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Abstract

Conservation prioritization frameworks are used worldwide to identify species

at greatest risk of extinction and to allocate limited resources across regions,

species, and populations. Conservation prioritization can be impeded by eco-

logical knowledge gaps and data deficiency, especially in freshwater species

inhabiting highly complex aquatic ecosystems. Therefore, we developed a flexi-

ble approach that calculates a species’ imperilment risk based on the conserva-

tion principles of resiliency, redundancy, and representation (i.e., the “three
R’s”). Our approach organizes data on species traits, distributions, population

connectivity, and threats within a Bayesian belief network capable of

predicting resiliency and redundancy within representative ecological settings.

Empirical data and expert judgment inform the model to provide robust and

repeatable risk assessments for rare and data-deficient species. The model cal-

culates resiliency at hierarchical spatial scales from distributional trends and

population strength. Redundancy is estimated from the connectivity and quan-

tities of extant populations. Resiliency, redundancy, and species’ inherent vul-
nerability based on species traits collectively estimate extirpation risk within

each unique ecological setting. Extirpation risks across ecological settings char-

acterize representation and are aggregated to estimate global imperilment risk.

We demonstrate the model’s utility with Piebald Madtom (Noturus gladiator),

a species petitioned for listing under the U.S. Endangered Species Act. Our

results revealed that resiliency, redundancy, and extirpation risks can vary spa-

tially across the species’ range while identifying populations where additional

sampling could disproportionally reduce uncertainty in estimated global

imperilment risk. Our approach could standardize and expedite conservation

status assessments, identify opportunities for early management intervention
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of at-risk species and populations, and strategically reduce uncertainty by

focusing monitoring and research on priority information gaps.

KEYWORD S
aquatic conservation, decision support tool, Endangered Species Act, imperilment risk,
Piebald Madtom, Species Status Assessment

INTRODUCTION

Modern extinction events greatly exceed background
rates for all organisms (Ceballos et al., 2015; Pimm et al.,
2014), and aquatic taxa have proven particularly suscepti-
ble worldwide to biodiversity threats (Burkhead, 2012;
Ricciardi & Rasmussen, 1999). Hundreds of freshwater
fish, mollusk, gastropod, and crayfish extinctions
occurred in the last century, and many other freshwater
taxa are considered imperiled (Burkhead, 2012; Haag &
Williams, 2014; Johnson et al., 2013; Pimm et al., 2014).
Accelerated extinction rates among aquatic taxa necessi-
tate directed conservation actions to maintain representa-
tive diversity and preserve aesthetic, societal, and
economic values of aquatic ecosystems (Freitag & Van
Jaarsveld, 1997; Taylor et al., 2011). However, financial
resources for conservation are often limited, requiring
careful prioritization of geographic areas, species, and
populations for management actions (Gerber et al., 2018;
Joseph et al., 2009; Steen & Barrett, 2015). Legislation,
such as the U.S. Endangered Species Act (ESA), is meant
to prevent extinction by allocating resources to species
with eminent risk of extinction (Wolf et al., 2015).
However, protected species designations extend to rela-
tively few species and generally exclude poorly known
and understudied species of potential conservation
significance.

Insufficient resources for broad monitoring means
conservation practitioners often use tools to identify and
prioritize limited resources for species with the highest
risks of imperilment. Many of these conservation prioriti-
zation tools are available to help assess imperilment risk
among species by synthesizing similar biological criteria
and information on known threats (e.g., Baigún et al.,
2012; Gauthier et al., 2010; Gerber et al., 2018; Zhang
et al., 2015). These tools can be used for early identifica-
tion of imperiled species (e.g., International Union for
Conservation of Nature Red List) and to inform decisions
about official policy designations (i.e., Species Status
Assessments under ESA). Qualitative descriptions,
point-scoring procedures, and rule sets are typically used
to assign conservation priority to the most vulnerable
species (Brooks et al., 2006; Game et al., 2013; Mehlman
et al., 2004; Taylor et al., 2011). Although there are many

variations of conservation prioritization tools, gener-
ally, species that are narrowly distributed and numeri-
cally rare are most sensitive to demographic or
environmental stochasticity and are high-priority can-
didates for conservation actions and status designa-
tions. Normative factors, unrelated to extinction risk,
such as ecological, economic, and social values are also
commonly considered by policymakers when prioritiz-
ing species (Vucetich et al., 2006).

No conservation prioritization approach has been uni-
versally adopted that efficiently integrates dissimilar data
sources often used for conservation decision-making
within a collective framework (Smith et al., 2018; Waples
et al., 2013; Wolf et al., 2015). Although population viabil-
ity analysis can be a useful tool for projecting extinction
risk (Himes Boor, 2014), shortcomings such as reliance on
standardized abundance data and unknown population
vital rates have limited this method’s broad utility
(Freitag & Van Jaarsveld, 1997; Game et al., 2013; Wolf
et al., 2015). Conservation tools that solely rely on abun-
dance data to support complex computations can propa-
gate hidden biases (Smith et al., 2018), conceal important
specific biological criteria (Coates & Atkins, 2001; Given &
Norton, 1993), be resource or labor intensive (Brehm
et al., 2010; Dulvy et al., 2014), and fail to promote efficient
and defensible conservation assessments (Smith et al.,
2018). Conservation efforts would benefit from a transpar-
ent, consistent, and streamlined approach to identify spe-
cies, assemblages, and regions for management
intervention, especially given the potential workload of
assessing hundreds of taxa in species-rich areas, such as
the southeastern United States (Elkins et al., 2019).

Conservation efforts to address aquatic stressors have
been impeded historically by the high complexity of
freshwater ecosystems, data deficiency, and uncertainty
associated with conservation status assessments and
management strategies (Gregory & Long, 2009; Smith
et al., 2018). Available risk assessments are constrained
by their inability to account for uncertainty and failed
applications to aquatic species, for which necessary distri-
butional, habitat, and natural history knowledge is often
unavailable (Brooks et al., 2006; Dulvy et al., 2014; Zhang
et al., 2015). More broadly, aquatic taxa are understudied
relative to terrestrial taxa (Baigún et al., 2012), and
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without a method to represent uncertainty explicitly,
these understudied taxa have been excluded historically
from conservation status assessments (Given & Norton,
1993; Martín-L�opez et al., 2011). For example, approxi-
mately 46% of Chondrichthyes (sharks, sawfish, rays,
etc.), 44% of upper Yangtze River species, and 21% of
crayfish species were recently described as
“data-deficient” using IUCN criteria (Dulvy et al., 2014;
Richman et al., 2015; Zhang et al., 2015). However, con-
servation risk assessments can proceed if model uncer-
tainty and sensitivity of model outputs to data deficiency
are communicated effectively to decision-makers
(Lawson et al., 2021; Smith et al., 2018).

We describe a probabilistic analysis that evaluates
imperilment risk and is grounded in the conservation
principles of redundancy, resiliency, and representation
(Shaffer & Stein, 2000; Wolf et al., 2015). Our modeling
approach (i.e., Bayesian belief network) is flexible and
can include expert judgment while quantifying uncer-
tainty in the absence of quantitative data to provide
defensible risk assessments for data-deficient aquatic spe-
cies (Smith et al., 2018). We overview our model by eval-
uating current imperilment risk of Piebald Madtom
(Noturus gladiator), an information-limited riverine spe-
cies petitioned for federal listing under the ESA. This
model is broadly applicable to other aquatic taxa

worldwide and could be used to calculate imperilment
rates among poorly understood taxa in species-rich
regions.

METHODS

Ecological theory and the “three R’s”
framework

Our risk-assessment approach is grounded in the conser-
vation biology principles of resiliency, redundancy, and
representation (“the three R’s”), which collectively pre-
dict a species’ long-term viability (Shaffer & Stein, 2000;
Smith et al., 2018; Wolf et al., 2015). Resiliency is a spe-
cies’ ability to withstand stochastic disturbances.
Redundancy is a species’ ability to withstand catastrophic
events by spreading risk among multiple populations or
across a large area. Representation is a species’ ability to
adapt to changing environmental conditions over time as
characterized by the breadth of genetic, ecological, and
environmental diversity within and among populations.
Representation is delineated into unique ecological
settings, which are often distinguished geographically
by distributional gaps and/or physiographic settings
(Figure 1). Risks of extirpation within each ecological

F I GURE 1 Conceptual model depicting the hierarchical relationships among population resiliency, redundancy, and representation

that are used to predict imperilment risk. Resiliency of individual populations delineated by management units (dark gray circles) is

estimated for each ecological setting (light gray circles). Multiple resilient populations that are connected (connected, thin solid lines;

interrupted, thin dashed line) result in high redundancy. Often there are multiple occupied stream segments (black circles) within a

population. Representation is high when each unique ecological setting has multiple resilient and connected populations.
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setting combine to influence a species’ global
imperilment risk.

Bayesian belief network

The three R’s framework is a useful conceptual model for
identifying factors influencing imperilment risk, but the
framework has limited application without being
converted into a predictive model. Therefore, we devel-
oped an initial influence diagram based on the three R’s
framework that characterized relationships among resil-
iency, redundancy, taxon vulnerability, and extirpation
risk for a species within its representative ecological set-
tings (representation; Figure 2). Then we converted the

influence diagram into a quantitative Bayesian belief net-
work model (Figure 3). Bayesian belief networks provide
holistic representations of relationships among
interacting variables (hereafter, “nodes”) in which infer-
ences are drawn collectively from empirical data, expert
knowledge, and simulation modeling. Bayesian belief
networks have aided conservation decision-making by
predicting probabilistic relationships between ecological
conditions and future responses (Marcot et al., 2006;
Peterson et al., 2013; Stewart-Koster et al., 2010). We
followed model-building practices outlined in Marcot
et al. (2006) and Marcot (2012) when developing the
Bayesian belief network. Our initial model was developed
to evaluate imperilment of riverine fishes in the south-
eastern U.S. biodiversity hotspot, but the model could be

F I GURE 2 Influence diagram used to develop a Bayesian belief network that predicts a species’ probability of being at risk of global

imperilment (diamond) using population resiliency and redundancy in ecological settings (i.e., representation). The number of ecological

settings is equal to the number of significantly different genetic, life history, or geographic population groups across the species range. Only

contributing nodes for Ecological Setting A are shown. An Individual Population Resiliency sub-model (group of nodes) is included for each

management unit in each area of representation (i.e., ecological setting).
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adapted to other taxa and regions because the model is
grounded in the three R’s framework.

Each node within the Bayesian belief network houses
mutually exclusive categorical states. For example, the
model’s terminal output is a node representing Global
Imperilment Risk with two discrete states, “at risk” and
“secure” (nodes are italicized at first mention and capital-
ized thereafter; Figure 3). Because states are
nonoverlapping and exhaustive, the model estimates
complementary probabilities that sum to 1.0 (e.g., “at
risk” = 0.35 and “secure” = 0.65). Parent nodes are
located peripherally within the network and influence
the likelihoods of states within more centrally located
child nodes. States within parent nodes are given a likeli-
hood distribution that defines prior probabilities of a spe-
cies being in each state within a node. For example,
geographical rarity is often correlated with higher imper-
ilment risks (Pritt & Frimpong, 2010). Intensive
watershed-wide monitoring could convey with high cer-
tainty (e.g., Pr = 0.95) that a fish species’ distribution
within a watershed is restricted to 15 stream km
(e.g., Occupied Stream Length node’s state of
“10–25 km”). Alternatively, if a watershed has not been

sampled recently, prior probabilities could be set as uni-
form across plausible states characterizing categories
within the node, Occupied Stream Length, to reflect com-
plete uncertainty in the species’ distribution (i.e., equal
probabilities among states, Pr, “<10 km” = 0.33; Pr,
“10–25 km” = 0.33; Pr “>25 km” = 0.33; Table 1).

Causal linkages among parent and child nodes are
represented empirically a priori by conditional probabil-
ity tables within child nodes (Marcot et al., 2006). Values
within conditional probability tables reflect probabilities
of a species existing in each state within a child node con-
ditional on probabilities of states within parent nodes.
Conditional probability tables can be constructed solely
from empirical models for well-informed species, but we
used a mixture of expert judgment, literature, and
empirical data to parameterize our initial conditional
probability tables for data-deficient riverine fishes.
Numbers of states within parent nodes determine dimen-
sions of conditional probability tables of child nodes, so
we intentionally limited numbers of most parent nodes
and node states to ≤4 to minimize complexity of condi-
tional probability tables with two exceptions; dimensions
of conditional probability tables for Individual Population

F I GURE 3 Bayesian belief network formatted in Netica that illustrates linkages among population resiliency, redundancy, and species

vulnerability and predicts the probability of a species being in an “at-risk” state of extirpation in each ecological setting (i.e., representation).

Probabilities within each ecological setting’s Extirpation Risk node influence the probability of a species being at risk of global imperilment.

This example corresponds to Figure 1 and has seven known populations (Pop1–Pop7) across three unique ecological settings (A, B, and C).

ECOSPHERE 5 of 21
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Resiliency and Global Imperilment Risk are determined
by numbers of contributing management units and eco-
logical settings, respectively, which are specific to the
spatial context of an individual species being assessed
(described below). We developed our model in Program
Netica (Figure 3; version 6.04, Norsys Software Corp.,
Vancouver, British Columbia) and provide a reproducible
example in Program R Version 4.2.1 (see Data availability
statement).

Spatial context of analysis

The Bayesian belief network is organized hierarchi-
cally into multiple nested spatial scales (Figure 1). The
coarsest scale encompasses the historically occupied
range of a focal species (i.e., Global Imperilment Risk).
The species’ range is subdivided into mutually exclu-
sive geographical areas (ecological settings) that repre-
sent unique underlying genetic, ecological, or
physiographic diversity across the species’ range
(Smith et al., 2018; Wolf et al., 2015). Ecological set-
tings can be further subdivided into management units.
Management units can be delineated genetically
(i.e., distinct populations), physically (e.g., distinct
watersheds or hydrologic units), or practically
(agency-defined common management areas). Each
management unit generally encompasses a
“population,” and nodes for each management unit
(population resiliency-related nodes described below)
represent underlying population characteristics
(e.g., demographics, distributional trends through
time). Nodes characterizing relationships among man-
agement units (redundancy-related nodes described
below) within each ecological setting generally
represent processes associated with meta-population
dynamics (e.g., numbers of source populations and
among-population connectivity).

For simplicity within our initial riverine fishes
model, we defined management units as historically
occupied unique 10-digit Hydrological Unit Codes
(hereafter “HUC10”). Within each management unit,
distributional sampling records for a focal fish species
are joined to the nearest stream segment within the
National Hydrography Dataset stream network
(USGS & USEPA, 2012). Consequently, unique stream
segments delineated by tributary junctions are the spa-
tial grain of occurrences. Multiple occurrences of a focal
species within the same segment and on the same date
are treated as a single sampling event, and therefore,
their abundances are summed. The spatial midpoint of
each sampled stream segment serves as the geospatial
coordinates to estimate redundancy by calculating the

connectivity and isolation of management units within
each ecological setting.

Representing the three R’s with a Bayesian
belief network

Node and state definitions

The Bayesian belief network includes several nodes that
collectively predict probabilities of being “at risk” and
“secure” within the Global Imperilment Risk node
(i.e., terminal node; Figure 2). Model architecture and
node-state definitions are based on conservation litera-
ture of riverine fishes in the southeastern United States
and feedback from conservation practitioners. Most
nodes are associated with Individual Population
Resiliency (nine parent nodes and four child nodes).
Additional nodes predict Redundancy (five parent nodes
and two child nodes) and Species Vulnerability (six parent
nodes and two child nodes). Each node that informs pop-
ulation resiliency and redundancy reflects a distinct
aspect of the species’ threat profile. Ideally, each node in
the model represents causal influences of environmental
or population attributes on global imperilment risk
(Marcot et al., 2006). However, surrogate variables can be
used for situations when data are unavailable. We pro-
vide further explanation and detailed justification of
states within all nodes in Tables 1–3.

Resiliency

Populations that are resilient to environmental
stochasticity are likely large, stable or increasing, and
within geographical areas with sufficient habitat for indi-
viduals to survive and reproduce (Shaffer & Stein, 2000;
Smith et al., 2018; Wolf et al., 2015). Several nodes esti-
mate resiliency of the population in each management
unit (i.e., Individual Population Resiliency; Table 1;
Figure 2). Individual Population Resiliency is influenced
by Local Distribution, which is a function of the com-
plexity of stream sizes and locations (mainstem and
tributaries) where the species occurs (i.e., Network
Complexity; Fagan, 2002), the number of occupied seg-
ments (i.e., Occupied Segments), and the species’ recent
distributional size measured as the maximum stream
distance between recent (since year 2000) occurrences
(i.e., Occupied Stream Length). We characterize
“recent” as since year 2000, but the definition of recent
could also be a moving window (e.g., 20 years before
assessment, Freeman et al., 2005) or shift with periodic
reassessments (i.e., five-year reviews under ESA). Individual
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TAB L E 1 Parent nodes and discrete states influencing Individual Population Resiliency used to convert the initial influence diagram

into a Bayesian belief network.

State name Definition Justification

Network Complexity, nominal discrete states

Mainstem Only found in mainstem reaches Distribution within management units of a
species among mainstem reaches and
tributaries. A population with a complex,
dendritic distribution is more resilient
(Fagan, 2002).

Single tributary Found in a single tributary

Multiple tributaries Found in multiple tributaries

Complex Both mainstem and tributaries

Occupied Stream Length (km), continuous with discrete states

Restricted Stream length <10 km Recent (since January 1, 2000) occupied stream
length, measured as the distance between the
farthest upstream and downstream occupied
segments.

Moderate Stream length: 10–25 km

Widespread Stream length: >25 km

Naïve Occupancy (Ψ), continuous with discrete states

Potentially extirpated Ψ: ≤0.05 Proportion of unique segments sampled (since
January 1, 2000) where the focal species was
detected.

Rare Ψ: 0.06–0.25

Uncommon Ψ: 0.26–0.50

Common Ψ: >0.50

Naïve Occupancy Trend (%), continuous with discrete states

Relatively stable Trend: Growth or <5% decline Percentage change in naïve occupancy
(occupied segments/total segments sampled)
within a management unit between
historical (before January 1, 2000) and recent
(since January 1, 2000) time periods.
Calculation: ([recent Ψ − historical
Ψ]/historical Ψ) × 100.

Moderate decline Trend: 5%–30% decline

Strong decline Trend: >30% decline

Occupied Segments (count), continuous with discrete states

One Occupied segments: 1 Number of occupied stream segments within a
management unit regardless of time period.Rare Occupied segments: 2–5

Many Occupied segments: >5

Qualitative Abundance (count), continuous with discrete states

Rare Abundance: <10 individuals Maximum number of individuals captured in a
segment within a management unit on a single
date.

Uncommon Abundance: 10–75 individuals

Abundant Abundance: >75 individuals

Years Since Last Encounter (years), continuous with discrete states

Recent Last encounter: <10 years Number of years since a focal species was last
captured within a management unit.Moderate Last encounter: 10–30 years

Historical Last encounter: >30 years

Hybridization, nominal discrete states

Yes Evidence of hybridization Presence or absence of hybridization involving a
species within a management unit.No No evidence of hybridization

Nonnative Species (count), continuous with discrete states

Absent No known nonnative species Richness of nonnative fishes in a management
unit.Few Nonnative richness: 1–5 species

Many Nonnative richness: >5 species

ECOSPHERE 7 of 21
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Population Resiliency is also influenced by Population
Strength, which is informed using recent Naïve Occupancy
(proportion of sampled segments where the species was
detected), number of years since last encountered within a
management unit (i.e., Years Since Last Encounter), and
percentage change in naïve occupancy among segments
before and since January 1, 2000 (i.e., Naïve Occupancy
Trend). We also included the maximum abundance
reported during any unique sampling event (i.e., same seg-
ment on the same date) reported within a management unit
as a qualitative index of abundance (i.e., Qualitative
Abundance).

Individual Population Resiliency could be influenced
by threats not immediately reflected in distributional and
demographic changes such as realized or potential influ-
ences of nonnative species. In the Other Threats node, we
included the combined deleterious effects of Hybridization
(i.e., documented presence of hybrids involving the spe-
cies) and Nonnative Species (i.e., nonnative fish richness)
detected within a management unit (Table 1). These
threats were factors imperiling multiple southeastern
U.S. species listed recently as Endangered under the ESA
(e.g., Barrens Topminnow, Fundulus julisia, Ennen et al.,
2021; Candy Darter, Etheostoma osburni, Dunn &

Angermeier, 2019). The Other Threats node could be
adapted to reflect alternative species-specific threats or
habitat conditions (e.g., stream warming, land-use change,
and water quality; Noss et al., 2021) or to explicitly accom-
modate threats outlined by policy (e.g., Five Factors under
ESA; Shirey et al., 2022).

After combining Local Distribution, Population
Strength, and Other Threats, each management unit will
have an Individual Population Resiliency with predicted
probabilities of having “adequate” or “inadequate” resil-
iency. Individual Population Resiliency nodes are aver-
aged to scale risks of individual management units to an
overall estimate of Ecological Setting Resiliency within
each ecological setting.

Redundancy

Redundancy within each ecological setting is estimated
using the number and distribution of populations
(i.e., HUC10 management units) and metrics for poten-
tial meta-population connectivity among management
units (Table 2). Redundancy can be considered high
when the risk of irreplaceable loss is spread among

TAB L E 2 Parent nodes and discrete states influencing Redundancy nodes used to convert the initial influence diagram into a Bayesian

belief network.

State Definition Justification

Network Connectivity (%), continuous with discrete states

Low Connected populations <25% Percentage of shortest path connections among populations
(management units) uninterrupted by barriers. Population
(N) pairwise connections = N!/(2 (N−2)!).

Moderate Connected populations: 25%–75%

High Connected populations: >75%

Population Isolation (km), continuous with discrete states

Near Separated by <15 km Mean shortest-path distance (km) to the nearest management
unit for each management unit in an ecological setting.Moderate Separated by 15–50 km

Far Separated by >50 km

Ranging Movements, continuous with discrete states

Short Local movements: <5.0 km Home-range size of adults or observed movement data of adults
from empirical research on focal or surrogate species and/or
expert elicitation.

Moderate Ranging movements: >5.0 km

Long Migration across discrete habitats

Proportion Extant, continuous with discrete states

Low <0.34 Proportion of known historically occupied management units
with naïve occupancy >0.05 since January 1, 2000.Moderate 0.34–0.67

High >0.67

Extant Populations (count), continuous with discrete states

Few 0–1 management units Number of management units with naive occupancy >0.05 since
January 1, 2000.Moderate 2–5 management units

Many >5 management units
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multiple resilient populations within each ecological
setting (Redford et al., 2011; Wolf et al., 2015). The model
characterizes population replication with Extant
Populations and Proportion Extant nodes, which are the
sum and proportion of management units with naïve occu-
pancy >0.05 since year 2000, respectively. Hence, this ver-
sion of the model assumes populations in management
units are potentially extirpated where recent naive occu-
pancy is very low or zero, and therefore, these manage-
ment units do not contribute to redundancy. However, this
threshold for recent naïve occupancy could be modified if
(1) practitioners have recent evidence demonstrating a
population is extant or (2) populations within management
units still contribute to redundancy within ecological set-
tings despite having very low naïve occupancy.

High connectivity among populations will facilitate
recolonization of extirpated populations, whereas isolated
populations have higher risk of permanent extirpation
(Perkin et al., 2015; Steen & Barrett, 2015). We
represented Population Connectivity with three parent
nodes: Ranging Movements, Population Isolation, and
Network Connectivity (Table 2). Species with broad home
ranges are likely better dispersers capable of maintaining
population connectivity under natural settings.
Therefore, we incorporated the Ranging Movements
node based on the literature-reported home-range size of
a focal or surrogate species. The model characterizes
Population Isolation among populations within ecologi-
cal settings as the mean fluvial distance of each manage-
ment unit to the closest occupied segment in a different
management unit within the same ecological setting.
Stream fragmentation may further isolate populations
that were formerly connected, rendering
populations more vulnerable to future decline and extir-
pation (Gido et al., 2016; Perkin et al., 2015); therefore,
we characterized potential for population connectivity as
the proportion of river network watercourse connections
among management units that are uninterrupted by bar-
riers within an ecological setting (i.e., Network
Connectivity). We considered pairwise watercourse con-
nections between two management units to be
interrupted if the intervening flow path encountered an
on-network barrier georeferenced by the Southeastern
Aquatic Habitat Partnership (SARP, 2020).

Species vulnerability

The Species Vulnerability node estimates the predisposi-
tion of a species to extirpation (Table 3). Parent nodes of
Species Vulnerability were informed by reported corre-
lates of imperilment from studies set mainly in the south-
eastern United States (e.g., Angermeier, 1995; Burkhead

et al., 1997; Kominoski et al., 2018; Pritt & Frimpong,
2010). We qualitatively classified a species into one
Life-History Strategy among three possible life-history
strategies (“equilibrium,” “opportunistic,” and “periodic”)
based on its or a surrogate’s literature-reported genera-
tion time, juvenile survival, and fecundity (Winemiller,
2005). Anthropogenic influences generally simplify fresh-
water ecosystems, thereby favoring species that thrive in
stable environments by investing heavily in juvenile sur-
vival (i.e., equilibrium strategy; Mims & Olden, 2012). In
contrast, riverine species exhibiting periodic and opportu-
nistic strategies are often affected by anthropogenically
reduced ecosystem variability. Imperilment vulnerability
is also related to the Maximum Length of adults;
large-bodied species (total length >500 mm) with slower
intrinsic population growth (Parent & Schriml, 1995;
Zhang et al., 2015) often require connected, wide-ranging
habitats to complete their life cycles and are slow to
recover from overexploitation making them more prone
to imperilment (Winemiller, 2005). At the other extreme,
small-bodied species (total length <250 mm) with limited
dispersal potential are also at higher risk of imperilment
(Angermeier, 1995; Burkhead et al., 1997; Kopf et al.,
2017), rendering medium-bodied species least susceptible
to imperilment (250–500 mm; Olden et al., 2008;
Reynolds et al., 2005).

The interior Resource Specialization node integrates
elevated imperilment risks associated with specialized
resource needs for foraging and reproduction (Pritt &
Frimpong, 2010). Species that feed at higher and
narrower trophic levels (obligate invertivores
and piscivores) are sensitive to food-web disruptions at
lower trophic levels (Adult Feeding Guild; Olden et al.,
2008; Scott & Helfman, 2001). Further, specialized spe-
cies that feed and/or spawn among stream substrate
(Benthic-Dependency; Angermeier, 1995; Midway et al.,
2015) and fluvial-dependent species that are extirpated by
river impounding (Lotic Dependency) are prone to imper-
ilment, especially in regions with few natural lentic
waterbodies (Kominoski et al., 2018; Reynolds et al.,
2005). Finally, fishes with prolonged drift-dependent
early life stages that are vulnerable to river fragmentation
and drying are at increased risk of extirpation compared
to species with non-drifting early life stages (i.e.,
Drift-Dependency; Perkin et al., 2015).

Representation

The broad distribution of resilient populations protects
unique genetic diversity, thereby maintaining future
adaptative potential (Carroll et al., 2010; Redford et al.,
2011; Wolf et al., 2015). Within the three R’s framework,
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ecological settings delineate unique genetic, ecological,
behavioral, and environmental diversity. Each ecologi-
cal setting has nodes for Ecological Setting Resiliency,
Redundancy, and Species Vulnerability, which combine
to influence the probability of a species being in an
“at-risk” state of extirpation within the node Extirpation
Risk (Figure 2). Thus, the configuration of peripheral
nodes within the Bayesian belief network will vary
depending on numbers of ecological settings and man-
agement units, but core relationships among resiliency,

redundancy, and vulnerability are universal. A taxon
with low risks of extirpation across ecological settings
has high representation. Finally, Extirpation Risk nodes
for each ecological setting combine to collectively pre-
dict the probability of being in an “at-risk” state within
the Global Imperilment Risk node. Below, we highlight
procedures needed to apply a version of the
risk-assessment model to a data-deficient species peti-
tioned to be listed as Threatened or Endangered under
the ESA.

TAB L E 3 Parent nodes and discrete states influencing Species Vulnerability used to convert the initial influence diagram into a

Bayesian belief network.

State Definition Justification

Drift-Dependency, nominal discrete states

Drift-dependent Spawning is dependent upon unfragmented river due
to drift-dependent early life stages.

Pelagic spawning fishes are more susceptible to local
extirpation in areas with low stream connectivity
(Perkin et al., 2015).Other Other spawning modes that do not require extensive

drift distances.

Adult Feeding Guild, nominal discrete states

Piscivore Diet: primarily fish prey The trophic level at which adults predominately feed
may influence imperilment risk; species that feed
at higher and narrower trophic levels are more
prone to imperilment (Olden et al., 2008;
Zhang et al., 2015).

Invertivore Diet: primarily invertebrate prey

Other Diet: primarily feeds at lower trophic levels (e.g., algae,
vegetation, and detritus)

Maximum Length (mm), continuous with discrete states

Small Total length: <250 mm Medium-sized species are less vulnerable to extirpation
(Angermeier, 1995; Freeman et al., 2005;
Olden et al., 2007; Zhang et al., 2015)

Medium Total length: 250–500 mm

Large Total length: >500 mm

Benthic-Dependency, nominal discrete states

Non-benthic No obligate benthic foraging or spawning Species with benthic-dependent life stages are more
vulnerable to extirpation (Angermeier, 1995;
Burkhead et al., 1997; Midway et al., 2015).

Partially
benthic

Obligate benthic spawning or foraging

Fully benthic Obligate benthic spawning and foraging

Lotic Dependency, nominal discrete states

Lotic Obligate or prefers lotic streams and rivers Lotic species are extirpated due to impounding
and large-scale water infrastructure
(Freeman et al., 2005; Kominoski et al., 2018).

Lentic Prefers lentic waterbodies

Life-History Strategy, nominal discrete states

Opportunistic Species has short life span, small clutch sizes, short
generation times, and low investment per offspring.
Adapted to variable environmental conditions.

Life-history strategies characterize relationships among
juvenile survival, generation time, and fecundity,
which provide a general means to predict whether a
species has high or low demographic resilience
(Winemiller, 2005). Equilibrium life-history
strategies generally have lower imperilment risk by
benefitting from anthropogenic environmental
alterations that reduce ecosystem variability
(Mims & Olden, 2012).

Periodic Species has long life span, large clutch sizes, long
generation times, and low investment per offspring.
Adapted to moderately dynamic and seasonal
changes to environmental conditions.

Equilibrium Species has variable life span, small clutch sizes,
moderate to long generation times, and high
investment per offspring. Adapted to stable
environmental conditions.
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 21508925, 2024, 1, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecs2.4738, W

iley O
nline L

ibrary on [25/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Case study of Piebald Madtom

Piebald Madtom is a small-bodied catfish endemic to the
southeastern United States. This species’ data deficiency,
rarity, and vulnerable traits make it an instructive case
study. Moreover, our familiarity with this species pro-
vided real-time feedback on model behavior during
model development. Both our risk-assessment model and
Species Status Assessments under the ESA are grounded
in the three R’s framework. However, we caution that
this case study uses preliminary data and information
available before Piebald Madtom’s Species Status
Assessment. Therefore, presented results may vary from
eventual findings of the Species Status Assessment of
Piebald Madtom.

Implementing this imperilment risk model within a
Bayesian belief network requires 15 steps organized into
four general phases: (1) data solicitation, (2) model devel-
opment, (3) compiling and informing nodes, and
(4) implementation and revision. We overview each
phase within the context of Piebald Madtom’s case study,
but we provide expanded discussion of each step within
Appendix S1. We consulted an expert panel of state
agency, university, and U.S. Fish and Wildlife Service
personnel to implement the model for Piebald Madtom.

Distribution and population strength

Piebald Madtom is restricted to eastern tributaries of the
Mississippi River in western Tennessee and Mississippi.
Records exist in six river systems: Obion, Big Black,
Hatchie, Loosahatchie, Yazoo, and Wolf (Thomas &
Burr, 2004). A single specimen was collected in the
Mississippi River in 1976; however, this individual likely
originated from the nearby Hatchie River (Thomas &
Burr, 2004). Only populations in the Obion, Hatchie, and
Wolf river systems are considered stable (Johansen et al.,
2017). Twenty-one known populations exist worldwide,
geographically defined here as unique HUC10 manage-
ment units, and despite dedicated sampling for more
than four decades, many populations are known from
only a single stream segment (Appendix S2: Table S1).
Individuals have been collected by a variety of sampling
methods (i.e., backpack electrofishing, seining, and
dip-netting), but little historical data exist on catch per
unit effort by gear (Wagner et al., 2019). The most indi-
viduals collected during a single sampling event was
nine, which was in the Hatchie-Wolf ecological setting.
The species has a relatively small and disjunct distribu-
tion, exists in naturally low numbers, and is susceptible
to habitat degradation that is occurring throughout its
range (Thomas & Burr, 2004).

Justification and primary threats

Piebald Madtom is rare throughout its narrow geographi-
cal range, and recent sampling efforts suggest that the
species has declined since its description (Johansen et al.,
2017; Thomas & Burr, 2004; Wagner et al., 2019). Piebald
Madtom is particularly sensitive to stream channelization
that reduces stream complexity, and to agricultural and
forestry practices that degrade riparian areas, reduce
woody cover habitats, and increase fine sediment
(Johansen et al., 2017). Only the upper Hatchie River sys-
tem remains relatively undisturbed and has intact ripar-
ian bottomland forests that provide woody and organic
inputs along a meandering channel. Piebald Madtom
populations are presumably being maintained in other
highly eroded lower river reaches by recruitment in the
upstream reaches (Thomas & Burr, 2004).

Phase 1: Data solicitation

Data were obtained from state agencies (Mississippi
Department of Wildlife, Fisheries, and Parks; Tennessee
Wildlife Resources Agency) and institutional researchers
at Austin Peay State University, University of Southern
Mississippi, and University of Mississippi. All sampling
data were taken from targeted Piebald Madtom monitor-
ing efforts and include samples where Piebald Madtom
were not detected. The collective database represents all
targeted sampling efforts in areas with historical Piebald
Madtom records before 2021 (100 occurrences spanning
49 unique stream segments; Figure 4). Additional fish
sampling data from management units historically occu-
pied by Piebald Madtom were used to enumerate
nonnative fish species’ richness within each management
unit to inform the Other Threats node. Nonnative fish
richness within management units was generally low
(0–4 species), and there was no evidence of hybridization
with other madtom catfishes.

Phase 2: Develop the imperilment-risk
assessment model structure

Due to an absence of range-wide genetic data on Piebald
Madtom to delineate representative ecological settings,
we characterized representative settings by soliciting
input from five experts with extensive experience with
Piebald Madtom sampling and natural history from state
agencies (TN, KY, and MS; Figure 4). We sent a confiden-
tial Google Form document to each expert independently
to identify the number and distribution of unique ecolog-
ical settings where Piebald Madtom occurred historically.
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We presented four plausible options for delineating eco-
logical settings to experts to consider and included an
“other” option if none of the presented options were
agreeable. Four of the five experts participated by
selecting and providing a short justification for the distri-
bution most representative of Piebald Madtom ecological
settings. We addressed disagreements using short
follow-up discussions. Experts deemed that the six river
systems that historically supported Piebald Madtom
consisted of four unique ecological settings (Big Black,
Hatchie-Wolf, Obion, and Yazoo; Figure 4). However,
ongoing genetic research may alter our perception of
Piebald Madtom representative ecological settings.

Predicted probability of being at risk of imperilment
within the Global Imperilment Risk node is conditional
on extirpation risks within individual ecological settings.
The conditional probability table that governs probabili-
ties of the states “at risk” and “secure” within the Global
Imperilment Risk node was parametrized a priori to give
equal weight to each ecological setting’s extirpation risk.
For example, the Extirpation Risk node for each ecologi-
cal setting also has two states: “at risk” or “secure.”

Given there are four ecological settings (N) contributing
to the Global Imperilment Risk node, there are 16 combi-
nations of ecological setting states (2N) to parameterize
within the conditional probability table of the Global
Imperilment Risk node. When assuming each ecological
setting contributes equally to Global Imperilment Risk
and if only one of four ecological settings exists in the
“at-risk” state of extirpation, then the a priori parameter-
ized conditional probabilities of being in states of “at
risk” and “secure” within Global Imperilment Risk
would be 0.25 and 0.75, respectively. Next, we included
model nodes for Redundancy, Ecological Setting
Resiliency, and Species Vulnerability for each ecological
setting.

We included an Individual Population Resiliency
node with constituent parent nodes for each of the 21 cur-
rently or historically occupied management units
(Appendix S2: Table S2). Conditional probability tables
for all Ecological Setting Resiliency nodes were parame-
terized so that the population within each management
unit contributes equally to Ecological Setting Resiliency
within each ecological setting. All ecological settings had

F I GURE 4 Documented occurrences of Piebald Madtom (Noturus gladiator) in western TN and MS (USA; N = 100 occurrences

between 1954 and 2020 spanning 49 unique stream segments). Piebald Madtom subject-matter experts identified four ecological settings

representing unique geographical variation among population groups. Shapefile data sources: stream networks (National Hydrography

Dataset version 2), state boundaries (U.S. Census Bureau), and watershed boundaries (U.S. Geological Survey Watershed Boundary Dataset).
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multiple management units (Figure 4): 4 (Big Black),
10 (Hatchie-Wolf), 4 (Obion), and 3 (Yazoo).

Phase 3: Compile the Bayesian belief network
and inform nodes

Recent and historical sampling data were used to inform
parent nodes that contribute to Individual Population
Resiliency nodes for each management unit
(Appendix S2: Tables S2 and S3). Piebald Madtom has
been detected in all four ecological settings since 2000
but in only 14 of 18 (78%) sampled management units,
and the average naive occupancy within sampled man-
agement units declined slightly between management
units sampled before and since 2000 (−11.5%).

No sampling has occurred within three management
units since 2000, creating uncertainty in the true states
for the parent nodes Occupied Stream Length, Naïve
Occupancy, Naïve Occupancy Trend, Extant Populations,
and Proportion of Extant populations. Therefore, we
propagated this uncertainty throughout the Bayesian
belief network by apportioning equal prior probabilities
among plausible states within these nodes. For example,
in the Big Black ecological setting, only two of four man-
agement units had been sampled since 2000, confirming
at least one population is extant. Sampling effort was low
in the other sampled management unit, and two manage-
ment units had not been sampled at all, rendering uncer-
tainty about the number of management units with
persistent populations. Accordingly, we assigned even
prior probabilities (Pr = 0.50) to the states “few” (= 0–1
extant populations) and “moderate” (= 2–5 extant
populations) within the Extant Populations node because
either state was equally likely while specifying there was
no probability (Pr = 0.0) of the Big Black setting having
“many” (>5) extant populations.

Redundancy nodes were mainly informed using spe-
cies’ distributional data across 49 occupied unique stream
segments. There were 569 on-network barriers within
management units; however, most barriers occurred
within smaller, peripheral streams rather than mainstem
corridors connecting management units. For example,
the Big Black and Obion ecological settings had 100%
barrier-free connections among management units. In
contrast, only 64.4% and 33.3% of management units had
intervening barrier-free connections in the Hatchie-Wolf
and Yazoo ecological settings, respectively (Appendix S2:
Table S3).

Parent nodes of the Species Vulnerability node were
informed using available literature for Piebald Madtom,
open-source web resources (FishTraits, Frimpong &
Angermeier, 2009; Fishbase.org, Froese & Pauly, 2021),

and inferred from its sister species, Northern Madtom
(N. stigmosus). Piebald Madtom has some vulnerable
traits that predispose it to imperilment risk including
small body size (vs. medium), benthic foraging and
spawning dependencies, and reliance on lotic systems
(Ross, 2001). However, Piebald Madtom exhibits an equi-
librium life-history strategy that is generally more resis-
tant to imperilment and does not have a prolonged
drift-dependent early life stage. Altogether, Piebald
Madtom is slightly more “vulnerable” (Pr = 0.59) than
“resistant” (Pr = 0.41). Conditional probability tables for
interior child nodes within the Bayesian belief network
for Piebald Madtom are in Appendix S3: Tables S1–S11.

Phase 4: Implement and revise the model

Globally, the probability of Piebald Madtom being in an
“at-risk” state of imperilment has been predicted to be
0.51, revealing considerable uncertainty in estimates due
partly to distributional data gaps from insufficient sam-
pling. The probability that Piebald Madtom occurs in the
“at-risk” state of extirpation varies considerably among
the four ecological settings (Figure 5). Populations within
southernmost ecological settings had higher probabilities
of being at risk of extirpation (Big Black, Pr = 0.71,
Yazoo, Pr = 0.51) than populations in more northern
ecological settings (Hatchie-Wolf, Pr = 0.40; Obion,
Pr = 0.41; Table 4; Figure 5). Altogether, 11 of 21 manage-
ment units were predicted to have “adequate” Individual
Population Resiliency (Pr >0.50). Only the Obion ecologi-
cal setting had all management units with “adequate”
Individual Population Resiliency, while the Big Black
was the only ecological setting without any management
units with “adequate” Individual Population Resiliency.

The particularly high probability of being at risk of
extirpation in the Big Black ecological setting was driven
by both low probabilities of “adequate” Ecological Setting
Resiliency (Pr = 0.35) and Redundancy (Pr = 0.25;
Table 4). However, the lack of recent sampling within two
management units within the Big Black ecological setting
created considerable uncertainty in Redundancy because
the number of extant populations could range from one
(no redundancy) to three (2 redundant populations).
Using targeted sensitivity analysis, we can reveal that if
sampling confirmed Piebald Madtom persists within these
two unsampled management units, estimated
Redundancy would increase (Pr, “adequate” = 0.67 from
0.25), thereby lowering estimated Big Black Extirpation
Risk (Pr, “at risk” = 0.41 from 0.71) and Global
Imperilment Risk (Pr, “at risk” = 0.46 from 0.51).

Overall, Piebald Madtom is likely at risk of extirpa-
tion in portions of its range based on modeled data, but
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F I GURE 5 (a) Probability of Piebald Madtom (Noturus gladiator) populations within each ecological setting being in an “at-risk” state
of extirpation. (b) Probability of the population within each management unit (N = 21 units) having “inadequate” Population Resiliency.

(c) Probability of an ecological setting having “inadequate” Ecological Setting Resiliency. (d) Probability of ecological settings having
“inadequate” Redundancy. Shapefile data sources: stream networks (National Hydrography Dataset version 2), state boundaries (U.S.

Census Bureau), and watershed boundaries (U.S. Geological Survey Watershed Boundary Dataset).

TAB L E 4 Predicted probabilities of Piebald Madtom (Noturus gladiator) in eastern tributaries of the lower Mississippi River in western

Mississippi and Tennessee, USA, having “adequate” Ecological Setting Resiliency and Redundancy, and being “at risk” of extirpation by

ecological setting.

Ecological setting Setting resiliency p(adequate) Redundancy p(adequate) Extirpation risk p(at risk)

Obion 0.60 0.67 0.41

Hatchie-Wolf 0.52 0.78 0.40

Yazoo 0.50 0.56 0.51

Big Black 0.35 0.25 0.71

14 of 21 DUNN ET AL.
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there is high uncertainty regarding whether this species
exists in an at-risk state of Global Imperilment based on
available data. A lack of recent targeted sampling in spe-
cific management units contributes to this uncertainty.
Further, sensitivity analyses within the model could help
prioritize future conservation efforts. Although Yazoo
and Hatchie-Wolf ecological settings have lower probabil-
ities of being at risk of extirpation, probabilities of “ade-
quate” population resiliency of individual management
units range widely (Hatchie-Wolf, Pr = 0.29–0.78; Yazoo,
Pr = 0.39–0.57), indicating local management actions
aimed at specific management units could be necessary
even in ecological settings with lower risks of extirpation.

DISCUSSION

Management agencies require robust and transparent
approaches for prioritizing limited conservation resources
for geographic areas, species, and populations in greatest
need of conservation (Joseph et al., 2009; Steen & Barrett,
2015; Taylor et al., 2011). Although interest in rigorous
quantitative conservation prioritization frameworks has
grown in recent years (Brehm et al., 2010; Game et al.,
2013; Gauthier et al., 2010), many conservation status
assessments still rely heavily on standardized abundance
data that are rarely available for data-deficient species, and
unstructured input from subject-matter experts (Allendorf
et al., 1997). To help minimize biodiversity loss, we pro-
vide a quantitative approach that integrates disparate
information sources amenable to evaluating imperilment
of data-deficient species within the three R’s framework.

This risk-assessment tool enables interpretation of
various biological indicators of imperilment risk to
inform conservation status decisions defensibly, transpar-
ently, and repeatably. This model is flexible enough to
include a suite of possible information sources including
expert judgment in the absence of quantitative data. By
clearly stating steps used to assess imperilment risk, this
model facilitates the explicit examination of conservation
principles, reveals knowledge gaps and uncertainty, and
increases the potential for engagement and participation,
which can further improve the decision-making process
(Joseph et al., 2009). Moreover, the Bayesian belief net-
work provides a platform for quickly evaluating sensitivi-
ties of each component within the three R’s framework
to alternative potential decisions such as conducting
research (e.g., determining unknown life-history infor-
mation), monitoring in under-surveyed areas, and
implementing management actions (e.g., barrier
removals and reintroductions).

Insufficiently detailed biological and distributional
information often restricts utility of prioritization and

assessment tools (Coates & Atkins, 2001; Dulvy et al.,
2014; Zhang et al., 2015). Without explicit methods to
represent uncertainty, understudied species have been
historically excluded from conservation status assess-
ments (Bland et al., 2015; Coates & Atkins, 2001;
Martín-L�opez et al., 2011). By integrating many different
potential measures of distribution and population
strength with life-history data while accounting for
uncertainty, this tool provides a method to evaluate rare
and poorly understood species in need of conservation.

The Species Vulnerability node enables the
risk-assessment model to draw from a rich literature base
on traits that predispose species to imperilment. This
node complements spatially informed nodes of Resiliency
and Redundancy by allowing traits to further mediate
imperilment risk. This traits-based approach is likely
especially valuable in species-rich regions with high
levels of endemism where little might be known about an
individual species but where there might be several stud-
ies on ecologically similar or taxonomically related spe-
cies within the region. For example, specific natural
history information for Piebald Madtom is limited to
descriptive accounts (e.g., Ross, 2001) and small-scale
studies (Thomas & Burr, 2004; Wagner & Roberts, 2020),
but we drew additional information from closely related
madtom catfishes (Noturus spp.) and broader patterns of
imperilment across the biologically rich southeastern
United States where imperilment is often correlated with
small body size (Angermeier, 1995; Freeman et al., 2005),
benthic specialization (Angermeier, 1995; Burkhead
et al., 1997; Midway et al., 2015), and lotic dependency
(Freeman et al., 2005; Kominoski et al., 2018). This ability
to harness knowledge from strength in numbers also
diversifies information sources beyond non-standardized
distributional collections, which typically have high
uncertainty given that dedicated survey effort is
often low for non-game freshwater taxa (Fitzgerald,
Henderson, et al., 2021).

The hierarchal structuring of the model enables
predicting resiliency and redundancy for each ecological
setting separately before combining predictions from eco-
logical settings to inform the Global Imperilment Risk
terminal node. This capability provides high resolution
for practitioners who wish to identify and prioritize spe-
cific spatial units that have particularly high risk of
imperilment or that disproportionally contribute to
uncertainty. For example, within the Piebald Madtom
case study, the Hatchie-Wolf ecological setting had rela-
tively high resiliency on average, but several manage-
ment units within the Hatchie-Wolf setting had low
resiliency. Thus, this model could potentially serve as a
prescriptive tool for allocating limited management
resources. This capability could be especially relevant
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for informing conservation decisions in which
protected status designations can be given to individual
populations and ecological settings (e.g., ESA, Funk
et al., 2019). Further, this hierarchy allows predictions
to be reaggregated rapidly to align with revised
taxonomic classifications as new molecular methods
provide greater insight into cryptic species diversity
(e.g., Johnson et al., 2018).

An important area of further model development is
how to aggregate predictions from fine to coarse spatial
units. Here, we aggregated predictions from finer (man-
agement units) to coarser spatial units (ecological set-
tings, range-wide) by arithmetically averaging individual
risks of finer-grain units. However, practitioners may
consider alternative rules such as weighted averaging by
population size or area, geometric averaging if trends
among management units and settings are correlated, or
using predicted extirpation risks of management units as
parameters within separate simulation modeling of the
extirpation process (McGowan et al., 2020).

This risk-assessment model provides an objective
method for informing the likelihood that species are at risk
of extirpation within ecological settings and range-wide
imperilment. Accordingly, this model could be used as a
tool for initial rapid screening of species inventories to
identify potentially at-risk species based on available distri-
butional data or as a standardized tool for assigning a for-
mal conservation status. Both applications would require
users to adopt explicit risk-tolerance levels, which may
vary by the conservation decision context. For example, if
the model is used for early detection of at-risk species
(e.g., Bland et al., 2015; Pritt & Frimpong, 2010), model
users might consider a moderate risk-tolerance threshold
for predicted Global Imperilment Risk (e.g., at-risk thresh-
old of Pr >0.50), especially if exceeding this at-risk thresh-
old leads to further data acquisition and investigation to
reduce model uncertainty. In contrast, conservation practi-
tioners might be more risk-tolerant if conservation status
designations are reserved for species at greatest risk for
the purpose of prioritizing limited resources (e.g., at-risk
threshold of Pr >0.75). We caution against strictly using
predicted risks from this model for conservation status
designations that incorporate additional factors unrelated
to imperilment risk. For example, predicted risks from this
model iteration may not align with designations under
the ESA (i.e., Endangered and Threatened), which are pol-
icy decisions that additionally consider socioeconomic
impacts of status designations, future threat regimes, and
momentum from ongoing conservation actions (Smith
et al., 2018). However, pairing standardized modeling
approaches with explicit risk-tolerance levels (Cummings
et al., 2018) could increase the defensibility of the biologi-
cal component of ESA and other status designations.

Piebald Madtom is considered here for a case study
representative of many data-deficient species in the
southeastern United States. However, we caution that
our preliminary results should not foreshadow findings
within the forthcoming Species Status Assessment of
Piebald Madtom under the ESA. We believe after further
customization, our model could eventually be used to cal-
culate current imperilment risks—one component of
Species Status Assessments—because the model provides
a structured quantitative approach for organizing dispa-
rate information sources and data types within the three
R’s framework. Importantly, a Species Status Assessment
operates within a broader framework that synthesizes
ecological information and considers future threats to
species viability in addition to current imperilment risks.
Accordingly, calculated risks could change if Piebald
Madtom’s Species Status Assessment uncovers additional
data or ecological knowledge, which could affect the
model’s inputs, network configuration, and conditional
probability tables. For example, additional genetic infor-
mation on population boundaries may redefine ecological
settings, or species experts might identify additional
threats that influence species’ imperilment risk.
Nonetheless, the model is capable of rapidly incorporat-
ing these additional sources of information. This ability
to incrementally customize the model blends the need for
standardization across assessments while providing some
flexibility for tailoring assessments to different species
and imperilment contexts. Moreover, this flexibility is
amenable to subsequent reevaluations of a focal species
and allows for incorporating additional information and
knowledge through time.

Conservation practitioners who could eventually
use the model will continue to be integral to the
co-development of this approach. For example, population
extirpations are difficult to confirm, creating high
uncertainty in the persistence of species within
specific management units (Baumsteiger & Moyle, 2017).
Therefore, conservation practitioners recommended
modifying the Naïve Occupancy node in future model iter-
ations to distinguish between states of extirpation (naïve
occupancy = 0.00) and states of extreme landscape rarity
(0.00 < naïve occupancy ≤ 0.05). This change would
enable incorporating the uncertainty between these two
states into the risk assessment by assigning nonzero prior
probabilities to each of these two states (e.g., extirpation,
Pr = 0.50; extreme rarity, Pr = 0.50). If recent monitoring
were to confirm persistence of a population within a man-
agement unit, then prior probabilities within the model
could be updated to reflect this reduction in uncertainty
(e.g., extirpation, Pr = 0.00; extreme rarity, Pr = 1.00).

There are other potential pathways for refining the
model depending on model application. For example, if
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this model were used to support Species Status
Assessments, it would be instructive to ground-truth the
model with data from species with existing Species Status
Assessments while working with conservation practi-
tioners to refine the model’s network architecture and
conditional probability tables to better align with ESA
requirements. Moreover, the current model does not pro-
ject imperilment risk under future conditions, so the
model would need to be adapted to incorporate risks
posed by the numerous threats expected to further jeop-
ardize freshwater species over timescales relevant to the
life cycle of a focal species. In future iterations and appli-
cations of the model, practitioners might consider using
alternative forms of information that could reduce uncer-
tainty among prior probabilities within parent nodes
such as employing species distribution models
(e.g., Ramirez-Reyes et al., 2021) or expert judgments
from formal methods of elicitation (Fitzgerald, Smith,
et al., 2021).

While acknowledging the need for further model
development and revision, we view this initial model as
an important step toward more comprehensively evaluat-
ing imperilment risk of aquatic species. We anticipate
our model could assist conservation practitioners (1) iden-
tify at-risk species as candidates for proactive conserva-
tion actions before official government-listing decisions,
(2) identify important drivers of imperilment risk and tai-
lor conservation actions in specific settings and water-
sheds, (3) facilitate greater technical participation among
experts, and (4) efficiently identify areas supporting
at-risk species (Williams & Johnson, 2015). Both data
deficiency and imperilment rates are high among many
aquatic groups (Haag & Williams, 2014; Jelks et al., 2008;
Johnson et al., 2013; Richman et al., 2015). Tools such as
this, which explicitly account for uncertainty and draw
from diverse information sources, can help integrate
these data-deficient species into priority setting, thereby
extending conservation actions to many of the most vul-
nerable species.
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