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Abstract. It is increasingly common for studies of animal ecology to use model-based
predictions of environmental variables as explanatory or predictor variables, even though
model prediction uncertainty is typically unknown. To demonstrate the potential for
misleading inferences when model predictions with error are used in place of direct
measurements, we compared snow water equivalent (SWE) and snow depth as predicted by
the Snow Data Assimilation System (SNODAS) to field measurements of SWE and snow
depth. We examined locations on elk (Cervus canadensis) winter ranges in western Wyoming,
because modeled data such as SNODAS output are often used for inferences on elk ecology.
Overall, SNODAS predictions tended to overestimate field measurements, prediction
uncertainty was high, and the difference between SNODAS predictions and field
measurements was greater in snow shadows for both snow variables compared to non-snow
shadow areas. We used a simple simulation of snow effects on the probability of an elk being
killed by a predator to show that, if SNODAS prediction uncertainty was ignored, we might
have mistakenly concluded that SWE was not an important factor in where elk were killed in
predatory attacks during the winter. In this simulation, we were interested in the effects of
snow at finer scales (,1 km2) than the resolution of SNODAS. If bias were to decrease when
SNODAS predictions are averaged over coarser scales, SNODAS would be applicable to
population-level ecology studies. In our study, however, averaging predictions over moderate
to broad spatial scales (9–2200 km2) did not reduce the differences between SNODAS
predictions and field measurements. This study highlights the need to carefully evaluate two
issues when using model output as an explanatory variable in subsequent analysis: (1) the
model’s resolution relative to the scale of the ecological question of interest and (2) the
implications of prediction uncertainty on inferences when using model predictions as
explanatory or predictor variables.
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INTRODUCTION

Statistical and mathematical models are often used to

predict environmental variables where and when direct

measurements are not collected (e.g., PRISM, Daymet,

and WorldClim climate variables). These models may

vary in complexity, extent, and spatial and temporal

resolution (see Watson et al. [2006] for comparison of

snowpack models), but they commonly rely on interpo-

lation among sparsely distributed direct measurements

(Daly 2006, Fuentes et al. 2006) or downscaling to reach

finer resolutions (Wilby and Wigley 1997, Wilby et al.

2004, Tabor and Williams 2010, Fordham et al. 2011,

Littell et al. 2011). Model predictions may represent

broad trends with little bias when averaged over large

areas or time frames, while prediction error increases at

finer scales (Daly 2006). At any scale, prediction

uncertainty is rarely quantified or accounted for in the

analysis or conclusions of ecological studies that use

model predictions as explanatory or predictor variables.

Given the number of such studies using model predic-

tions in place of direct measurements (�9 articles in

Ecology and 19 in Ecological Applications from January

2011 to February 2012 [e.g., Cord and Rödder 2011, Erb

et al. 2011]), it is important to understand the inferential

consequences of treating these predictions as if they were

directly measured data without error. We used predic-

tions of snow accumulation generated from the Snow

Data Assimilation System (SNODAS) to demonstrate

potential levels of model prediction error at scales
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relevant to wildlife ecology, and to examine the practical

effects of using model predictions in place of direct

measurements in a typical wildlife application (SNO-

DAS data available online).8

Snow accumulation is strongly associated with the

behavior and ecology of animals in cold climates

(Nelson and Mech 1986, Hobbs 1989, Hupp and Braun

1989, Brodie and Post 2010, Beckmann et al. 2012), and

therefore snowpack models such as SNODAS may

appeal to wildlife researchers and managers who require

snow data at times or places where field measurements

cannot be collected (e.g., daily measurements at multiple

remote locations). Snow variables recorded at fine

spatial (e.g., �0.05 km2) and moderate to fine temporal

scales (e.g., once every other week, or more often) can be

important for understanding individual animal behavior

(Christianson and Creel 2008), as snow can reduce

access to forage patches (Craighead et al. 1973, Brugge-

man 2006), decrease ability to escape predators, increase

predator kill rate (Nelson and Mech 1986, Huggard

1993), change diet composition (Huggard 1993, Chris-

tianson and Creel 2007), or increase energy expenditure

for thermoregulation, travel, and search for food

(Parker et al. 1984, Telfer and Kelsall 1984). Cumula-

tively, these effects on individuals can result in

population-level responses to snow accumulation, such

as changes in recruitment, survival, or distribution.

Analysis of these population-level effects typically

requires data on snow variables collected at broad

spatial (e.g., �100 km2 for large mammals) and

temporal scales (e.g., once each year or more; Garrott

et al. 2003).

SNODAS has the potential for wide application to

animal ecology studies because it predicts snow water

equivalent (SWE) and snow depth at relatively fine

spatial and temporal resolutions (e.g., 1 km2, daily) and

broad extents (e.g., contiguous United States), from

2003 to the present. However, SNODAS was developed

by the National Operational Hydrologic Remote Sens-

ing Center (NOHRSC) to support basin-scale hydro-

logic models, not wildlife research. SNODAS

predictions are generated from ingested Numerical

Weather Prediction (NWP) model estimates of air

temperature, relative humidity, wind speed, and precip-

itation that are downscaled from a 13-km2 to a 1-km2

resolution (Barrett 2003, Carroll et al. 2006). Multi-

sensor snow data are then assimilated into the model in

order to update model output. These data include SWE

and snow depth provided by the National Weather

Service (e.g., weather stations and cooperatives), federal

and state agencies (e.g., Natural Resources Conserva-

tion Service’s [NRCS] Snow Telemetry [SNOTEL]

stations and snow course sites), and regional mesonets

(i.e., network of environmental monitoring stations);

SWE obtained via the NOHRSC-operated airborne

snow survey program; and satellite remote sensing data

used to capture the extent of snow cover (i.e., snow
presence and absence). SNODAS also integrates digital

elevation map (DEM)-derived slope and aspect, remote-
ly sensed forest cover and type, and soils data (Barrett

2003, Carroll et al. 2006).
SNODAS relies on relatively few, sparsely distributed,

direct field observations of snow to update model
output, and therefore prediction uncertainty could be
high at fine spatial scales. This problem is not unique to

SNODAS, and prediction uncertainty has been dis-
cussed frequently in the contexts of other snowpack and

rainfall-runoff models (e.g., Chaplot et al. 2005, Franz et
al. 2010, Kuczera et al. 2010, Renard et al. 2011), as well

as downscaled global circulation models (GCMs; e.g.,
Wilby 1997, Wilby and Wigley 1997, Wilby et al. 2004,

Tabor and Williams 2010, Fordham et al. 2011, Littell et
al. 2011). The effects of prediction uncertainty have also

been explored, but generally in the contexts of using
precipitation models to drive biogeochemical simula-

tions (Fuentes et al. 2006) or using GCM predictions of
temperature and precipitation to project natural re-

source dynamics (Littell et al. 2011) or species distribu-
tions under future climate scenarios (Tabor and

Williams 2010, Fordham et al. 2011). Prediction
uncertainty has not been addressed, however, in animal
ecology studies that use model predictions of snow

accumulation such as SNODAS output as explanatory
variables. To examine the consequences of this problem

in a wildlife ecology setting, we compared SNODAS-
predicted SWE and snow depth to field measurements

collected from elk winter ranges in western Wyoming to
(1) measure SNODAS SWE and snow depth prediction

bias and uncertainty, (2) examine the potential conse-
quences of SNODAS prediction uncertainty for infer-

ences on the relationship between snow and animal
ecology (using a simulation in elk ecology), and (3)

determine whether SNODAS prediction bias decreases
at broad spatial scales applicable to population-level

studies of large mammals. Our goal was to highlight
potential issues that may arise from using model

predictions of snow in place of direct measurements in
a typical wildlife application, not to validate SNODAS
as a metric of snow for other purposes (e.g., hydrologic

forecasting).

METHODS

Study area

Across our study area, which covered 15 000 km2 in

western Wyoming (Fig. 1), we compared SNODAS
predicted SWE and snow depth to field measurements

collected during the months of January through March
2009 and 2010 at sites where elk are supplementally fed

in winter (i.e., feedgrounds) and where elk winter off
feedgrounds (i.e., native winter range). These study sites
were located along the western foothills of the Wind

River Range, the Wyoming Range and its eastern
foothills, the uplands of the Upper Green River Basin,8 http://nsidc.org/data/g02158.html
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the northern foothills of the Salt River Range, and the

northern, southern, and western foothills and valleys of

the Gros Ventre Range (Fig. 1). Site elevations ranged

from roughly 1700 to 2750 m and the topography

ranged from high mountain valleys and varying grades

of mountain slopes, to open, rolling mountain foothills.

Vegetation in the mountain valleys and foothills was

characteristic of Rocky Mountain montane, subalpine,

or riparian habitats, which includes closed conifer

forests (Pinus spp., Picea spp., Abies lasiocarpa), willow

(Salix spp.), aspen (Populus tremuloides), grass–forb/

herb meadows, and shrubs (Artemisia spp., Amelanchier

alnifolia). High mountain slopes were dominated by

rock and talus. Lowlands were dominated by sagebrush

(Artemisia spp.), saltbrush (Atriplex spp.), greasewood

(Sarcobatus vermiculatus), herbaceous species, and

irrigated hay meadows. Approximately 22 000 elk winter

on feedgrounds and another 4000 winter on native

winter range in the study area (Wyoming Game and

Fish Department 2006, Maichak et al. 2009).

The study area has long, often severe, winters

generally lasting from October through May, although

it is not unusual for snow accumulation to begin in

September and continue through mid-June. During the

winters of 2008–2009 and 2009–2010 (i.e., when snow

accumulation .0), the 18 SNOTEL stations in our study

area (Fig. 1) recorded a mean SWE of 29 and 21 cm, and

mean snow depth of 101 and 90 cm, respectively. Parts

of the Gros Ventre Range directly east of the Tetons are

located in snow shadows (Hobbs et al. 2003), which are

areas on the leeward side of mountain ranges that

receive less snow than typical areas of comparable

elevation.

Sampling design

For our study sites, we selected 16 feedgrounds and

three native winter ranges to cover the range of habitat,

elevation, and topography used by wintering elk in

western Wyoming. We used SNODAS grid cells (1-km2

pixels) as our sampling units, simply to pair field

measurements with SNODAS predictions (not to

validate SNODAS at the pixel scale). On the feed-

grounds, we randomly selected two SNODAS pixels

within a circular area defined by a 2 km radius from the

center of each feedground. For the native winter ranges,

we used areas delineated as elk winter range by the

Wyoming Game and Fish Department and randomly

FIG. 1. Map of study area, showing snow sampling transects within seven general regions, the 18 Natural Resources
Conservation Service’s Snow Telemetry (SNOTEL) stations nearest to transect locations, Wyoming cities (Jackson, Pinedale, and
Dubois), elevation (m), and relevant mountain ranges. White-filled region symbols are snow shadow regions.
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selected five to seven SNODAS pixels within each of

those areas.
Within each selected SNODAS pixel, we measured

SWE and snow depth along one 150-m transect with
random starting location and azimuth, though adjust-

ments were made to the azimuth when necessary to
ensure transects remained in the original pixel. Along

each transect, we collected five snow cores (using a Mt.
Rose Federal snow sampler; Rickly Hydrological
Company, Columbus, Ohio, USA) 30 m apart to

measure SWE and snow depth, as well as four additional
snow depth measurements 15 m from each snow core

location in each of the cardinal directions. We estimated
mean transect values for both snow variables, but to

improve precision of mean transect estimates of SWE we
used the ratio of SWE to snow depth from snow cores to

estimate SWE where only snow depth was measured
(Rovansek et al. 1993). Hereafter, we refer to mean

transect values as field estimates of SWE or snow depth.
We randomly selected pixels and sampled new

transects each winter (in 2009 and 2010) at 11 of the
feedgrounds. At the remaining five feedgrounds and

three winter ranges, we sampled transects only in 2010.
Also in 2010, we randomly selected an additional eight

pixels across four of the feedgrounds (two pixels per
feedground) that had minimal constraints to access (due

to elk management practices or private land restrictions)
and repeatedly sampled one transect within each of

those pixels at sampling intervals of 15–30 days. We
used these repeated samples to assess whether or not
SNODAS prediction accuracy changed throughout a

winter.
The total area covered by each transect was 4500 m2

(150 m in length, 30 m in width), which is obviously a
small fraction of a 1-km2 SNODAS pixel. However, our

intention was not to validate SNODAS at the pixel
scale. Rather, the goal was to quantify how well

SNODAS predicts snow at the transect scale in areas
used by wintering elk and to measure snow as it relates

to elk ecology. Therefore, we used sampling methods
typical of studies of snow effects on ungulate ecology

(Hoskinson and Tester 1980, Sweeney and Sweeney
1984, Anderson et al. 2005, Fortin et al. 2009), which are

also similar to those used by the NRCS to measure snow
accumulation at snow course sites. Since field estimates

were obtained at a much finer scale than the SNODAS
resolution, however, differences between SNODAS

predictions and field estimates may be attributable to
how well SNODAS estimates the average snow depth
and SWE for a pixel, as well as the amount of variation

within that pixel.

ANALYSIS

SNODAS accuracy and precision

As a result of our sampling design, our field estimates

were clustered by site (19 total study sites: 16 feed-
grounds plus 3 native winter ranges). Therefore, we

conducted all analyses using linear mixed-effects models

with site as the random effect (i.e., allowing the intercept

to vary by site) to account for the correlation among

field estimates from the same site. We used the R

environment for statistical computation (R Code

Development Team 2011) with the package lme4

(available online).9 We examined the assumptions of

linear regression, and all were reasonably met.

We calculated SNODAS bias, which we defined as the

difference between SNODAS predictions and field

estimates. We also aggregated the study sites into seven

regions (Fig. 1). We defined region post hoc as either a

discrete elk native winter range or a set of feedgrounds

closest to one another. Using linear models of SNODAS

bias (response variable) on region (explanatory vari-

able), we estimated the mean SNODAS bias and 95%
confidence intervals (CIs) by region for both snow

variables.

Retrospectively, we observed less snow on average at

transects located in snow shadows of the Teton and

Gros Ventre Ranges compared to other transect

locations, even though transect elevations tended to be

higher in snow shadows (Appendix A: Fig. A1). We did

not anticipate that SNODAS bias would be greater in

snow shadows, but differences were revealed between

these and other regions. To demonstrate the magnitude

of the prediction bias in snow shadows, we compared

the estimated mean SNODAS bias and 95% CIs for both

snow variables in snow shadows to other regions. Our

goal for this comparison was not to suggest that

SNODAS bias is only a concern in snow shadows, but

rather to highlight the effect of potentially unaccounted

for local-scale atmosphere or land surface properties on

prediction bias. Other study sites may be impacted by

different physical processes potentially not captured by

SNODAS.

We examined the linear relationship between SNO-

DAS predictions (predictor variable) and field estimates

(response variable) of SWE or snow depth and

compared the estimated intercept, slope, and 95% CIs

to a 1:1 relationship (i.e., slope ¼ 1, intercept ¼ 0). We

repeated this analysis without snow shadow data to

determine the effect of snow shadows on regression bias.

Because the estimated linear relationship between

SNODAS predictions and field estimates does not

account for the scatter around the regression line, we

quantified the effect of bias and variance on future field

estimates predicted from new SNODAS values using

95% prediction intervals (PIs).

Finally, we examined whether or not SNODAS

predictions matched field estimates more closely earlier

in the winter when there may be less snow on the

ground, compared to later in the winter. We plotted

SNODAS bias for SWE over time for transects

measured repeatedly in 2010 to assess evidence for a

time trend in SNODAS bias.

9 http://CRAN.R-project.org/package¼lme4
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Testing snow effects in an ecological model

To demonstrate the potential consequences of using

model predictions in place of field measurements, we

prepared a hypothetical example relating SNODAS-

predicted SWE to the (relative) probability of an elk

being killed by a predator. This is based on a

comparison of SWE at kill sites relative to SWE at

‘‘available’’ sites, which are generally defined as random

sites within the nearby area (Hebblewhite et al. 2005).

We used SWE because it incorporates snow depth and

density, and has been identified as the best predictor of

ungulate responses to snow in our study area (Farnes et

al. 1999). Elk generally avoid areas that exceed 15 cm

SWE, and are known to more commonly use winter

ranges with less than 7 cm SWE (Farnes and Romme

1993). Our field estimates of SWE ranged roughly from

0 to 20 cm and SNODAS predictions ranged from 2 to

35 cm, which not only covers typical levels of SWE on

an elk winter range, but also spans the levels of SWE

detected in studies of snow effects on probability of an

elk kill (Becker 2008).

We simulated random binary outcomes representing

kill or no kill from a binomial distribution with

probabilities obtained from a logistic regression model

with our field estimates of SWE as the explanatory

variable, an intercept ¼ �0.9, and slope ¼ 0.11. These

hypothetical parameters were not empirically estimated,

but represent reasonable approximations of how elk kills

may be related to snowpack, while holding other

variables constant. We fit two logistic regression models

to our simulated binary response variable. In the first

model, we used field estimates of SWE (same data used

to generate the response variable) as the explanatory

variable, and in the second we used SNODAS-predicted

SWE as the explanatory variable to represent a situation

where an ecologist may use SNODAS predictions in

place of direct observations. We conducted the simula-

tion and analyses in R.

SNODAS prediction at multiple spatial scales

Our sampling was not designed to test SNODAS

accuracy at scales coarser than the transect. However, if

SNODAS did poorly at predicting SWE and snow depth

at the transect level, we hypothesized that predictions

might improve at coarser spatial scales applicable to

population-level studies of large mammals. Therefore,

we examined SNODAS predictions at the feedground

and region scales ranging from 9 to 2200 km2. At the

feedground scale, we averaged all SNODAS pixels

falling at least partially within a 2 km radius around

the center of each feedground on dates field sampling

occurred. The number of pixels included was not

identical among feedgrounds, resulting in areas ranging

from 9 to 14 km2. For region-scale calculations, we

generated a circular area having a diameter equal to the

greatest distance between sample locations within a

region and a centroid equal to the midpoint between

those sample locations. The resulting region-scale areas

ranged from 150 to 2200 km2.

Within each feedground or region area, we averaged

only those SNODAS pixel values occurring within the

elevation range of elk feedgrounds and native winter

ranges in the study area (1700–2750 m). Feedground

and region-scale field estimates were the average of all

field measurements along all transects (SWE or snow

depth) contained in each feedground or region, respec-

tively. The number of field measurements of SWE

ranged from 10 to 25 per feedground and from 25 to 100

per region. For snow depth, the number of field

measurements ranged from 50 to 125 per feedground

and from 125 to 500 per region.

We calculated SNODAS bias for both snow variables

as the difference between the averaged SNODAS

predictions and the averaged field measurements at the

feedground or region scale. We use the term ‘‘SNODAS

bias’’ because it is used throughout this document to

describe the differences between SNODAS predictions

and field estimates, but we acknowledge that differences

calculated at the region scale may be due, in part, to the

assignment of region after sampling occurred, or to the

lack of random samples outside study sites (resulting in

biased field estimates at the region scale). However, we

argue that our field estimates are a better representation

of the average SWE and snow depth across potential elk

winter range in the study area than SNOTEL data,

which are used to update SNODAS predictions and are

frequently used in elk ecology studies to estimate snow

conditions at spatial scales similar to our feedground

and region scales (e.g., Singer et al. 1997, Taper and

Gogan 2002). Because SNOTEL stations are sparsely

distributed, few stations are used to depict snow

conditions at those scales, and they are typically located

at elevations higher than the winter ranges of large

herbivores.

We quantified the mean SNODAS bias at the transect

scale using a linear random effects model (intercept

only) with site (19 total study sites) as the random effect.

To quantify mean SNODAS bias at each of the coarser

scales, we used intercept-only simple linear regression

models of SNODAS bias. For both snow variables, we

compared the estimated mean SNODAS bias and 95%
CIs among scales, as well as SNODAS bias in snow

shadows to other regions.

RESULTS

SNODAS prediction accuracy and precision

In total, we sampled 99 transects with 495 and 2475

measurements of SWE and snow depth, respectively, on

19 study sites. Of the 99 field estimates, we used 72 for

our primary analyses (paired with 72 SNODAS

predictions). The remaining 27 were repeated samples

and only used for determining whether or not SNODAS

bias increased through time. We did not see evidence of

a temporal trend (Appendix A: Fig. A2), but it revealed
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spatial clustering of SNODAS bias for SWE by site that

validated our use of random intercept models by site.

Snow conditions on each transect appeared to be

similar to the general snow conditions of its study site

(i.e., snow on a transect was not overly deep, shallow, or

crusted compared to other locations while traveling

across a study site). Field estimates of SWE ranged from

0.1 to 20 cm, field estimates of snow depth ranged from

0.6 to 72.0 cm, mean snow density was 21% (typical of

mountain-continental snowpacks), and mean snow

density by region ranged from 17.2% to 25.3%.

Estimated mean SNODAS bias varied within and

among regions for both snow variables, but was greater

in snow shadow regions (Fig. 2). Among regions,

estimated mean SNODAS bias for SWE ranged from

1.2 cm (95% CI¼�6.7, 9.1) to 17.3 cm (95% CI¼ 11.5,

23.1) and for snow depth ranged from 8.5 cm (95% CI¼

�24.4, 41.4) to 68.0 cm (95% CI¼ 44.1, 91.9). Estimated

mean SNODAS bias for SWE in snow shadow regions

was 14.5 cm (95% CI¼ 10.8, 18.2), compared to 4.1 cm

(95% CI ¼ 2.1, 6.0) in non-snow shadow regions.

Estimated mean SNODAS bias for snow depth was

55.4 cm (95% CI ¼ 39.6, 71.1) in snow shadows,

compared to 15.8 cm (95% CI ¼ 7.6, 24.0) in non-snow

shadow regions.

Snow shadows also explained a portion of the

relationship bias between SNODAS-predictions and

field-estimates for both snow variables (Fig. 3). This

relationship bias, in addition to the substantial scatter

around the regression lines, resulted in wide 95% PIs for

both snow variables. New SNODAS predictions of 0

cm, 10 cm, and 20 cm corresponded to the following

95% PIs for SWE on the ground: 0–10 cm, 0–13 cm, and

1–16 cm, respectively. For snow depth, new SNODAS

predictions of 0 cm, 50 cm, and 100 cm corresponded to

95% PIs of 0–46 cm, 0–58 cm, and 0–71 cm snow depth

on the ground, respectively. Prediction intervals were

left-truncated at zero.

Testing snow effects in an ecological model

Using SNODAS predictions in place of field estimates

resulted in a higher estimated probability of kill at 0 cm

SWE (0.36 for SNODAS compared to 0.16 for field

estimates of SWE), slower increase in the probability of

kill with increasing SWE, and a lower estimated

probability of kill at a mid-value (15 cm) of SWE

(0.48 for SNODAS compared to 0.85 for field-estimated

SWE; Fig. 4). The estimated slope on the logit scale

using field estimates of SWE as the explanatory variable

was 0.22 (95% CIs¼ 0.09, 0.35; P , 0.001), compared to

0.03 (95% CIs ¼�0.03, 0.10; P . 0.3) using SNODAS-

predicted SWE as the explanatory variable. These slope

estimates correspond to a 24% increase in the relative

odds an elk was killed by a predator for every 1 cm

increase in field-estimated SWE, and a 3% increase in the

relative odds an elk was killed for every 1 cm increase in

SNODAS-predicted SWE.

SNODAS prediction at multiple spatial scales

Estimated SNODAS bias for both snow variables did

not improve at broader spatial scales, and SNODAS

bias was greater in snow shadows compared to other

regions at all three spatial scales (Fig. 5). Estimated

mean SNODAS bias for SWE was 6.9 cm (95% CI¼4.2,

9.6) at the transect scale, 7.2 cm (95% CI¼�3.3, 11.0) at
the feedground scale, and 10.6 cm (95% CI¼2.9, 18.3) at

the region scale. Estimated mean SNODAS bias for

snow depth was 26.4 cm (95% CI ¼ 15.7, 37.1) at the

transect scale, 27.6 cm (95% CI ¼ 12.9, 42.4) at the

feedground scale, and 39.1 cm (95% CI ¼ 15.0, 63.1) at

the region scale.

DISCUSSION

Model predictions of environmental variables are

attractive as explanatory or predictor variables for

FIG. 2. Boxplots of Snow Data Assimilation System
(SNODAS) bias (cm) for (A) SWE and (B) snow depth.
SNODAS bias is the difference between SNODAS predictions
and field estimates (transect means). Boxes identify quartiles
and medians, whiskers are 1.5 times the interquartile range, and
points outside of boxes identify minimum and maximum data
points. Box widths are proportional to the number of observa-
tions within a region. Regions are ordered from northernmost
(1) to southernmost (7). Gray boxplots are regions in the snow
shadow on the lee side of a major mountain range.
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logistical reasons, but these predictions carry uncertain-

ty that can affect our conclusions about the relationships

between environmental conditions and animal ecology.

Our study compared field measurements of snow

accumulation to SNODAS predictions to demonstrate

the potential implications of ignoring model prediction

uncertainty. We showed that SNODAS bias for SWE

and snow depth was variable across all sampled

transects and it was greatest in snow shadow regions

(Figs. 2, 3, and 5). We did not anticipate that snow

shadows would be a source of added prediction bias.

Therefore, field measurements were necessary to identify

and estimate the magnitude of this effect, though it

appears common that model output are used as

explanatory variables without studying the relationship

between model predictions and field-measurements. The

identification of snow shadows as one source of

prediction bias suggests a potential for other local

topographical or climate factors that could affect

SNODAS prediction accuracy. Moreover, our identifi-

cation of substantial bias across all regions is evidence

that it is not appropriate to treat SNODAS predictions

as data without error.

The high levels of SNODAS bias points to some of the

general limitations of weather and climate models,

including model structure and methods (e.g., algorithm,

interpolation, downscaling), depiction of regional atmo-

sphere–land fluxes and, in the case of relatively fine

resolution snowpack models, depiction of local land

surface properties that affect snow fall and accumula-

tion (e.g., topography, vegetation, and water bodies

[Wilby 1994, Wilby et al. 2004, Daly 2006, Fordham et

al. 2011, Littell et al. 2011]). Though models are meant

to be simple representations of complex processes, the

exclusion of real-world details can result in prediction

uncertainty, and we demonstrated through a simple

simulation that this uncertainty can affect our under-

standing of the relationship between SWE and ecolog-

ical processes, such as the probability that a predatory

attack will succeed. For animals and contexts where

snow effects may be strong, as is the case of large

mammals in the Rocky Mountains, the inability to

discern differences in individual or population-level

responses to snow accumulation could impact species

management or conservation efforts. For example, some

Rocky Mountain elk populations face population

declines or low calf recruitment (Creel et al. 2011), and

effective management requires an understanding of how

demographic rates are related to snow or other climate-

related factors, predation, and hunting. Beyond our

analysis, similar impacts of prediction uncertainty on

management and conservation are important to consider

when projecting shifts in species distributions in

response to climate change. Global circulation models

are less accurate at describing local climates, and species

distribution models may be sensitive to this uncertainty

(Tabor and Williams 2010, Fordham et al. 2011,

Winterhalter 2011).

Depending on the scale of the question of interest,
prediction uncertainty may have little effect on infer-
ences. For example, averaging many predictions across

large areas or timeframes for broad scale questions may
be less biased than individual predictions used for fine

scale questions, if the physical processes defined in the

FIG. 3. Linear regressions of field estimates (transect
means) on SNODAS predictions of (A) snow water equivalent
(SWE; cm) and (B) snow depth (cm) on elk feedgrounds and
native winter ranges in western Wyoming. Different symbols
indicate the seven regions of interest as depicted in Fig. 1; open
symbols are regions located in a snow shadow. The solid black
line is the estimated linear relationship across all transects
sampled (n¼ 72; SWE intercept¼ 1.37 [95% CIs¼�1.27, 4.00],
slope ¼ 0.43 [0.29, 0.56]; snow depth intercept ¼ 15.98 [4.51,
27.45], slope ¼ 0.29 [0.14, 0.45]). The dashed black line is the
estimated linear relationship across only non-snow shadow
transects (n ¼ 56; SWE intercept ¼ 1.17 [�1.00, 3.33], slope ¼
0.58 [0.44, 0.72]; snow depth intercept ¼ 11.94 [0.72, 23.17],
slope¼ 0.46 [0.28, 0.64]). Error bars are standard errors of the
transect mean, and the gray line represents a 1:1 relationship
between SNODAS predictions and field estimates. Linear
models were mixed-effects models with site as random effect.
Site refers to the 19 total study sites (16 feedgrounds plus 3
native winter ranges).
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FIG. 4. The fitted logistic relationship (solid black lines) between the probability that an elk is killed by a predator and (A) field
estimates of SWE (cm) or (B) SNODAS-predicted SWE (cm). Dashed black lines are 95% CIs, and gray lines identify estimated
probability of kill and uncertainty at 15 cm SWE.

FIG. 5. Boxplots of SNODAS bias for SWE (top row) and snow depth (bottom row) at three spatial scales: transect (4500 m2;
n ¼ 72), feedground (9–14 km2; n ¼ 16), and region (150–2200 km2, n ¼ 7). SNODAS bias is the difference between SNODAS
predictions and field estimates (transect means). Grouping is by being located in a snow shadow (Yes) or not (No). Boxes identify
quartiles and medians, whiskers are 1.5 times the interquartile range, and points outside of boxes identify minimum and maximum
data points. Box widths are proportional to number of observations.
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model occur at coarser rather than finer scales. In other

words, models may not capture fine scale variation

because of few localized observations or a failure to

account for important local physical processes (Wilby

1994, Wilby et al. 2004, Littell et al. 2011). In the case of

SNODAS, it was developed for hydrologic modeling at

basin-scales, not for applications at fine spatial or

temporal scales relevant to individual animal behavior.

Moreover, we were interested in how well SNODAS

predicted snow at scales finer than the SNODAS pixel.

Because SNODAS is not designed to account for within-

pixel processes, it is understandable that SNODAS

predictions did not match our field estimates, but this is

a point often overlooked by ecologists looking for

environmental data to explain fine scale ecological

processes. Therefore, SNODAS, or models that make

predictions at similar or coarser resolutions, may be

better suited for broad scale studies applicable to large

mammal populations. Though our study did not show

decreases in estimated mean SNODAS bias at moderate

scales (9–14 km2) or broad scales (520–2200 km2), a

future study with larger sample sizes could reveal greater

prediction accuracy at these coarser spatial scales.

Our study focused on SNODAS and identified areas

where it poorly predicted snow accumulation, but the

goal of our study was not to broadly condemn the use of

SNODAS or other model predictions as covariates.

Rather, we focused on estimating potential levels of

prediction uncertainty and examining how this uncer-

tainty can impact our understanding of how snow

relates to elk ecology. Our linear regressions of field

estimates on SNODAS predictions depicted bias when

compared to a 1:1 relationship, and revealed a high

degree of variability around the regression line (Fig. 3).

Removal of snow shadows from these analyses de-

creased the relationship bias only slightly, and the

scatter around the regression lines remained (Fig. 3). As

a consequence of the bias and variability, new SNODAS

predictions corresponded to a wide range of SWE and

snow depth on the ground. It was also evident that

SNODAS substantially over-predicts at higher values of

field-estimated SWE and snow depth (Fig. 3).

As seen in our simulation, SNODAS prediction

uncertainty could substantially affect inferences about

the relationship between snow and animal ecology.

Because field estimates of SWE were not excessively high

(range of 0.1–20 cm was below the average SNOTEL

SWE for 2009 and 2010 winters), the simulation more

appropriately reflects responses in late-winter when elk

physiological condition has been weakened (Becker

2008) to a point where even low to moderate snow

levels could become important to survival. Strong

responses of elk to snow, however, typically occur

during more severe winters (Singer et al. 1997, Garrott et

al. 2003). Because SNODAS tended to over-predict with

substantial uncertainty at all levels of SWE and snow

depth (Fig. 3), the importance of snow to elk ecology

could be underestimated if using SNODAS in place of

field measurements even during winters with above

average snow accumulation.

Given the degree of variability among SNODAS

predictions in our study, field measurements used as

ground truth samples may not be enough to adjust

SNODAS predictions to eliminate bias, though a

thorough ground truth of SNODAS would include

more transects or sample locations per pixel than was

included in our study. Ground truth samples or

reference data are often used to establish the relation-

ship between model predictions (or remotely sensed

observations) and field measurements, in order to

remove bias from future model predictions (e.g.,

Czaplewski and Catts 1992). However, this process does

not affect the scatter of individual predictions around

the regression line. As this scatter increases, so does the

prediction uncertainty, regardless of whether intensive

ground-truth sampling occurred or not. Unless ground-

truth sampling reveals greater precision among individ-

ual predictions than found in our study, SNODAS is

probably better suited to monitoring trends over time or

comparing among broad regions, rather than making

comparisons among transects. Further study of SNO-

DAS prediction uncertainty over broad areas and

timeframes is needed to know if prediction uncertainty

improves at these scales.

Our field estimates were transect means and therefore

also had error associated with them. The difference

between error in our field estimates vs. error in

SNODAS predictions is our ability to quantify and

model that error (Buonaccorsi 2010). With our sampling

methods, for example, we were able to calculate

standard errors of the mean, and these standard errors

were very small relative to the difference between

transect means and SNODAS predictions (Fig. 3).

SNODAS or other model predictions, on the other

hand, are provided without estimates of error and are

often used as explanatory variables without acknowl-

edging the potential for error and the effects it may have

on inferences. However, in the case of GCMs where

many models exist, the variability among model output

can be quantified to understand potential prediction

uncertainty (Fuentes et al. 2006, Tabor and Williams

2010, Fordham et al. 2011, Littell et al. 2011).

CONCLUSIONS

Prediction uncertainty from snowpack and climate

models is expected because predictions are generated by

interpolation between sparsely distributed direct obser-

vations or downscaling models that do not account for

local physical processes. However, prediction uncertain-

ty is rarely quantified or accounted for in studies of

animal ecology that use model predictions in place of

direct measurements. Blindly using model predictions as

predictor variables without error can impact inferences,

as we demonstrated in our example using SNODAS-

predicted SWE to explain the relative probability of an

elk kill. While we only investigated SNODAS, the
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cautions with regard to inference are relevant when

using other snowpack, weather or climate model

predictions. Even the most sophisticated and highly

regarded models are approximations, and the scale at

which predictions are generated should not be ignored.

Model predictions may be useful as indices for some

questions of interest, but misleading when used at fine

scales when prediction uncertainty is high.

ACKNOWLEDGMENTS

We thank J. Rogerson, J. Henningsen, E. Maichak, and A.
Williams at the Wyoming Game and Fish Department for their
assistance accessing study sites and sampling snow on elk winter
range. We also thank A. Barbknecht for her hard work in
collecting snow data. This work was supported by the National
Science Foundation and National Institutes of Health Ecology
of Infectious Disease (grant number DEB-1067129) and the
United States Geological Survey. Any mention of trade,
product, or firm names is for descriptive purposes only and
does not imply endorsement by the U.S. Government.

LITERATURE CITED

Anderson, D. P., J. D. Forester, M. G. Turner, J. L. Frair,
E. H. Merrill, D. Fortin, J. S. Mao, and M. S. Boyce. 2005.
Factors influencing female home range sizes in elk (Cervus
elaphus) in North American landscapes. Landscape Ecology
20:257–271.

Barrett, A. 2003. National Operational Hydrologic Remote
Sensing Center SNOw Data Assimilation System (SNODAS)
products at NSIDC. NSIDC special report 11. Digital media.
National Snow and Ice Data Center, Boulder, Colorado,
USA.

Becker, M. S. 2008. Applying predator–prey theory to evaluate
large mammal dynamics: wolf predation in a newly-
established multiple-prey system. Dissertation. Montana
State University, Bozeman, Montana, USA.

Beckmann, J. P., K. Murray, R. G. Seidler, and J. Berger. 2012.
Human-mediated shifts in animal habitat use: sequential
changes in pronghorn use of natural gas field in Greater
Yellowstone. Biological Conservation 147:222–233.

Brodie, J. F., and E. Post. 2010. Nonlinear responses of
wolverine populations to declining winter snowpack. Popu-
lation Ecology 52:279–287.

Bruggeman, J. E. 2006. Spatio-temporal dynamics of the
Central Bison Herd in Yellowstone National Park. Disser-
tation. Montana State University, Bozeman, Montana, USA.

Buonaccorsi, J. P. 2010. Measurement error: models, methods,
and applications. Chapman and Hall/CRC, Boca Raton,
Florida, USA.

Carroll, T., D. Cline, C. Olheiser, A. Rost, A. Nilsson, G. Fall,
C. Bovitz, and L. Li. 2006. NOAA’s national snow analyses.
74th Annual Meeting of the Western Snow Conference,
Chanhassen, Minnesota, 2006. National Operational Hydro-
logic Remote Sensing Center, National Weather Service,
NOAA, Chanhassen, Minnesota, USA.

Chaplot, V., A. Saleh, and D. B. Jaynes. 2005. Effect of
accuracy of spatial rainfall information on modeling water,
sediment, and NO3-N loads at the watershed level. Journal of
Hydrology 312:223–234.

Christianson, D. A., and S. Creel. 2007. A review of
environmental factors affecting winter elk diets. Journal of
Wildlife Management 71:164–176.

Christianson, D., and S. Creel. 2008. Risk effects in elk: sex-
specific responses in grazing and browsing due to predation
risk from wolves. Behavioral Ecology 19:1258–1266.

Cord, A., and D. Rödder. 2011. Inclusion of habitat availability
in species distribution models through multi-temporal
remote-sensing data? Ecological Applications 21:3285–3298.

Craighead, J. J., F. C. Craighead, Jr., R. L. Ruff, and B. W.
O’Gara. 1973. Home ranges and activity patterns of
nonmigratory elk of the Madison Drainage Herd as
determined by biotelemetry. Wildlife Monographs 33:3–50.

Creel, S., D. A. Christianson, and J. A. Winnie, Jr. 2011. A
survey of the effects of wolf predation risk on pregnancy rates
and calf recruitment in elk. Ecological Applications 21:2847–
2853.

Czaplewski, R. L., and G. P. Catts. 1992. Calibration of
remotely sensed proportion or area estimates for misclassi-
fication error. Remote Sensing of Environment 39:29–43.

Daly, C. 2006. Guidelines for assessing the suitability of spatial
climate data sets. International Journal of Climatology
26:707–721.

Erb, L. P., C. Ray, and R. Guralnick. 2011. On the generality of
a climate-mediated shift in the distribution of the American
pika (Ochotona princeps). Ecology 92:1730–1735.

Farnes, P., C. Heydon, and K. Hansen. 1999. Snowpack
distribution across Yellowstone National Park. Montana
State University, Department of Earth Sciences, Bozeman,
Montana, USA.

Farnes, P., and W. H. Romme. 1993. Estimating localized SWE
on the Yellowstone Northern Range. Pages 59–66 in M.
Ferrick and T. Pangburn, editors. Proceedings of the 50th
Eastern Snow Conference and 61st Western Snow Confer-
ence, Quebec City, Canada.

Fordham, D. A., T. M. L. Wigley, and B. W. Brook. 2011.
Multi-model climate projections for biodiversity risk assess-
ments. Ecological Applications 21:3317–3331.

Fortin, D., M. E. Fortin, H. L. Beyer, T. Duchesne, S. Courant,
and K. Dancose. 2009. Group-size mediated habitat selection
and group fusion–fission dynamics of bison under predation
risk. Ecology 90:2480–2490.

Franz, K. J., P. Butcher, and N. K. Ajami. 2010. Addressing
snow model uncertainty for hydrologic prediction. Advances
in Water Resources 33:820–832.

Fuentes, M., T. G. F. Kittel, and D. Nychka. 2006. Sensitivity
of ecological models to their climate drivers: statistical
ensembles for forcing. Ecological Applications 16:99–116.

Garrott, R. A., L. L. Eberhardt, P. J. White, and J. Rotella.
2003. Climate-induced variation in vital rates of an unhar-
vested large-herbivore population. Canadian Journal of
Zoology 81:33–46.

Hebblewhite, M., E. H. Merrill, and T. L. McDonald. 2005.
Spatial decomposition of predation risk using resource
selection functions: an example in a wolf–elk predator–prey
system. Oikos 111:101–111.

Hobbs, N. T. 1989. Linking energy balance to survival in mule
deer: development and test of a simulation model. Wildlife
Monographs 101:3–39.

Hobbs, N. T., G. Wockner, F. J. Singer, G. Wang, L.
Zeigenfuss, M. Coughenour, and S. Delgrosso. 2003.
Assessing management alternatives for ungulates in the
Greater Teton ecosystem using simulation modeling: final
report. Natural Resource Ecology Lab, Colorado State
University, Fort Collins, Colorado, USA.

Hoskinson, R. L., and J. R. Tester. 1980. Migration behavior of
pronghorn in southeastern Idaho. Journal of Wildlife
Management 44:132–144.

Huggard, D. J. 1993. Effect of snow depth on predation and
scavenging by gray wolves. Journal of Wildlife Management
57:382–388.

Hupp, J. W., and C. E. Braun. 1989. Topographic distribution
of sage grouse foraging in winter. Journal of Wildlife
Management 53:823–829.

Kuczera, G., B. Renard, M. Thyer, and D. Kavetski. 2010.
There are no hydrological monsters, just models and
observations with large uncertainties! Hydrological Sciences
Journal 55:980–991.

Littell, J. S., D. McKenzie, B. K. Kerns, S. Cushman, and C. G.
Shaw. 2011. Managing uncertainty in climate-driven ecolog-

ANGELA BRENNAN ET AL.652 Ecological Applications
Vol. 23, No. 3



ical models to inform adaption to climate change. Ecosphere
2:art102.

Maichak, E. J., B. M. Scurlock, J. D. Rogerson, L. L.
Meadows, A. E. Barbknecht, W. H. Edwards, and P. C.
Cross. 2009. Effects of management, behavior, and scaveng-
ing on risk of brucellosis transmission in elk of western
Wyoming. Journal of Wildlife Diseases 45:398–410.

Nelson, M. E., and L. D. Mech. 1986. Relationship between
snow depth and gray wolf predation on white-tailed deer.
Journal of Wildlife Management 50:471–474.

Parker, K. L., C. T. Robbins, and T. A. Hanley. 1984. Energy
expenditures for locomotion by mule deer and elk. Journal of
Wildlife Management 48:474–488.

R Development Core Team. 2011. R: a language and
environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria. http://www.
R-project.org

Renard, B., D. Kavetski, E. Leblois, M. Thyer, G. Kuczera,
and S. W. Franks. 2011. Towards a reliable decomposition of
predictive uncertainty in hydrological modeling: characteriz-
ing rainfall errors using conditional simulation. Water
Resources Research 47:W11516.

Rovansek, R. J., D. L. Kane, and L. D. Hinzman. 1993.
Improving estimates of snowpack water equivalent using
double sampling. Pages 157–164 in M. Ferrick and T.
Pangburn, editors. Proceedings of the 50th Eastern Snow
Conference and 61st Western Snow Conference. Quebec City,
Canada.

Singer, F. J., A. Harting, K. K. Symonds, and M. B.
Coughenour. 1997. Density dependence, compensation, and
environmental effects on elk calf mortality in Yellowstone
National Park. Journal of Wildlife Management 61:12–25.

Sweeney, J. M., and J. R. Sweeney. 1984. Snow depths
influencing winter movements of elk. Journal of Mammalogy
65:524–526.

Tabor, K., and J. W. Williams. 2010. Globally downscaled
climate projections for assessing the conservation impacts of
climate change. Ecological Applications 20:554–565.

Taper, M. L., and P. J. P. Gogan. 2002. The Northern
Yellowstone elk: density dependence and climate conditions.
Journal of Wildlife Management 66:106–122.

Telfer, E. S., and J. P. Kelsall. 1984. Adaptation of some large
North American mammals for survival in snow. Ecology
65:1828–1834.

Watson, F. G. R., W. B. Newman, J. C. Coughlan, and R. A.
Garrott. 2006. Testing a distributed snowpack simulation
model against spatial observations. Journal of Hydrology
328:453–466.

Wilby, R. L. 1994. Stochastic weather type simulation for
regional climate change impact assessment. Water Resources
Research 30:3395–3403.

Wilby, R. L. 1997. Non-stationarity in daily precipitation
series: implications for GCM downscaling using atmospheric
circulation indices. International Journal of Climatology
17:439–54.

Wilby, R. L., S. P. Charles, E. Zorita, B. Timbal, P. Whetton, and
L. O. Mearns. 2004. Guidelines for use of climate scenarios
developed from statistical downscaling methods. Supporting
material of the Intergovernmental Panel on Climate Change.
http://unfccc.int/resource/cd_roms/na1/v_and_a/Resource_
materials/Climate/StatisticalDownscalingGuidance.pdf

Wilby, R. L., and T. M. L. Wigley. 1997. Downscaling general
circulation model output: a review or methods and limita-
tions. Progress in Physical Geography 21:530–548.

Winterhalter, W. E. 2011. The accuracy of climate models’
simulated season lengths and the effectiveness of grid scale
correction factors. Ecological Applications 21:2313–2323.

Wyoming Game and Fish Department. 2006. 2005–2006
Annual feedground report. WGFD, Cheyenne, Wyoming,
USA.

SUPPLEMENTAL MATERIAL

Appendix

Supplemental study site information, including the range of field-estimated snow water equivalent (SWE) and elevation in snow
shadow vs. other regions, and the trend in SNODAS bias over time (Ecological Archives A023-030-A1).
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