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A B S T R A C T   

Classifying species into risk categories is a ubiquitous process in conservation decision-making affecting regu
latory procedures, conservation actions, and guiding resource allocation at global, national, and regional scales. 
However, monitoring programs often do not provide data required for accurate species classification decisions. 
Misclassification can lead to otherwise preventable species extinctions, undue regulatory burden, poor allocation 
of limited conservation resources, and can undermine species conservation legislation. We developed a frame
work that evaluates monitoring designs based on the ability to correctly inform a species classification decision, 
where minimizing the risk of misclassification is the central objective. We further evaluated monitoring designs 
by calculating the expected value of information and explored the relationship between statistical power to 
detect trends and misclassification. Our measure of misclassification risk, which can be tailored to the decision 
context, clarified the costs of over- and under-protection. High power to detect trends often corresponded to 
accurate species classification decisions. However, in several scenarios power to detect trends was low but the 
ability to correctly inform the classification decision was high. The value of information generally increased with 
monitoring intensity and quantified the tradeoffs between spatial and temporal replication. Our framework al
lows managers to assess monitoring program performance with direct implications for conservation decision- 
making. Our framework affords practitioners an opportunity to evaluate the effectiveness of monitoring pro
grams a priori focusing on improving conservation decisions. We demonstrate that prioritizing monitoring to 
minimize misclassification errors can improve monitoring efficiency and conservation decision-making with 
considerable practical applications and benefits for species conservation.   

1. Introduction 

Conservation status assessment frameworks are used globally to 
classify species into risk categories and can be powerful tools for 
biodiversity conservation (Rodrigues et al., 2006; Smith et al., 2018). 
Global assessment frameworks such as the International Union for 
Conservation of Nature (IUCN) Red List of Threatened Species inform 
international agreements (e.g., Convention on International Trade in 
Endangered Species) and serve as the basis to monitor status of global 
biodiversity (e.g., Convention on Biological Diversity) (Bland et al., 

2015). Assessment frameworks are used at national and regional levels 
to prioritize conservation actions (Partners in Flight Landbird Conser
vation Plan [PIF]; Rosenberg et al., 2016) or assign species and habitats 
legal protection (e.g., the 1973 U.S. Endangered Species Act [ESA] and 
the 1999 Australian Environment Protection and Biodiversity Conser
vation Act [EPBCA]). Species classifications often guide resource allo
cation affecting which species receive the limited conservation funds at 
global, national, and regional scales. 

Conservation status classifications are typically informed by popu
lation metrics and incorporate both scientific and policy components 
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(Cummings et al., 2018). Population metrics used to inform status differ 
between frameworks but often include estimates of abundance, popu
lation trends, or area occupied in relation to extinction risk. However, 
monitoring data may be lacking altogether or programs may fail to 
provide sufficient data to inform conservation decisions (Lindenmayer 
et al., 2013; Robinson et al., 2018). Crucially, research has demonstrated 
species classification decisions are sensitive to uncertainty (Connors 
et al., 2014; Regan et al., 2013; Rueda-Cediel et al., 2015) and are 
subject to two types of misclassification error (Taylor et al., 1996). 
Species may fail to be classified to a protected category when warranted 
(i.e., underprotection) or alternatively provided protection when it is 
not warranted (i.e., overprotection). Consequences of underprotection 
include an increased risk of species extinction when preventable with 
corrective conservation actions. Overprotection may seem preferable 
and even consistent with the “precautionary principle” (Myers, 1993); 
however, providing protection when unwarranted causes undue regu
latory burden, poor allocation of limited conservation resources, and 
can serve to undermine species conservation legislation (Lukey et al., 
2011). Ensuring sufficient data for species classification decisions to 
minimize misclassification errors is therefore a critical component of 
global species conservation status assessments. 

Expected value of information (VOI) analysis quantifies the expected 
benefit of acquiring additional research or monitoring information to 
inform a decision problem (Raiffa and Schlaifer, 1961). VOI is the dif
ference between expected management outcomes when the decision is 
made before acquiring new information (i.e., under uncertainty) and 
after acquiring new information (Runge et al., 2011; Yokota and 
Thompson, 2004). The expected value of perfect information (EVPI) 
measures difference in outcomes if one were able to resolve all uncer
tainty before choosing among alternative actions. EVPI provides an 
upper bound on the increase in performance because it assumes perfect 
resolution of uncertainty, which is rare in ecology. More realistically, 
the expected value of sample information (EVSI) measures the difference 
in outcomes when using less-than-perfect information (Canessa et al., 
2015; Runge et al., 2011; Williams and Brown, 2020). Incorporating VOI 
metrics to evaluate the efficacy of monitoring designs provides critical 
information about the tradeoffs between differing designs. In combi
nation with minimizing misclassification errors, metrics for EVSI have 
the potential to greatly improve the assessment of monitoring designs 
for conservation decision-making. 

Traditionally, objectives for monitoring programs focus on measures 
of statistical precision, without formal consideration of the decision 
process. Assessments frequently evaluate monitoring program perfor
mance based on statistical power to detect trends or other population 
state summaries and assume high statistical precision equates to better 
decision-making. Species classification decisions, however, are often 
based on predictive models of extinction risk and corresponding deci
sion thresholds and are influenced by not only parameter estimates but 
also value judgements associated with risk tolerance (Cummings et al., 
2018). The use of power analyses to design monitoring programs to 
inform decisions is logical but lacks an explicit link between monitoring 
and the outcome of the decision-making process. That is, a core 
consideration in designing and allocating effort to monitoring is not only 
returning precise and accurate results, but also to minimize the risk of 
assignment to the wrong classification. Despite numerous calls for 
designing and evaluating monitoring programs to improve decision- 
making (Lindenmayer et al., 2020, 2022; Lyons et al., 2008; Nichols 
and Williams, 2006), to our knowledge there has not yet been a study 
that evaluates the efficacy of monitoring designs for classifying species 
to conservation risk categories. 

We propose a framework to design monitoring programs for making 
species status classification decisions. Our framework includes two 
metrics to evaluate monitoring designs: 1) misclassification risk, and 2) 
the value of information. We used a simulation-based procedure to 
generate monitoring datasets with different levels of spatial and tem
poral replication and used these two metrics to quantify the risk of 

committing misclassification errors under each monitoring scenario. We 
also used power analysis to explore the relationship between statistical 
power to detect population trends and misclassification risk. We expect 
managers and decision-makers to find this useful to 1) determine if 
existing monitoring designs are sufficient for accurately informing 
classification decisions; and 2) design new monitoring programs with 
the objective to minimize classification errors and maximize the value of 
information. We demonstrate the utility of our approach for a hypo
thetical classification decision under the ESA. However, our framework 
is broadly applicable to species status classification decisions using other 
conservation status assessment frameworks at global, national, and 
regional scales. 

2. Materials and methods 

We propose a framework for evaluating monitoring decisions that 
characterizes outcomes of the classification process under repeated 
simulation of populations and sampling of these simulated populations 
given alternative monitoring scenarios. Our approach supposes suffi
cient understanding of the biological system so that a reasonable pop
ulation model and parameter values can be defined for purposes of 
simulation and estimation. Given the population model, we define true 
classification status to be the populations conservation status determined 
under perfect information. That is, the conservation status of the pop
ulation given the parameters of the population model. Given the model 
and its parameters, we can simulate a hypothetical population trajec
tory, subject that population to sampling by some monitoring design, 
and classify that population based on the monitoring data. We refer to 
this decision as the predicted classification. A correct classification is 
made when the predicted classification corresponds to the true classi
fication status. Our simulation-based framework consists of 6 steps, each 
of which may include several components specific to the classification 
decision problem (Fig. 1). We describe each step here, define the 
decision-specific components in our case study, and describe further 
extensions in the discussion. 

2.1. General framework 

First, we defined the true biological process scenario(s) we wished to 
assess (e.g., increasing, declining, or stable population trends) and set 
initial parameter values to reflect desired population trends and corre
sponding correct classification status (e.g., a scenario with declining 
population that should be classified as endangered). Second, we simu
lated the true biological state and process over the designated spatio
temporal scale. These steps makeup our biological process scenarios 
from which we determine the true classification status, i.e., the correct 
classification decision given perfect information. Next, we prescribed 
monitoring scenarios outlining considerations such as sample size and 
survey duration. In step four, we simulated data collection and esti
mated parameters based on collected data from each monitoring pro
gram for each true biological scenario. Next, we applied our species 
classification criteria to the estimated population state to predict the 
species classification decision for each biological process–monitoring 
scenario. With the true classification status known for each biological 
process scenario and the predicted classification for each biological 
process–monitoring scenario, we can calculate the proportion of correct 
species classifications obtained under repeated simulation of the bio
logical process–monitoring scenarios to evaluate performance of the 
tested monitoring scenarios. Here, our objective was to select a moni
toring program that minimizes misclassification risk. 

2.2. Case study 

We demonstrated the utility of our framework with a hypothetical 
classification decision problem under the ESA based on Eastern black 
rails (Laterallus jamaicensis jamaicensis), a secretive marsh bird listed as 
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threatened under the ESA in 2020 (USFWS 2020). We assumed we are 
required to design and establish a monitoring program with the objec
tive to inform a listing decision (e.g., reclassification) at some time in the 
future, e.g., a 5-year review. Occupancy was used as the metric to inform 
the original listing decision (McGowan et al., 2020) and we used percent 
area occupied (PAO) of the species range at year 50 as the metric for this 
assessment. 

We framed this decision to assign the species to the correct risk 
category (i.e., “Putting species in the right bin” sensu Cummings et al., 

2018). This decision framing requires quantitative thresholds for each 
risk category (or bin), which we defined as: if occupancy was >50 % of 
the total area available then protection would not be warranted (i.e., 
species could be delisted); if occupancy was ≥ 20 % and ≤ 50 % the 
species would remain listed as threatened; and if occupancy was <20 % 
the species would be listed as endangered (Table 1, Fig. 2). 

Due to uncertainty in the species true biological state (e.g., PAO), we 
needed to define additional components to address the costs associated 
with misclassification (i.e., under- vs. overprotection) and risk tolerance 

Fig. 1. General framework for evaluating monitoring programs based on the ability to correctly inform species classification decisions.  

Table 1 
Misclassification cost matrix for assigning species to the correct classification (bin) with probability values from a hypothetical example. Symmetric costs indicate that 
it is equally costly to underprotect and overprotect the species. Decision thresholds refer to estimates of the percent area occupied (PAO) at year 50 and correspond to 
specific classification decisions.  

Decision thresholds Classification Probability Misclassification cost matrix 

NW TH EN 

PAO > 50% Not warranted (NW) 0.30  0.0  0.5  1 
PAO ≥ 20% & ≤ 50% Threatened (TH) 0.30  0.5  0.0  0.5 
PAO <20% Endangered (EN) 0.40  1.0  0.5  0.0 
Expected misclassification cost  0.55  0.35  0.45  
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of decision maker(s). We established a quantitative measure of costs 
associated with making the incorrect classification decision (Table 1). 
While many options exist to quantify misclassification cost (see Cum
mings et al., 2018; Regan et al., 2013), we chose a symmetric misclas
sification cost matrix. This approach reflects a desire to balance the costs 
associated with under- and overprotection errors. That is, if the true 
status is threatened, the cost or loss associated with listing as either 
endangered (i.e., overprotection) or not warranted (i.e., under
protection) are equal. Further, we note that costs vary by magnitude of 
the error. Specifically, there is a lower cost associated with making a 
threatened decision (0.5) than a not warranted (NW) decision (1.0) 
when the correct classification is endangered (EN) (row 3, columns 1–3 
of the Misclassification Cost Matrix in Table 1). When correct classifi
cations are made, there is no cost (0) because there is no penalty asso
ciated with making the right decision. Finally, to quantify the 
probability or risk (“Expected misclassification cost”; Table 1) of 
misclassification, the misclassification cost is multiplied by the proba
bility of PAO being in each bin (see Step 5 below). The best or optimal 
classification is one that minimizes misclassification risk. 

To determine which monitoring programs were sufficient for 
informing the species classification decision, we defined a risk tolerance 
level for how frequently a monitoring program returns the correct de
cision. Some decision makers may tolerate a scenario in which the 
species is misclassified relatively frequently (e.g., 40 % of the time) 
while others only tolerate a small misclassification rate (e.g., <10 %). 
We set a risk threshold of 20 % indicating we accept monitoring pro
grams that return the correct classification a minimum of 80 % of the 
time and misclassifications no >20 % of the time. We then evaluated 
each monitoring scenario based on the expected value of sample infor
mation (EVSI) to compare the relative performance given the different 
spatial and temporal monitoring designs. 

Step 1. Define the true biological process scenario(s) 

To employ our framework, we first need to define the true biological 
scenario(s) of interest to the decision-maker given the decision problem 

(Step 1 in Fig. 1). This depends on the expected conditions of the species 
and the desired range of realistic conditions the decision makers want to 
explore. We limited the number of biological process scenarios to a total 
of three possible realities. For all three initial PAO (t = 1) was 25 % and 
we set the total number of possible sites to 5000, assumed to encompass 
the species' range where we monitor some subset. We chose three rates 
of change that resulted in a PAO in year 50 that fell into the three risk 
categories (bins) (Fig. 2). In a realistic assessment, the rates of change 
may not be selected specifically to force results into each bin but would 
rather reflect the desired range of conditions. Through iterative testing, 
we identified three rates of change on the logit scale that corresponded 
to PAO in year 50 falling into the not warranted, threatened, and en
dangered bins. The “Increasing–Not warranted” scenario trend was 
0.05, the “Stable–Threatened” scenario trend was 0.0, and the “Decli
ning–Endangered” scenario trend was − 0.05. 

Step 2. Simulate true biological state and process 

For each biological process scenario (e.g., “Increasing–Not war
ranted”) we simulated occupancy over 50 years using a simple trend 
model on the logit scale (Step 2 in Fig. 1). With the logit of the PAO in 
year 1 (here, 25 %) we projected logit occupancy through year 50 as 

logit (ψ t=2:T) = logit (ψ t=1) + β1*(t = 2 : T) where ψ t=1 is initial PAO 
and β1 is the true trend. We converted logit occupancy to the real scale to 
get PAO for all 50 years. 

Step 3. Design monitoring scenarios 

We created 24 monitoring scenarios (Step 3 in Fig. 1) with two 
detection probabilities (0.2, 0.5), three survey period lengths (3, 5, 10 
years), two levels of surveyed sites (500, 1500), and two levels of repeat 
surveys (i.e., visits) at each site (3, 6) (Appendix 1). Detection is 
generally low for black rails, but we include a “high” detection proba
bility to reflect the possibility that we could employ actions that increase 
overall detection (Tolliver et al., 2019). Namely, practitioners may 
consider deploying autonomous recording units (ARUs) which generally 

Fig. 2. Percent area occupied (PAO) over time and 
true status (e.g., correct classification) for each true 
biological process scenario (i.e., increasing trend) 
tested in the application of our framework. Dashed 
lines represent the decision thresholds separating the 
three species classification categories. We established 
the following thresholds as boundaries between the 
bins based on percent area occupied in year 50: if 
PAO was > 50 % the correct classification would be 
“not warranted”, if PAO was ≥ 20 % & ≤ 50 % the 
correct classification would be “threatened”, and if 
PAO was <20 % the correct classification would be 
endangered.   
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increase detection for similar species (Znidersic et al., 2021). The 
number of sites and number of repeat surveys are loosely based on 
previous surveys conducted for the species along with general guidance 
on minimum sites and visits for estimating occupancy (Tolliver et al., 
2019). We note that survey length may not correspond to timeframes 
required for reassessment under the ESA (e.g., 5-year reviews). None
theless, we wanted to evaluate performance of short (3-year and 5-year) 
and long term (10-year) studies for estimating trends in occupancy and 
for use in decision-making. In anticipation of an upcoming listing de
cision, management agencies may collect monitoring data that are later 
shared with USFWS for the Species Status Assessment. Alternatively, 
following a threatened or endangered species listing, the USFWS may 
fund short-term (1–5 years) studies for use in the status review. There
fore, these scenarios reflect plausible and relevant, real-world situations 
in which monitoring data could be used for the initial or periodic 
reassessments. 

Step 4. Simulate data collection and estimate parameters 

For each monitoring scenario (n = 24), we generated 1000 data sets 
from the true biological state process by simulating true occupancy for 
the number of sampled sites i for each year t using the true occupancy 
rate for each year (ψ t=1:T, Step 2) as 

zi,t ∼ Bernoulli
(
ψi,t

)

and generated site specific annual detection/non-detection data (yi,t) as 

yi,t ∼ Bernoulli
(
zi,t*p

)

where p is the scenario specific detection probability. We “stacked” 
multiple years of detection/non-detection data where the sites within 
each year are treated as independent sites of a single year. 

We modeled occupancy (ψ) using year-stratified models in unmarked 
(Fiske and Chandler, 2011) within program R (R Core Team, 2021) using 
the same model that generated the data. Specifically, the state process 
for occupancy at site i was: 

zi,t ∼ Bernoulli
(
ψi,t

)

logit
(
ψi,t

)
= β0 + β1*yeart  

where z is a latent state variable which equals 1 if site i is occupied and 
0 if not, β0 is the intercept, and β1 is the linear effect of year. The cor
responding detection process was modeled as: 

yi,j,t∣zi ∼ Bernoulli
(
zi,tp

)

where y is the observed detection/non-detection data, p is the proba
bility of detection given that the site is occupied, and j indexes the 
replicate surveys for a site. We recorded trend estimates (β1) with un
certainty to compare to the true trend (Step 1). We used the predict 
function (Fiske and Chandler, 2011) to estimate occupancy probabili
ties, standard errors, and confidence intervals. Specifically, we predicted 
occupancy on the logit scale for a total of 50 years, inclusive of years the 
population was monitored. 

Step 5. Apply species classification criteria 

Our species classification criteria categorize the species into bins 
based on the percent area occupied in year 50. Specifically, when PAO is 
>50 % protection would not be warranted, when PAO is ≥ 20 % and ≤
50 % the species would remain listed as threatened, and when PAO is 
<20 % the species would be listed as endangered. In practice, we cannot 
know the exact PAO at any time due to both imperfect sampling of the 
landscape and imperfect observation of the occupancy state at sampled 
sites, and thus do not know the true PAO bin. Therefore, we need to 

consider the risk of misclassifying the species to the incorrect risk 
category. We quantify the risk of misclassification by multiplying the 
cost of misclassification (e.g., deciding protection is not warranted when 
the species should be classified as endangered = 1.0) by the probability 
the PAO falls within each bin (Table 1). We chose a symmetric cost 
matrix and considered the classification with the smallest risk (expected 
misclassification cost) the optimal decision. 

To apply the species classification criteria, we required occupancy 
estimates in year 50. Using predicted values of mean occupancy and 
standard error in year 50 (from Step 4) we generated 1000 replicates (r) 
of logit occupancy with: 

logit.Poccr,t=50 ∼ Normal(logit.occ.meant=50, logit.occ.set=50).

We used the plogis function (R Core Team, 2021) to convert logit. 
Pocc to the natural scale, Poccr,t=50 = plogis

(
logit.Poccr,t=50

)
and esti

mated the number of occupied sites as: 

Nr,t=50 ∼ Binomial
(
Tot.sites,Poccr,t=50

)
.

We calculated the percent area occupied for all replicates where: 

PAOr,t=50 = Nr,t=50
/

Tot.sites 

The metric of interest from the population projection is the proba
bility of falling within each decision threshold and corresponding clas
sification bin (e.g., >50 % area occupied, protection not warranted, 
Table 1). We calculated the probability of falling within each classifi
cation bin as the proportion of replicates in which PAO fell within the 
decision thresholds. 

We then calculated the expected misclassification cost (i.e., 
misclassification risk) as the sum of the probability of being in each bin 
multiplied by the cost associated with making each classification. Here, 
the cost of listing as not warranted when the correct decision is to list as 
threatened is 0.5, and the cost of listing the species as not warranted 
when it should be listed as endangered is 1.0 (“NW” column in the cost 
matrix, Table 1). Thus, the cost is higher when the magnitude of the 
error is larger. Here we assume listing as NW when it should be EN is 
worse than listing it as NW when it should be threatened (TH). The 
decision that minimizes the risk of a misclassification error is the 
optimal decision. In the example in Table 1, the decision to list as TH has 
the lowest expected cost (i.e., risk) and can be calculated as: 

Expected cost (TH) = 0.35 = 0.30× 0.5+ 0.30× 0.0+ 0.40× 0.5  

Expected cost (TH) = 0.35 = Pr(NW)× 0.5+Pr(TH)× 0.0+Pr(EN)× 0.5 

We calculated expected costs for each of the 1000 replicate data sets 
resulting in one optimal decision for each data set for each biological 
process–monitoring scenario. We then calculated the proportion of 
times each decision (i.e., EN, TH, NW) was returned for each biological 
process–monitoring scenario for further evaluation. 

Step 6. Evaluate the performance of monitoring scenarios 

We evaluated monitoring scenario performance using several met
rics. To measure how effective each monitoring scenario was at 
returning the correct decision, we calculated misclassification risk as the 
proportion of correct and incorrect listing decisions averaged over all 
data set replicates. We considered monitoring programs to be sufficient 
to inform our classification decision if the misclassification rate across 
replicates, i.e., proportion of incorrect listing decisions, was <20 % or 
0.20. Additionally, we reported the type (over- or under-protection) and 
magnitude (e.g., EN versus TH when truly NW) of the misclassification 
errors. 

We also evaluated the performance of each monitoring scenario with 
EVPI and EVSI (Runge et al., 2011; Canessa et al., 2015). Outcomes of 
the decision were defined by the misclassification cost matrix (Table 1), 
i.e., a loss function. In this case, the value of new information is 
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expressed as the loss avoided and is equal to expected loss under un
certainty minus expected loss under certainty: VOI = EVuncertainty −

EVcertainty. Calculating value of information requires prior probabilities 
for belief in the system state (i.e., increasing, stable, or declining). We 
chose essentially equal prior probabilities (0.33, 0.33, and 0.34 for 
increasing, stable, and declining, respectively). In our case study, 
EVuncertainty is the sum of expected losses for each classification (not 
warranted, threatened, or endangered) given the true state of the system 
(increasing, stable, or declining), each weighted by the respective prior 
probability of being in each system state: EVuncertainty = maxaEs[V(a, s) ],
where a represents the classification and s the system state. The optimal 
choice under uncertainty is the classification with the smallest expected 
loss. EVPI is the expected benefit from eliminating uncertainty about 
system state entirely, i.e., with perfect knowledge of whether the pop
ulation is increasing, stable, or declining. With perfect knowledge, the 
decision maker would always choose the correct classification and thus 
incur zero loss (EVcertainty = 0); therefore, in this case, EVPI is equal to 
EVuncertainty. EVPI measures the loss we could avoid with perfect knowl
edge, and while a useful measure of maximum improvement in out
comes, is seldom possible. EVSI is the expected benefit of imperfect 
information. Calculating EVSI requires a Bayesian pre-posterior analysis 
(Yokota and Thompson, 2004), which implies collecting data and 

receiving new information before making a classification. For this we 
need to consider all possible results of the monitoring data, and calculate 
how each result (increasing, stable, declining) would change our belief 
about system state. We used the simulated monitoring data (x) from step 
4 as sample information and updated the prior probabilities for system 
state using Bayes theorem. For example, with monitoring data indicating 
a declining population (x− ), our prior probability that the population is 
declining P(decline) is updated using: 

P(decline|x− ) =
P(x− |decline)P(decline)

P(x− )

where P(x) is the probability of the data. After updating the priors based 
on new information, the expected loss under certainty is calculated for 
each monitoring result (increasing, stable, declining), i.e., sum of losses 
for each classification, weighted by the updated prior probabilities. The 
optimal classification under each monitoring result is the one that 
minimizes loss. But because we do not know which monitoring result we 
will find, the value for each optimal action is weighted by the probability 
of the data to determine expected value under certainty: EVcertainty =

Ex{maxaEs|x[V(a, s) ] }. Finally, EVSI is the difference EVuncertainty −

EVcertainty. Given the importance of prior probabilities for system state, 
we used a sensitivity analysis to assess the effect of priors on EVSI. 

Fig. 3. Power to detect trends for increasing and declining biological process–monitoring scenarios. The solid black horizontal line represents a threshold value for 
the acceptable statistical power to detect trends. The biological process scenarios are represented by different color markers (True Status) and describe the population 
trend (increasing, declining) and true classification status (not warranted, endangered). We created 24 monitoring scenarios combining different detection proba
bilities, survey period lengths, number of surveyed sites, and number of repeat visits per site; monitoring scenarios are represented on the x-axis by panel label and 
markers. The linked points represent scenarios that only differ by the number of visits. We do not include the Stable–Threatened scenario because we could only 
calculate the Type 1 error rate which was low and effectively constant (approx. 0.05) across all monitoring scenarios. 

K.D. Dunham et al.                                                                                                                                                                                                                             



Biological Conservation 286 (2023) 110260

7

Specifically, we calculated EVSI for a range of prior probabilities [0, 1] 
for each system state, constrained to sum to one. 

2.3. Power analysis 

In addition to the classification decision analysis (Step 5 in Fig. 1), we 
were also interested in the statistical power to detect trends. We recor
ded the mean and 95 % confidence intervals of the estimated trend term 
from each simulated data set (Step 4) to calculate power to detect trends 
for each biological process–monitoring scenario. Power for the positive 
and negative trend biological process scenarios were calculated as the 
proportion of times the lower or upper 95 % confidence interval of the 
trend was less than or greater than zero, respectively, depending on the 
direction of the true trend. We computed the Type 1 error rate for the 
stable trend scenario as the proportion of times the 95 % confidence 
interval included zero (Fig. 3). 

3. Results 

The power to detect increasing and declining trends increased with 
survey effort and detection probability (Fig. 3). Power was sufficient 
when detection was low (0.2) only when surveys occurred for 10 years. 
However, when detection probability was high (0.5) power was 

sufficient when surveys were conducted for at least 5 years at 1500 sites 
and increased to nearly 100 % when conducted over 10 years. The Type 
1 error rate for the Stable–Threatened scenario (not plotted) ranged 
from 0.049 to 0.064 across monitoring scenarios indicating a low 
probability that we would detect an increasing or declining trend when 
there is none. 

Under all biological process scenarios, misclassification error 
declined with increasing survey effort (Figs. 4, 5). For the increasing and 
declining biological process scenarios, misclassification error was suf
ficiently low (<0.20) for nearly all monitoring scenarios starting with 
those including 3 years and 1500 sites monitored (monitoring scenarios 
3–12 and 15–24) (Fig. 4). Alternatively, for the Stable–Threatened 
scenario, only two monitoring scenarios (23 and 24) met the threshold 
for tolerable classification error (<0.20) (Fig. 4). The proportion of 
overprotection errors was higher than the proportion of underprotection 
errors across all monitoring scenarios for the Stable–Threatened bio
logical process scenario (Fig. 5). The magnitude of errors declined with 
increasing monitoring effort for both the increasing and declining bio
logical process scenarios. For the Increasing–Not warranted scenario, 
the proportion of larger magnitude overprotection errors (list as en
dangered) was higher than the proportion of smaller magnitude over
protection errors (list as threatened) for the low monitoring effort 
scenarios, however, larger magnitude errors declined with increasing 

Fig. 4. Proportion of total misclassification errors (under and overprotection) for each biological process–monitoring scenario. The solid black horizontal line 
represents a threshold value for the acceptable misclassification error rate. We set this threshold to be 0.20, meaning that a monitoring program will only be 
considered sufficient for decision-making when misclassifications occur in ≤ 20 % of the replicates. The three biological process scenarios are represented by 
different colors (True Status) and describe the population trend (increasing, stable, declining) and true classification status (not warranted, threatened, endangered). 
We created 24 monitoring scenarios combining different detection probabilities, survey period lengths, number of surveyed sites, and number of repeat visits per site 
represented by panel labels and symbols. The linked points represent scenarios that only differ by the number of visits. 
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effort (Fig. 5). We detected a similar pattern with the Decli
ning–Endangered biological process scenario. 

Classification error was sufficiently low in most monitoring scenarios 
to accurately classify the population to the Increasing–Not warranted 
and Declining–Endangered categories (monitoring scenarios 3–12 and 
15–24, Fig. 4). Notably, for many of these biological process scenarios, 
we were able to correctly classify the population despite lacking power 
to detect the corresponding trend. For example, in the Increasing–Not 
warranted process scenario, the power to detect a positive trend for 
monitoring scenario 16 was roughly 0.40; however, misclassification for 
that scenario was 0.10, meaning we correctly classified the population 
90 % of the time. Importantly, when power was sufficiently high to 
detect the trend (>0.80) the proportion of classification errors was 
sufficiently low (<0.20) to accurately classify the population in most 
biological process–monitoring scenario combinations. 

Our misclassification cost matrix, i.e., loss function, indicates that 
expected loss under certainty is 0, i.e., the correct decision in all cases 
results in 0 penalty, so EVPI in this decision context is equal to the ex
pected loss under uncertainty, 0.335, which is the result of maintaining 
status as Threatened. EVSI generally increased with monitoring effort (i. 
e., visits, sites, and years) but tradeoffs were evident (Fig. 6). For 
example, there was little difference in EVSI from monitoring a “large” 
number of sites (1500) for three years and a “small” number of sites 
(500) for five years (i.e., scenario 4 vs. 6 and 16 vs. 18, Fig. 6). To gain 
substantial benefit from increasing the number of years from three to 
five, it was necessary to increase the number of sites from 500 to 1500. 
That is, there was a large increase in EVSI for 1500 sites compared to 500 
sites when monitored for five years. But there were diminishing returns 

for increased monitoring investment in the 10-year scenarios. When 
monitoring for 10 years, there was a relatively small increase in EVSI for 
scenarios with 1500 sites compared to 500 sites (Fig. 6). EVSI reflected 
the greater reliability of monitoring information when detection prob
ability was “high” (0.5 compared to 0.2). EVSI was generally greater 
under the higher detection probability for all monitoring scenarios and 
the difference between three and six visits, all else being equal, was 
smaller when detection probability was 0.5 compared to 0.2. Sensitivity 
analysis for prior beliefs about system state indicated that EVSI was 
greatest when the priors for declining and stable were 0.5 and 0, 
respectively (Fig. 7). EVSI is therefore greatest when there is equal prior 
probability of increasing and declining. 

4. Discussion 

Monitoring programs are often evaluated in terms of their ability to 
estimate population trends or other population metrics, with the 
assumption that higher statistical power will lead to better decision- 
making. We developed a framework to evaluate monitoring programs 
based on the ability to correctly classify conservation status and the 
value of information. Further, we explored the relationship between 
statistical power to detect trends and the ability to correctly inform a 
conservation decision. Our framework allows managers to assess the 
performance of monitoring programs with direct implications for con
servation decision-making. Our results suggest high power to detect 
trends often corresponds with accurate species classification decisions, 
however, strictly using results from the power analysis greatly limited 
the number of scenarios that were sufficient for making the correct 

Fig. 5. Proportion and magnitude of misclassification errors for each biological process–monitoring scenario. Correct decisions are shown in white and mis
classifications in gray scale. 
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classification. While power analyses are suitable for null hypothesis 
testing, our results demonstrate the limitations of using such analyses to 
inform species classification decisions. Further, our results indicate high 
statistical power to detect trends is not necessarily required to correctly 
inform classification decisions. These findings open opportunities for 
managers and decision-makers to consider monitoring programs with 
lower effort than those that meet typical statistical power thresholds, 
and our framework provides substantially more detail regarding the 
benefits and consequences of monitoring programs for making classifi
cation decisions. 

Increased monitoring efforts generally reduced the risk of mis
classifying a species to the incorrect extinction risk category. Declines in 
misclassification risk were often correlated with increases in statistical 
power in response to increased monitoring effort, however, we note that 
power is not calculable for stable population growth scenarios further 
limiting the utility of that approach for assessing monitoring designs for 
conservation decisions. Misclassification risk was initially low and the 
reduction in misclassification was minimal for the Increasing–Not war
ranted and Declining–Endangered scenarios. Alternatively, results 
indicate misclassification error associated with the Stable–Threatened 
scenario was substantially higher than for the other two biological 
process scenarios. We suspect this occurred for several reasons. First, 
misclassification risk is generally higher when the population state is 
near the boundary of a decision threshold (Regan et al., 2013). Under 
the stable process scenario, true percent area occupied was 25 %, and 
was close to the threshold for listing as endangered (PAO <20 %), which 
likely resulted in higher probability of overprotection misclassification 
errors particularly when uncertainty was high (e.g., low monitoring 
effort). Second, when estimates of occupancy and trend were highly 
uncertain, predicted PAO at year 50 tended to cluster near the bound
aries of 0 or 1 depending on the initial sign of the mean trend estimate 
due to the underlying model form. This statistical artifact was particu
larly problematic for the stable scenario because estimates near the 
boundaries would end up above or below the threatened decision 
thresholds for all but the most intensive monitoring efforts. While we 

expect that the general pattern of declining misclassification risk with 
increased effort will hold under most biological process scenarios, we 
recognize the magnitude of errors and rate of decline in misclassification 
risk will likely vary with initial conditions of the biological process 
scenarios (e.g., abundance, trend), decision thresholds, and monitoring 
effort. In cases when population rate of change is relatively small or 
population metrics are near the boundary of decision thresholds, results 
will likely be more sensitive to precision and survey efforts. Thus, our 
assessment highlights the importance of evaluating monitoring pro
grams across variable underlying (true) conditions because classifica
tion errors are sensitive to multiple components of the biological and 
monitoring process. 

Several studies have examined effects of life history, model 
complexity, process error, measurement error, and decision rules on the 
distribution and magnitude of misclassification errors for classification 
decisions (Connors et al., 2014; Dunham et al., 2021; Regan et al., 2013; 
Rueda-Cediel et al., 2015, 2018; Taylor et al., 1996). Classification de
cisions varied in sensitivity to each of these components and these 
studies highlight the considerable consequences associated with 
misclassification for species conservation. Further, these studies have 
encouraged careful consideration and scrutiny of data used to parame
terize models informing classification decisions. While several patterns 
have emerged from research, several corroborated here, ultimately 
classification decisions vary in sensitivity to multiple components. When 
designing monitoring programs to inform species classification de
cisions, we need to consider decision context (i.e., scientific and policy 
components), life history, data, and model types, thus, we expect this 
framework to be applied on a case-by-case basis. Despite considerable 
evidence indicating classification decisions are prone to error and the 
potential consequences of misclassification, to our knowledge we are the 
first to suggest evaluating monitoring designs with the specific objective 
to minimize misclassification error. 

While there are many conservation status assessment frameworks, 
we chose to use an ESA decision as the example to apply our framework. 
Importantly, ESA decisions do not include explicit decision rules to 

Fig. 6. Expected value of sample information 
(EVSI) for 24 monitoring scenarios. EVSI in this 
decision context is the loss avoided from an 
incorrect status classification (misclassification 
cost matrix shown in Table 1). Monitoring sce
narios were either 3-, 5-, or 10-years duration. 
For each set of bars (3, 5, or 10 years), the first 
two bars are for 500 sites (3 and 6 visits, 
respectively); second two bars are for 1500 sites 
(3 and 6 visits, respectively). EVSI generally 
increased with monitoring effort, but interest
ingly in this decision context, the value of infor
mation from monitoring 1500 sites for three 
years was similar to 500 sites for five years (i.e., 
scenario 4 vs. 6 and 16 vs. 18).   
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categorize species to risk categories, which offers more flexibility than 
other frameworks such as PIF and IUCN. We believe the general 
framework we described here could be adapted to assess monitoring 
programs for many, if not all, programs that use quantitative criteria to 
inform classification decisions. Rueda-Cediel et al. (2018) assessed the 
effects of biological traits (e.g., age at first reproduction) and model 
choice on the accuracy of threat classifications under IUCN. Using our 
framework, we could readily extend their work to include defining 
specific monitoring scenarios and a risk tolerance threshold for evalu
ating the performance of monitoring scenarios to accurately classify 
species using IUCN Red List criteria. Such a modeling exercise may be 

particularly useful to design monitoring programs for species listed as 
data deficient, many of which are expected to be threatened (Bland 
et al., 2015; Parsons, 2016). For frameworks like PIF that generate 
scores from multiple categories of population metrics (e.g., population 
trend and nonbreeding distribution), practitioners could apply our 
framework by population metric category depending on available 
monitoring data or desired monitoring program(s). We expect our 
framework could be particularly useful for analyses requiring estimates 
of population trend when current scores reflect a lack of information (i. 
e., data deficient). In these cases, managers may need to design and 
assess monitoring programs to inform accurate classifications when 

Fig. 7. Expected value of sample information (EVSI) as a function of prior belief in system state (i.e., increasing, stable, or declining). EVSI in this decision context is 
the loss avoided from an incorrect classification decision (loss function shown in Table 1). The results shown here are for monitoring scenario 7 (1500 sites, 3 visits, 5 
years, detection = 0.2). Results are qualitatively similar for other monitoring scenarios. In this decision context, EVSI is greatest when prior probability that the 
population is declining is 0.5 and prior probability for stable population is 0. 
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breeding bird survey data are insufficient, a common occurrence for 
many species including secretive marsh birds (Carter et al., 2000). While 
we expect this framework to be applied on a case-by-case basis, we 
believe it can be useful to practitioners tasked with assessing existing 
programs and designing new monitoring programs across a broad range 
of conservation status assessment frameworks. 

We selected a limited number of biological process and monitoring 
scenarios to demonstrate our approach and easily visualize results. 
Practitioners may be interested in monitoring program performance 
over a much wider range of biological scenarios (i.e., all possible initial 
occupancy rates) because the true state is unknown due to a lack of 
monitoring data or expert opinion on population status. We note that 
this step likely has important implications for the generalization of the 
results and the distribution and magnitude of classification errors. For 
example, if population state is expected to be near a decision threshold, 
we may need to generate many biological process scenarios aligning 
with potential reality to determine how intensively we need to monitor 
in these challenging cases. We envision these biological process sce
narios being customized to the decision problem. For example, we could 
evaluate the true classification decision(s) using different metrics of 
population state (e.g., abundance) or include more realistic biological 
processes in which simulate truth based on species raster maps and 
model habitat change over time (Southwell et al., 2019). Monitoring 
scenarios were largely inspired by real monitoring programs employed 
for Eastern black rails (e.g., Tolliver et al., 2019) however, we believe 
our framework could be a useful tool for evaluating the performance of 
monitoring programs that employ human point-counts versus those 
using ARUs (e.g., Znidersic et al., 2021), or some combination. 

We framed our case study as a single-objective problem focused on 
minimizing the risk of misclassification, however, our framework could 
be further generalized to address multiple criteria (objective) decisions 
(i.e., Converse, 2020). In practice, there are often multiple objectives 
that need to be considered, namely, financial cost. Given our results 
indicated monitoring scenarios with low power can return accurate 
classification decisions, managers may be interested in selecting options 
that reduce financial cost. This has potentially huge implications for 
resource allocation towards other species of conservation concern that 
could maximize cost efficiency of monitoring. We expect a particularly 
interesting extension for many managers would include assessing 
monitoring programs for multiple species that minimizes total misclas
sification risk over all species considered for a given budget. To address 
such multi-criteria decision problems, we would need to consider a 
different performance evaluation method in the final step that also 
minimizes financial costs or sets a maximum allowable budget to iden
tify the optimal monitoring scenario. 

Applications of the value of information in ecology and conservation 
are growing (Bolam et al., 2019). Most often, the value of information 
has been used to evaluate the robustness of management strategies to 
uncertainty, i.e., asking is it worthwhile to collect additional informa
tion to reduce uncertainty, or simply manage under uncertainty using 
EVuncertainty (Bennett et al., 2018; Johnson et al., 2014; Moore and Runge, 
2012; Nicol et al., 2019). We used the value of information to evaluate 
prospective monitoring designs, i.e., investigate varying levels of spatial 
and temporal replication, which is a less common in the VOI literature 
(Bal et al., 2018). In one of few similar applications, Back et al. (2007) 
used EVSI to evaluate different sampling plans and cost-effectiveness in 
the context of reducing uncertainty about remediation of contaminated 
lands. In our case study, EVSI estimated the loss that could be avoided by 
increasing sampling intensity, and while EVSI generally increased with 
monitoring intensity, tradeoffs were evident. Our analysis gives man
agers information to think about in terms of information gained and 
costs when choosing a sampling plan. Diminishing returns on moni
toring investment are not uncommon, and costs of additional moni
toring are not always justified (Grantham et al., 2008; McDonald- 
Madden et al., 2010). 

Classifying species into risk categories is a ubiquitous process in 

conservation decision-making with important implications for legal 
protection, conservation prioritization, and resource allocation (Rodri
gues et al., 2006; Cummings et al., 2018). We developed this framework 
to propose a paradigm shift in the way monitoring programs are 
designed and evaluated in conservation decision-making. Managers are 
often tasked with assessing species conservation status and developing 
monitoring programs used to inform those decisions but may not assess 
monitoring program design with the risks of decision-making in mind 
(Lindenmayer et al., 2013, 2020; Lyons et al., 2008; Nichols and Wil
liams, 2006). Our framework provides conservation practitioners op
portunities to evaluate the effectiveness of monitoring programs a priori 
to improve conservation decisions and offers the flexibility to incorpo
rate additional objectives depending on the decision problem (e.g., 
budget constraints). Our framework demonstrates that prioritizing 
monitoring that minimizes misclassification errors and evaluates the 
value of information can improve monitoring efficiency and conserva
tion decision-making with considerable practical applications and ben
efits for species conservation. 
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