provides the maximum
expected value of the objective) over one time step is selected. Given this decision,
random values representing a source A and a sink A are selected, which are used with
the model of system dynamics to simulate a new state of the system. The process is
repeated until the terminal time (¢t = 100 years) is reached.

bination we used identical realizations of random outcomes for A, in order
to specify the population’s trajectory to the next time step conditional on
the habitat conditions (influenced by the strategy selected) and the initial
population state. We continued this process for 20 iterations, or 100 years,
and recorded the value of the objective at the terminal time. For each sim-
ulation we kept track of the initial (¢t = 0) harvest decision as being relevant
to initiating.an “optimal” 100-year strategy as well as the objective values at
T = 20 resulting from each strategy. We then compared the strategies by
computing

Jo OP) = J,, (FSO)

Ty OP) i

to represent the relative difference of the DP (presumed optimal) strategy
compared to the FSO strategy, where J,, (DP) and J,, (FSO) were obtained
from Equation (6.7) evaluated at T'= 20 under the simulated DP and FSO
strategies, respectively. Finally, we replicated this procedure 10,000 times for
each of the 243 starting states.

As expected, FSO and DP yielded identical optimal strategies, with
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Equation (6.8) equal to zero, for all state combinations at ¢ = 19, that is, one
time step before the terminal time T = 20 (100 years). Although this com-
parison was not of particular interest and is not reported here, it confirmed
that the two procedures were solving the same one-time-step problem.
That is, from the perspective of a decision maker at t = 19, the one-time-
step, “myopic” strategy yielded by FSO is equivalent to a long-term, “far-
sighted” strategy provided by DP.

As the decision horizon lengthened to 100 years (that is, time starting
at t = 0 rather than t = 19), the two strategies diverged. The 100-year
strategies were compared with respect to whether the ¢ = 0 harvest deci-
sions- differed and the direction of difference if any (Figure 6.5). Under a
broad range of initial conditions, FSO yields an optimal strategy that is
more aggressive (involves more cutting) than does DP—which makes
sense given the myopic nature of FSO. That these myopic strategies are
suboptimal with respect to the long-term objective is seen by comparing
the simulated 100-year (r = 20) objective outcomes (Equation 6.8; Figure
6.6). The results confirm the superiority of the DP strategy. For all state
combinations, the average over 10,000 simulations always resulted in pos-
itive values for Equation (6.8), although FSO happened to outperform
DP in some simulations. The degree of suboptimality of the FSO strategy
depended on initial habitat conditions: poorer performance occurred
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Figure 6.5. Differences in = 0 harvest decision between DP and FSO over state com-
binations displayed over levels of the habitat state variable. Darkest and intermediate-
shaded bar sections represent cases of more and less aggressive cutting strategies, respec-
tively, under FSO compared to DP.
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Figure 6.6. Relative differences in expected performance (objective value) between
DP and FSO (Equation 6.8) over 10,000 simulation trials displayed over three two-

way combinations of initial system states. Error bars around means represent one stan-
dard deviation of simulated difference measures over all other initial system states.

when more versus less of the landscape is in early successional habitat. We
note, however, that under the worst-case scenario FSO only approached
a 30 percent loss in optimality and for a wide range of initial state condi-
tions FSO provided decisions that approached 90 percent of the optimal
DP results.
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CONSIDERATIONS IN USING OPTIMIZATION VERSUS SIMULATION

Qur example illustrates the benefits of optimization approaches such as DP,
which are designed to efficiently solve dynamic problems in which the
objective is specified over a long time frame. Because of its backward, iter-
ative approach, DP is able to decompose the time frame into stages and
then solve the problem one stage at a ume. In contrast, FSO (and simula-
tion in general), by working forward through time, deals with problems that
increase geometrically in complexity at each time step. A forward-looking
algorithm like FSO is simply incapable of anticipating all the possible path-
ways that decisions could take through time and therefore becomes increas-
ingly inferior to DP as time horizons lengthen. For the problem just
described, FSO would have had to consider decisions over (5 X 25)%° = 8.7
x 10*" decision pathways (5 decision levels, 25 random source and sink A
outcomes, 20 decision periods) from a single starting state of the system—
and most problems are more complex. Nonetheless, forward-looking but
myopic simulation procedures such as FSO can be useful for exploring
complex problems and, as illustrated here, may yield results that are not sub-
stantially inferior to DP or other optimization procedures. For complicated
systems involving multiple species and spatial components, DP may be
incapable of providing solutions at all—due to the “curse of dimensional-
ity” (Bellman 1957)—in which case managers are forced to use simulation
or other heuristic approaches.

There is, however, a troubling conceptual issue: we may never be able to
assess the cost of moving from truly optimal solutions to solutions obtained
by incorporating simulation. Despite the simplicity of our model, stripped
of all but the most fundamental elements of long-term, multispecies man-
agement, we still faced computational challenges. For a more realistic prob-
lem there will not be a benchmark optimal strategy—otherwise we would
never consider simulation—so it may never be possible to evaluate the rel-
ative performance of simulation-optimization strategies.

Adaptation is the explicit incorporation of information from monitor-
ing, management, and experimentation into decision making. At present,
formal coupling of adaptation to optimization is very complex—even for
simple systems (Williams 1996). Combining simulation and optimization
and incorporating adaptation for complex systems such as ours will
require innovative applications of hardware and software and will no
doubt require the development of new methods. Our future work will
explore how adaptation can best be incorporated into decision problems
like those described here. The results of this work should have important
implications for the role of monitoring programs in adaptive resource
management.
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