Received: 11 September 2021

Revised: 3 May 2022

W) Check for updates

Accepted: 9 May 2022

DOI: 10.1111/csp2.12732

CONTRIBUTED PAPER

Conservation Science and Practice
: e ILEY
Ajournal of the Society for Conservation Biology

Application of qualitative value of information to prioritize
uncertainties about eastern black rail population recovery

Abigail J. Lawson" |
Amy C. Schwarzer® |

James E. Lyons1

us. Geological Survey, Eastern
Ecological Science Center at the Patuxent
Research Refuge, Laurel, Maryland, USA

2U.S. Fish and Wildlife Service, Florida
Ecological Services Field Office,
Gainesville, Florida, USA

3Florida Fish and Wildlife Conservation
Commission, Gainesville, Florida, USA

“*Mississippi State University, Coastal
Research and Extension Center, Biloxi,
Mississippi, USA

Correspondence

Abigail J. Lawson, U.S. Geological Survey,
New Mexico Cooperative Fish and
Wildlife Research Unit, Department of
Fish, Wildlife, and Conservation Ecology,
New Mexico State University, 2980 South
Espina Street, Knox Hall Room 132, Las
Cruces, NM 88003, USA.

Email: ajlawson@nmsu.edu

Present address

Abigail J. Lawson, U.S. Geological Survey,
New Mexico Cooperative Fish and
Wildlife Research Unit, Department of
Fish, Wildlife and Conservation Ecology,
Las Cruces, New Mexico, USA

Funding information

U.S. Fish and Wildlife Service, Grant/
Award Number: SSP-19-R5-01

1 | INTRODUCTION

Decision making under uncertainty is a ubiquitous, per-
sistent challenge in natural resource management. Adap-
tive management and other decision-analytic frameworks
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Abstract

Natural resource management decisions are often made in the face of uncer-
tainty. The question for the decision maker is whether the uncertainty is an
impediment to the decision and, if so, whether it is worth reducing uncertainty
before or while implementing actions. Value of information (VoI) methods are
decision analytical tools to evaluate the benefit to the decision maker of resolv-
ing uncertainty. These methods, however, require quantitative predictions of
the outcomes as a function of management alternatives and uncertainty, in
which predictions which may not be available at early stages of decision
prototyping. Here we describe the first participatory application of a new quali-
tative approach to Vol in an adaptive management workshop for Atlantic
Coast eastern black rail populations. The eastern black rail is a small, cryptic
marsh bird that was recently listed as federally threatened, with extremely lit-
tle demographic data available. Workshop participants developed conceptual
models and nine hypotheses related to the effects of habitat management alter-
natives on black rail demography. Here, we describe the qualitative Vol frame-
work, how it was implemented in the workshop, and the analysis outcomes,
and describe the benefits of qualitative VoI in the context of adaptive manage-
ment and co-production of conservation science.

KEYWORDS

adaptive management, decision analysis, endangered species, marsh birds, structured
decision making, value of information

explicitly incorporate uncertainty into decision-making
processes (Regan et al., 2002; Williams, 2011; Williams
et al., 2007). A distinguishing feature of adaptive manage-
ment is the emphasis on reducing uncertainty while
managing, with short-term learning resulting in greater
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long-term management performance (Walters, 1986).
There are often several sources of uncertainty in natural
resource management problems, however, and not all of
them can be resolved; furthermore, not all of them affect
which management action is preferred (Regan et al,,
2002; Runge et al., 2011). In such cases, additional tools
are required to determine which uncertainties are the
most important to resolve based on expected increase in
management performance.

Value of information (Vol) analysis is a generic term
that encompasses multiple analytical methods to quantify
the potential benefits of resolving uncertainty associated
with a well-defined decision problem. Among Vol ana-
lyses, the expected value of perfect information (EVPI) is
a common benchmark, as it quantifies the maximum
expected improvement in management performance after
obtaining perfect information and resolving all uncer-
tainties (Raiffa & Schlaifer, 1961; Yokota & Thompson,
2004). Simply put, EVPI is the difference between man-
agement performance under existing uncertainty and
management performance under perfect information.
Thus, if managers are likely to select different alterna-
tives when uncertainty is present compared to if it were
resolved, and the difference in management performance
is large, EVPI will be large. Resolving all uncertainties
perfectly is unrealistic, but other Vol metrics can evaluate
the relative value of resolving specific uncertainties or
obtaining additional imperfect information. The expected
value of perfect partial information (EVPXI) measures
the value of reducing specific sources of uncertainty and
is typically used to rank those different sources based on
their ability to improve management outcomes (Felli &
Hazen, 1998; Runge et al., 2011). In natural resource
management, data are often imperfect, that is, they
include sampling error; the expected value of sample
information quantifies the expected improvement in per-
formance from obtaining additional (sample) information
(Canessa et al., 2015).

Vol is often used to prioritize experiments or research
activities that are most likely to reduce uncertainties to
which management performance is most sensitive
(Bolam et al., 2019; Runge et al., 2011). Applying Vol
within an adaptive management framework for imperiled
species is particularly powerful when uncertainty about
population declines and management responses under-
scores the need for accelerated, targeted learning and
simultaneous management. Unfocused monitoring (i.e.,
efforts to reduce multiple sources of uncertainty without
regard for expected change in management performance)
can result in poor returns on monitoring investment,
opportunity costs, and delays that could prove costly for
imperiled populations (Lyons et al., 2008; Runge, 2011;
Runge et al., 2011). For rapidly declining species in which

the cause of decline is highly uncertain, simplified tools
to identify and prioritize uncertainties with a broad man-
agement community could be an effective initial conser-
vation step. After this initial step, investing resources in
additional data collection or expert elicitation from spe-
cialized species experts to estimate quantitative Vol met-
rics (e.g., EVPI, EVPXI) could be warranted.

Qualitative value of information (QVoI; Runge
et al,, n.d.; Rushing et al., 2020) is a new tool that can be
used to prioritize uncertainties within a specific manage-
ment decision context using a simple, rapid scoring
framework in lieu of quantitative predictions and other
information necessary for EVPI and related measures. In
a QVol analysis, each source of uncertainty is expressed
as a scientific hypothesis (with its logical complement
considered an implicit null hypothesis). The hypotheses
are evaluated independently using three scoring criteria:
(1) Magnitude of Uncertainty (hereafter Magnitude), (2)
Relevance for Decision Making (hereafter Relevance),
and (3) Reducibility. Magnitude refers to the relative sup-
port for a particular hypothesis as evidenced by a theoret-
ical foundation and consensus of empirical studies. A low
Magnitude score reflects a stronger consensus about the
hypothesis and a high score reflects greater uncertainty
due to a lack of theory or evidence. Relevance describes
the degree to which testing a hypothesis would lead man-
agers to select a different management action, one with a
greater probability of achieving management objectives if
the hypothesis were true (Rushing et al., 2020). Thus,
sources of uncertainty that score low on Relevance are
unlikely to influence management decisions, whereas a
high score indicates that resolution of the uncertainty
will alter the preferred management action and expected
outcome. The final scoring criteria, Reducibility,
describes the degree to which research and monitoring
activities can reduce uncertainty. A low score indicates
that the necessary data, technology, or other resources to
reduce the uncertainty are limited or not available,
whereas a high score indicates that necessary compo-
nents are readily available and resolving the uncertainty
would not be costly or time-consuming (Rushing
et al., 2020).

Rushing et al. (2020) defined the product of Magni-
tude and Relevance scores as the QVol; Runge et al. (n.
d.) show this product is proportional to the quantitative
Vol. When evaluating two hypotheses (Hy, and H;) and
two management actions (A and B), Vol is determined by
the expected management performance of each action
under each hypothesis. Expected performance for action
A or B under uncertainty is a weighted average of the
two possible outcomes for the action depending on
whether Hy or H; is true, with the weights determined by
the degree of belief in Hy or H; (i.e., model weights that
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sum to one). As the degree of belief in Hy or H;
approaches zero, the Vol approaches zero; conversely,
the Vol increases linearly with model uncertainty and is
greatest when the expected management performance of
A and B is the same (i.e., at the point of indifference
between the two actions; Williams, 2011; Rushing
et al.,, 2020). Note that the point of indifference could
occur when the model weights are equal to 0.5, but this is
not necessarily the case (Williams, 2011). In QVol, the
Magnitude score reflects the degree of belief in H, versus
H,; based on theoretical underpinnings and empirical

Ajournal of the Society for Conservation Biclogy

evidence. A minimum score for Magnitude reflects a high
degree of consensus in the literature and other empirical
evidence (Score 0 in Table 1) and is synonymous with a
high degree of belief (probability near 1.0) in either H; or
Hp. In contrast, a maximum score for Magnitude (Table 1)
reflects high uncertainty due to conflicting or absent
empirical evidence and is synonymous with the point of
indifference in quantitative Vol, that is, the degree of
belief at which Vol is maximized. The Relevance score in
QVol reflects the cost of being wrong (implementing the
wrong action) and is proportional to the differences in

TABLE 1 Qualitative value of information (QVol) scoring rubric for three attributes: Magnitude of Uncertainty (Magnitude), Relevance
for Decision Making (Relevance), and Reducibility. This table is adapted from Rushing et al. (2020, table 3) to reflect the low number of
studies for black rails (Laterallus jamaicensis jamaicensis) and related species (family: Rallidae), which affects the scoring criteria for

Score Reducibility

Data necessary to reduce
uncertainty does not currently
exist and will be prohibitively
difficult/expensive to collect
given current technologies

Data to reduce uncertainty exist
but only for a limited
taxonomic, geographic, or
temporal scope but cannot
resolve the specific
mechanisms; collection of
additional data needed to
discriminate among alternative
mechanisms will be difficult/
expensive or cannot be
collected in timeframe relevant
to decision

Data to reduce uncertainty exist

Magnitude
Score Magnitude Score Relevance
0 Firm theoretical foundation anda 0 Preferred management action will 0
large number of empirical be favored regardless of
studies (>3) that support whether hypothesis is true
theoretical predictions
1 Firm theoretical foundation with 1 Reducing uncertainty is predicted 1
robust empirical support; OR to improve management
Large number (>3) of outcomes but range of
consistent empirical studies outcomes will be swamped by
natural variability and other
uncertainties
2 Firm theoretical foundation with 2 Reducing uncertainty is predicted 2
moderate empirical support; to improve management
OR Moderate number (2-3) of outcomes; range of outcomes
consistent empirical studies will be small to moderate
compared to natural variability
and other uncertainties
3 Firm theoretical foundation with Reducing uncertainty is predicted

no empirical support; OR Small
number (<2) of consistent
empirical studies

Large disagreement between

theory and empirical studies;
OR No theoretical basis and
inconsistent empirical studies

to improve management
outcomes and range of
outcomes will be same order of
magnitude as natural
variability and other
uncertainties

but only for a limited
taxonomic, geographic, or
temporal scope OR data only
allow weak inference about
mechanisms; collection of
additional data needed to
discriminate among alternative
mechanisms is feasible given
current technologies

Data to reduce uncertainty exist
across a large taxonomic,
geographic, or temporal scope
AND credible inference can be
made from these data
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management performance between the two actions under
each hypothesis (Runge et al., n.d.). If there will be little
difference in utility of the two actions, regardless of
whether H, or H; is true, Relevance is low.

We used a QVol analysis to identify a set of habitat
management uncertainties to be addressed within an
adaptive management framework for eastern black rail
(Laterallus jamaicensis jamaicensis; hereafter rail)
populations on the Atlantic Coast. The rail is a small,
secretive marsh bird that was recently listed as federally
threatened under the U.S. Endangered Species Act (ESA;
U.S. Fish and Wildlife Service [USFWS], 2020). Rails
have experienced a drastic range contraction over the last
century due to habitat loss and degradation (McGowan
et al., 2020; USFWS, 2018; Watts, 2016). Negative effects
of sea level rise and woody vegetation encroachment are
well documented (Roach & Barrett, 2015; Tolliver
et al., 2019), but substantial uncertainty exists regarding
relative importance of habitat suitability factors, which
habitat management techniques are most likely to benefit
rail populations, and how they can be implemented (e.g.,
timing, frequency, intensity). The decision makers for
habitat management are federal, tribal, state, and non-
government landowners. The USFWS plays a coordinat-
ing role, as it is tasked with leading the recovery efforts
mandated by the ESA. The USFWS Atlantic Coast Joint
Venture and the U.S. Geological Survey are leading a dis-
tributed network of species and coastal ecosystem experts
and managers in collaborative adaptive management to
recover rail populations along the Atlantic Coast. Thus,
while landowners are the decision makers, members of
the adaptive management group are committed to partic-
ipating in a set of field experiments to accelerate learning
and identify optimal habitat management techniques.

Here, we demonstrate the utility of QVol as a rapid,
transparent conservation tool to prioritize uncertainties in
an early decision prototyping context, that is, before build-
ing the models necessary for traditional quantitative Vol
methods. We describe the application and outcomes of a
QVol elicitation conducted during an in-person adaptive
management workshop. Lastly, we provide brief guidance
on the application of QVol for participatory settings, such
as workshops or other stakeholder events, and discuss its
benefits for the co-production of science (Beier et al., 2017).

2 | METHODS
2.1 | Workshop structure and
organization

In January 2020, we organized a 2-day workshop in
Titusville, Florida, for rail experts and land managers

from federal and state governmental agencies, universi-
ties, and nongovernmental organizations (Table S1). We
identified participants through the USFWS Atlantic Coast
Joint Venture's eastern black rail working group (Atlantic
Coast Joint Venture [ACJV], 2021), and also relied upon
committed participants based in northern Florida (near
the workshop location) to recruit additional experts in
land management practices of rail habitat.

The workshop's purpose was to complete an adaptive
resource management (ARM) rapid prototyping exercise
using the PrOACT framework (Gregory et al., 2012;
Gregory & Keeney, 2002; Hammond et al., 2002). The
PrOACT framework decomposes a decision into smaller
parts that include: framing the Problem, identifying fun-
damental Objectives, creating management Alternatives,
predicting Consequences, and evaluating Tradeoffs
(Gregory & Keeney, 2002). During the workshop, the
Problem Framing step focused on defining the problem
and the decision maker (i.e., who had the authority to
implement a decision), as well as identifying the spatial
and temporal boundaries (e.g., determining which habi-
tat types should be included). The Objectives step focused
on explicitly stating a clear, quantifiable fundamental
objective (what the group hoped to achieve for rails) and
how success would be quantified (e.g., abundance, occu-
pancy probability). For the remaining three steps (Alter-
natives, Consequences, Tradeoffs), the participants
separated into breakout groups that were structured
according to the four main habitat types identified in the
Problem Framing step: (1) Tidal high marsh (THM),
which included coastal tidal wetlands (natural or
restored); (2) Impounded wetlands (IMP), that is, coastal
and inland diked wetlands in which water levels could
potentially be manipulated; (3) Inland “elsewhere” wet-
lands (IEL), noncoastal wetlands outside of Florida (i.e.,
a variety of types such as wet meadows, farm ponds, sew-
age treatment ponds, etc.); and (4) inland Florida wet-
lands (IFL), which include patches of rain-driven
wetlands that were originally formed by natural systems,
but some of which now have water control structures.
With the exception of IFL, the breakout groups were not
geographically specific, as the remaining three habitat
types could be found in all states within the rail's Atlantic
Coast range.

2.2 | Participatory modeling and
hypothesis development

Each breakout group followed a two-step process to com-
plete a rapid decision prototype: (1) create a conceptual
model of system dynamics and (2) articulate hypotheses
based on key uncertainties depicted in the conceptual
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model. Conceptual modeling was an iterative process in
which participants constructed a series of influence dia-
grams (Howard & Matheson, 2005; chap. 6 in Peterson &
Conroy, 2013) that reflected hypothesized habitat-specific
relationships between ecological factors affecting rails,
chance events, management actions, and the fundamental
objective. For each iteration, participants were asked to
begin with the fundamental objective and add nodes one-
by-one that represented ecological factors or chance events
thought to influence the fundamental objective. Nodes
added thereafter were thought to have indirect effects on
the fundamental objective, in that they influence other fac-
tors that have a direct influence on the fundamental objec-
tive. In Figure 1, for example, Predation is hypothesized to
directly influence Rail Occupancy, whereas Plant Structure
(e.g., stem density) has an indirect effect on Rail Occu-
pancy through its influence on Predation, Food, and Nest
Sites. As a final step, participants added management
actions hypothesized to influence ecological factors. Each
breakout group initially created a “full” influence diagram
that depicted hypothesized relationships in detail, whereas
in the next iteration participants created a “reduced” dia-
gram that reflected only the most essential relationships.
Each group presented their reduced influence diagram to
the workshop participants in plenary and received feed-
back, providing the breakout groups a final opportunity to
adjust their diagrams.

Ajournal of the Society for Conservation Biclogy

In the second step, we asked each breakout group to
develop a set of hypotheses regarding the relationships
between habitat management actions and the fundamen-
tal objective, maximize rail occupancy (see Section 3).
Each hypothesis was intended to follow a common for-
mat that identified a threat to rails, described the demo-
graphic mechanism by which the threat affected rails,
and proposed a habitat management action that might
attenuate or eliminate the threat. For example, prescribed
burning (management action) is thought to limit woody
plant encroachment (threat) and increase rail occupancy
compared to un-burned habitat, because woody plants
provide minimal vegetative cover for rails to hide from
predators compared to leafy, herbaceous plant species
that benefit from fires (mechanism). Each hypothesis was
treated as an alternative (H;) to its logical complement,
the implicit null hypothesis (Hy).

2.3 | QVol elicitation and hypothesis
prioritization

Following the breakout group activities, participants met
in plenary for training on the QVol framework and scor-
ing rubric (Table 1; adapted from Rushing et al., 2020).
During training, participants were encouraged to ask
questions and received scoring clarification from

Plant Species
Assemblage

Nest Sites

Plant Structure

Food

Hydrology

Predation

Habitat Creation

Vegetation Management
Hydrology Management
Elevation Adjustment

Context

Landscape

Sea Level
Rise
\
|

FIGURE 1

Influence diagram for management of Eastern black rails (Laterallus jamaicensis jamaicensis, BLRA) in tidal high marsh

habitats on the Atlantic Coast. This conceptual model was created by subject matter experts within the Tidal High Marsh breakout group in

an adaptive management workshop. The diagram depicts hypothesized relationships between management actions (green rectangles),

ecological variables (yellow rounded rectangles), chance events (red circles), and the management objective (blue hexagon). The arrow

directionality reflects the hypothesized causal relationship between two nodes. Similar conceptual models for impoundments and inland

wetlands are in the Supporting Information (Figures S1-S3).
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workshop organizers. Next, each hypothesis was shown
one-by-one on a large projection screen and explained by
the habitat breakout group members. During the hypoth-
esis presentations, other participants could ask questions
to clarify missing or unclear elements (e.g., threat, mech-
anism, management actions), predictions, or assump-
tions. After completing the hypothesis clarification, the
facilitators asked participants to independently record
their scores in the Magnitude, Relevance, and Reducibil-
ity categories on a datasheet. All participants scored all
hypotheses, not just the ones created by their breakout
group. No identifying information was reported except
for their habitat breakout group. After the workshop, we
computed QVol for each participant, and then calculated
the mean QVol and Reducibility scores and their SEs
across all participants for each hypothesis.

We plotted the mean QVol and Reducibility scores
(£SE) for each hypothesis in two-dimensional space and
divided the space into four prioritization categories based
on the mean of the minimum and maximum mean scores
(Figure 2; Rushing et al., 2020). Thus, we used a “local-
scale” to delineate prioritization categories, in which
hypotheses are assigned to a category based on their per-
formance relative to other hypotheses in this study. The
local scale approach used here contrasts with a “global

71 Medium Highest
3

67 ‘J 1
w ‘ Habitat
&)
H . THM
5 ghdeeeeeca oL L ) IMP
2 IEL
o ® FL

12
4 ?+
3 Low High
1.0 1.5 20 25

Reducibility + SE

FIGURE 2
reducibility scores for nine alternative hypotheses related to the

Qualitative value of information (QVol) and

effects of management actions on Eastern black rail populations on
the Atlantic coast. QVol and Reducibility scores were averaged
across voting workshop participants (n = 26); error bars reflect the
SE. Hypotheses (points) are shown according to the habitat
breakout groups: Inland elsewhere (IEL) = gray; inland Florida
(IFL) = orange; impoundments (IMP) = blue; and tidal high marsh
(THM) = green. The vertical and horizontal dashed lines are the
median of the minimum and maximum Reducibility (x = 1.9) and
QVOI (y = 5.0) mean scores, which were used to separate the
hypotheses into four prioritization categories: Highest, High,
Medium, and Low.

scale” approach in which hypotheses could be assigned
to categories based on the minimum and maximum pos-
sible scores (Table 1). The use of a local scale is consistent
with other Vol analyses (Runge et al., 2011) because
EVPXI, for example, is a function of the specific hypothe-
ses and management responses being evaluated and the
cost of implementing the wrong action; all of these ele-
ments are specific to the decision context and therefore
Vol from one decision context is not meaningful in other
decision contexts. Within the prioritization categories,
hypotheses that scored high in both QVolI and Reducibil-
ity were deemed “Highest Priority,” as they were relevant
to managers and were associated with high uncertainty
that could be readily addressed through research and
monitoring. “High-Priority” hypotheses had relatively
lower Relevance to managers or lower uncertainty, but
that uncertainty could potentially be further reduced
through additional research and monitoring. “Medium-
Priority” hypotheses had high Relevance to managers but
had levels of uncertainty that could not be easily reduced
through monitoring and research. Lastly, “Low-Priority”
hypotheses were those that had relatively low Magnitude
or Relevance (or both) and low Reducibility.

We note that there is flexibility in the designation of
quadrants for hypotheses with low QVol and high Reduc-
ibility (classified as High Priority here), versus those with
high QVol and low Reducibility (Medium Priority). Like
other tradeoffs in structured decision making, the High
versus Medium quadrant designation is a subjective
reflection of the values of the decision makers and stake-
holders. We opted to prioritize Reducibility due to the
urgent need to resolve uncertainties related to both rail
ecology and the effects of proposed management tech-
niques for decision makers (USFWS, 2018), and to capi-
talize on existing willingness of managers to participate
in management experiments. With this structure, we
placed a premium on the rapid resolution of existing
uncertainties (of varying Relevance), as opposed to the
resolution of more challenging uncertainties on longer
timescales.

3 | RESULTS

Workshop participants (n = 30) framed the problem to
focus on identifying and optimizing habitat management
techniques that could achieve a single fundamental
objective focused on maximizing long-term persistence of
black rails on the Atlantic Coast in all four major habitat
types. Though “minimizing costs” was proposed as a sec-
ond fundamental objective, the consensus was that
potential experiments could be executed through existing
habitat management activities that were already
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budgeted for; the group also expressed a willingness to
pursue additional external funding for any experimental
activities not budgeted for. The participants selected
occupancy probability (MacKenzie et al., 2003) as the
metric by which to quantify the success of management
alternatives in achieving the fundamental objective. The
participants determined that occupancy probability pro-
vided the most flexibility for monitoring activities,
because it could include monitoring data collected under
both occupancy- and abundance-based monitoring
frameworks (MacKenzie et al., 2003; Royle, 2004), in
which the latter count data could be collapsed into a
detection/nondetection format. Congruent with the prob-
lem frame and fundamental objective, participants lim-
ited management alternatives to optimizing the use of
existing methods (e.g., prescribed burns, herbicide, irriga-
tion) in existing habitat rather than intensive habitat
creation.

The four habitat-based breakout groups initially gen-
erated 13 hypotheses and associated predictions; how-
ever, four were removed from consideration because they
fell outside the problem frame and were excluded from
the analysis (Table S2). Of the nine final hypotheses,
three originated from the Tidal High Marsh breakout
group (n = 8 participants); two from Impoundments
(n = 9 participants), one from Inland Wetlands

TABLE 3

Ajournal of the Society for Conservation Biclogy

Elsewhere (n = 7 participants), and three from the Inland
Wetlands Florida group (n = 9 participants) (Table 2).
The QVol elicitation included scores from only 26 partici-
pants because 4 individuals were not present at the time
of the elicitation (Table S1).

Magnitude of all hypotheses averaged 2.30 + 0.11
(SE) on a scale of 0 to 4 (Table 1), in which higher scores
indicate greater uncertainty. Participants indicated that
the Patch x Microtopography hypothesis (#3) had the
greatest uncertainty (2.81 + 0.18, Table 3), whereas the
Fire versus Other hypothesis (#12) had the least uncer-
tainty (1.69 + 0.19). Relevance to management decisions
of all hypotheses averaged 2.20 + 0.09 on a scale of 0-3
(Tables 1 and 3), in which higher scores indicate that res-
olution of the hypothesis' uncertainty is likely to influ-
ence management decision making. Participants
indicated that resolution of the Woody Threshold
hypothesis (#13) had the highest Relevance to manage-
ment decision making (2.65 + 0.14), whereas the Natural
vs. Altered Hydrology hypothesis (#2) had the lowest rel-
evance (1.73 + 0.16, Table 3). QVol, the product of Mag-
nitude and Relevance scores, was highest for Woody
Threshold hypothesis (#13) and lowest for Natural versus
Altered Hydrology hypothesis (#2, Table 3). Reducibility
of all hypotheses averaged 2.01 + 0.15 on a scale of 0-3
(Table 1), in which higher scores indicate that the

Summary of hypothesis prioritization from an adaptive resource management workshop focused on population recovery of

Eastern black rails (Laterallus jamaicensis jamaicensis; hereafter black rail) on the Atlantic Coast. Each hypothesis describes a conjecture

about the effects of management actions on black rail occupancy. Workshop participants formed breakout groups for four major habitat
types: Tidal High Marsh (THM); Impoundments (IMP); Inland Elsewhere (IEL); and Inland Florida (IFL). Origin Group refers to the habitat
breakout group from which the hypothesis originated. Workshop participants used a rubric (Table 1) to score the hypotheses in three main

attributes: (1) Magnitude; (2) Relevance; and (3) Reducibility. The participants’ raw scores were used to derive QVol (the product of

Magnitude and Relevance) for each participant. The raw scores were then averaged across voting workshop participants (n = 26) to obtain

an overall mean (+SE) for each hypothesis; hence, the product of mean Magnitude and Relevance scores in the table below are not equal to

the mean QVol. The Reducibility and QVol means were used to assign each hypothesis to a Priority Class (Figure 2). The values in bold

indicate the highest scoring or ranked hypotheses in each column

Origin Priority
group Hypothesis name® Magnitude Relevance QVol Reducibility  class.
THM #1 Single Vegetation Treatment Effects 2.08 + 0.17 2.08+0.17 431+048 215+0.14 High
#2 Natural versus Altered Hydrology 2.19 +£0.22 1.73+0.16 358+045 1.54+0.15 Low
#3 Patch x Microtopography 2.81+018 204+0.16 562+0.59 1.19+0.15 Medium
IMP #5 Patchy Fire 215+ 0.21 212+ 0.19 4.65+0.6 1.85 + 0.16 Low
#6 Combined Vegetation Treatment 2.60 + 0.16 215+0.14 580+0.58 2.04 +0.14 Highest
Effects
IEL #10 Water Applicationb 2.33+0.22 2.21 +0.16 525+ 0.68 2.08 +0.12 Highest
IFL #11 Microtopography 2.44 + 0.16 236 +0.13 588+0.57 2.12+0.13 Highest
#12 Fire versus Other” 1.69 + 0.19 250+ 0.11 435+0.56 2.58 +0.11 High
#13 Woody Threshold 242+ 0.17 2.65+014 6.50+0.59 2.62 + 0.12 Highest

#Hypotheses 4 and 7-9 removed from the analysis because they fell outside the problem frame (Table S2).
"Adaptive Resource Management (ARM) hypothesis selected for field experiment development.
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uncertainty a hypothesis was designed to test was the
more readily solvable (i.e., feasible). Woody Threshold
had the highest mean Reducibility score (2.62 + 0.12),
whereas Patch x Microtopography (#3) had the lowest
(1.19 + 0.15, Table 3).

We plotted the hypotheses QVol and Reducibility
means in two-dimensional space and used the average of
the minimum and maximum scores (QVol: 5.04, Reduc-
ibility: 1.90) to assign each hypothesis to one of four pri-
oritization categories (see Section 2.3). According to our
categorization (Figure 2), slightly less than half of the
hypotheses (n = 4) were designated as “Highest” priority,
whereas the High and Low categories each contained two
hypotheses, and the Medium category contained one.

4 | DISCUSSION
41 | QVol for developing an adaptive
resource management framework for rails

The majority of workshop hypotheses (ca. 66%) were clas-
sified as either highest (n = 4) or high (n = 2) priority.
The general clustering of hypotheses in these categories
is consistent with two recurring themes expressed by par-
ticipants. First, rails are poorly studied on the Atlantic
Coast (i.e., high Magnitude), particularly in geographic
areas or habitat types thought to be potentially important
population centers in the future (e.g., inland wetlands,
central Florida) given sea level rise trends (Roach &
Barrett, 2015; USFWS, 2020, 2018; Watts, 2016). Second,
participants also expressed a cautious optimism that hab-
itat management techniques currently used in the rail's
Atlantic distribution could be optimized (e.g., adjusted
timing, frequency, etc.) to benefit rail populations (indi-
cating a high Relevance) and that management tech-
niques successfully used to boost rail populations in
other areas (sensu Huntsinger et al., 2017; Nadeau &
Conway, 2015) could be employed on the Atlantic Coast
(high potential for Reducibility). Using the prioritization
categories as a rough guide, we ultimately selected two
hypotheses, one each from the Highest and High catego-
ries, to serve as the foundation for management experi-
ments to accelerate learning in an adaptive resource
management framework (ARM-hypotheses, hereafter).
Next, we discuss the ARM-hypotheses in the context of
the rail literature, and how they related to other hypothe-
ses that received substantial support based on the
prioritization.

Water Application (#10) was selected as an ARM-
hypothesis; it states that water applied to slope wetlands
from an external source (e.g., farm pond release, irriga-
tion piping) could be optimized based on physical habitat

characteristics such as slope, soil type, and natural
hydroperiod to produce water depths that are suitable for
rail activities (e.g., foraging, loafing, nesting) and pro-
mote dense vegetation structure that rails use for cover
(Table 2). The general concept of optimized irrigation for
other rail habitat types is supported in the literature, as
Nadeau and Conway (2015) demonstrated that optimiz-
ing irrigation in impoundments to limit water depths to
<4 cm increased abundance of California black rails
(Laterallus jamaicensis coturniculus) in southwestern Ari-
zona by 358%, though vegetation responses were not
evaluated. Though it received the lowest QVol score
among the Highest-priority hypotheses, we selected
Water Application as an ARM-hypothesis because experts
and managers placed a premium on reducing uncer-
tainties in inland wetland habitat types, as they believed
they were likely to become increasingly important for
eastern rails as existing tidal high marsh and other
coastal habitats (e.g., impoundments) are lost to sea level
rise (Watts, 2016).

We selected Fire versus Other (#12) as the second
ARM-hypothesis, which states that prescribed burns are
predicted to provide multiple benefits to rail habitat,
whereas other vegetation management techniques such
as herbicide, grazing, or mowing are predicted to provide
a singular benefit (Table 2). Prescribed burns release
nutrients that promote dense, herbaceous vegetation
growth used by rails for cover, and increase the resiliency
of habitats to woody vegetation encroachment which
does not provide cover and is known to negatively influ-
ence rail occupancy (Grace et al, 2005; Tolliver
et al., 2019).

The Fire versus Other hypothesis received the second-
highest Relevance and Reducibility scores and offered
several key benefits that justified its inclusion as an
ARM-hypothesis, despite being assigned to the High-pri-
ority category (rather than Highest). First, emphasis of
Fire versus Other hypothesis on comparing vegetation
management techniques and their relationship to woody
vegetation encroachment provided an opportunity to
simultaneously evaluate two additional hypotheses in the
Highest-priority category. The Combined Vegetation
Treatment Effects (#6) predicted that habitats treated
with multiple (combined) treatment types (including pre-
scribed burns) would have higher rail occupancy com-
pared to habitats that received only one type (Table 2).
As such, in a Fire versus Other experiment, prescribed
burning could be compared against both a separate treat-
ment type (“Other”) as well as a combined treatment
(Fire + Other). The Woody Threshold hypothesis (#13),
which scored the highest in both Relevance and Reduc-
ibility (Table 3), could also be tested in the context of Fire
versus Other. The Woody Threshold hypothesis stated
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that rail occupancy is not influenced by woody vegetation
cover or density until it crosses an unspecified threshold,
beyond which it exhibits a negative effect by limiting her-
baceous vegetation used by rail for cover from predators
(Table 2). The effects of woody vegetation could be incor-
porated into the Fire versus Other experimental frame-
work by assigning treatment blocks by starting
conditions (e.g., high or low woody vegetation cover) or
incorporating woody vegetation as a covariate.

Another key benefit of the Fire versus Other hypothe-
sis is that it appeared to offer a greater reduction in
uncertainty (Magnitude) and higher Relevance that was
robust to multiple timescales compared to several
Highest-priority hypotheses. During the workshop multi-
ple managers expressed concern about climate change
potentially limiting the number of days in which they are
allowed to burn, meaning that an effective alternative to
prescribed burning would need to be identified. Hence,
Highest-priority hypotheses studies focused on optimiz-
ing existing prescribed fire treatments (e.g., #6 Combined
Vegetation Treatments, #13 Woody Threshold) may offer
a greater shorter-term reduction in uncertainty, though
the knowledge gained may have low Relevance or be
considered moot at longer timescales if opportunities for
prescribed burns are severely reduced in the future.
Lastly, because prescribed fire is not a common manage-
ment tool at inland slope wetlands, selecting Fire versus
Other as the second ARM-hypothesis ensured minimal
potential overlap in sites for the Water Application exper-
iment, which will maximize sample sizes for each study.

4.2 | Benefits of QVol and guidance for
future applications

The rapid prototyping and hypothesis prioritization using
the QVol framework was useful to the decision maker
and provided four main benefits. First, the primary focus
of the workshop was to create a decision prototype that
identifies critical uncertainties as the first step in esta-
blishing an adaptive management framework for a highly
imperiled species with critical uncertainties regarding the
causes of decline. The adaptive management framework
we are developing shows great promise to serve as a plat-
form for increased communication, coordination of mon-
itoring and experiments, and transparency in decision-
making while systematically reducing uncertainty
(Cundill & Fabricius, 2009; Sunderland et al., 2009). Sec-
ond, both the rapid prototyping process and hypothesis
prioritization using QVol were co-produced with a large,
diverse community in a participatory setting to promote
transparency, trust, and buy-in. For example, the partici-
patory modeling exercise was an approachable way to
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transparently capture beliefs about system dynamics from
experts with varying amounts of modeling expertise,
which could be more challenging to implement for a tra-
ditional quantitative Vol elicitation. Moreover, the frame-
work we are establishing will be carried out through co-
management with a distributed network of collaborators
(Djenontin & Meadow, 2018; Johnson et al., 2013; Sun-
derland et al., 2009).

Third, the hypothesis prioritization using QVol
prompted stakeholders to set priorities in the face of
widespread uncertainties. In preparatory discussions with
participants, many species experts expressed a ubiquitous
sense of uncertainty regarding how habitat management
actions could benefit rail populations, with no conception
of their relative reducibility. In contrast, after the work-
shop the participants had a stronger consensus regarding
which uncertainties were the most important to pursue
among the elicited hypotheses. This may be due, in part,
to the participatory model-building in a workshop and
simplified nature of QVol in which the three elicited
quantities and output are intuitive and relatively easy to
understand, compared to the traditional quantitative
form in which quantities like EVPI are calculated by
decision analysts and may require multi-attribute utility
theory for multiple objective problems. Fourth, specifying
research and monitoring priorities through QVol within
the context of an adaptive management framework will
close or narrow the “research-implementation gap”
(Dubois et al., 2020). Evaluating the benefits (QVoI) and
potential costs (Reducibility) of learning through a priori-
tization framework ensures that monitoring programs
are explicitly designed to reduce uncertainties that are
important to decision makers, compared to omnibus,
unfocused, or uncoordinated monitoring programs in
which data are collected with no clear management
objective, sometimes at great expense (Lyons et al., 2008;
Runge, 2011).

This paper documented the first application of QVol
in a participatory setting. Here we provide some brief
guidance on ways to improve the elicitation process, and
potentially reduce or eliminate the need for post-work-
shop clarification. In our instructions to participants, we
originally requested that each hypothesis contain three
elements: (1) a threat to rails; (2) a description of the
demographic mechanism by which the threat acts; and
(3) a proposed habitat management action that might
attenuate or eliminate the threat. Based on our experi-
ence, we recommend that hypotheses be constructed
using the format provided in Table 2, consisting of a
Background (that includes the three elements), the deci-
sion context, as well as succinct statements of the hypoth-
esis' null (Hy) and alternative (H;) forms and their
associated preferred management action and predictions.
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Eliciting the hypotheses in this format may help identify
potential issues that we encountered in our workshop
early-on, such as a decision context outside the agreed-
upon problem frame or hypotheses in which the pre-
ferred management action is unclear or the same
between H; and H, (Table S2). Early diagnosis of poten-
tial problems could give participants an opportunity to
refine the hypothesis before it is presented to a larger
group, and is also likely to facilitate clearer communica-
tion and understanding during the discussion preceding
the scoring. Future applications, in which more data are
available, could compare prioritization from a QVol
framework with traditional quantitative Vol approaches
to provide further insight about the relative benefits of
qualitative and quantitative value of information.

Here we described the PrOACT process employed by
a workshop focused on establishing of an ARM frame-
work for Atlantic Coast eastern black rails, for which pre-
dictive models relevant for decision analysis are not yet
available. The workshops successfully used influence dia-
grams to delineate epistemic uncertainties and generate a
set of alternative hypotheses that represented impedi-
ments to the selection of optimal management strategies.
We then used QVol, a new decision analysis tool, to pri-
oritize hypotheses to serve as the basis for planned field
experiments. This approach was useful for facilitating
buy-in from stakeholders and for maximizing the effi-
ciency of limited resources for endangered species recov-
ery. Importantly, we demonstrated that QVol can be used
in a rapid prototyping setting, as opposed to a controlled
literature search (Rushing et al., 2020), further improving
buy-in. Most importantly, despite time and logistical con-
straints, we generated a product that was useful to the
decision maker, identified critical uncertainties to be
reduced through an adaptive management framework for
a threatened species, and set the direction for co-pro-
duced science (Beier et al., 2017; Wright et al., 2020).
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